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Abstract

This paper reviews the leading edge of the basic and applied science and technology that use high-
intensity facilities and looks at what opportunities lie ahead. The more than 15,000 experiments on the
Nova laser since 1985 and many thousands more on other laser, particle beam, and pulsed power
facilities around the world have established the new laboratory field of high-energy-density plasma
physics and have furthered development of inertial fusion. New capabilities such as those provided by
high-brightness femtosecond lasers have enabled the study of matter in conditions previously
unachievable on earth. These experiments, along with advanced calculations now practical because of
the progress in computing capability, have established the specifications for the National Ignition
Facility and Laser MegaJoule and have enhanced new scientific fields such as laboratory astrophysics.
Science and technology developed in inertial fusion have found near-term commercial use, have
enabled steady progress toward the goal of fusion ignition and gain in the laboratory, and have opened
up new fields of study for the 21st century.

1. Introduction

Over the past 25 years there has been steady progress in understanding the conditions
under which ignition of inertial fusion targets might be achieved at the smallest possible drive
energy. This progress has accelerated in the last 14 years with extraordinarily rapid
developments in instrumentation, theory, computational simulations, and with the larger laser,
particle beam, and pulsed power facilities that became available in the mid-1980s. The laser
and pulsed power facilities developed for inertial fusion have also proven to be outstanding
research tools for the fundamental study of high-temperature and density plasmas (sometimes
called high-energy-density science). The field of inertial fusion sciences and applications
(IFSA) can provide an exciting and sound basis for new capabilities for the next century.

Lasers, ion beams, and pulsed power facilities reproducibly concentrate energy in space
and time and thus can create diagnosable plasmas that exist for picoseconds to tens of
microseconds at extremely high-energy density. Such experiments can reach plasma electron
and ion temperatures >108 K, pressures >1011 atmospheres, and radiation temperatures
>3.5 × 106 K. For example, radiation temperatures of 94 eV, 151 eV, and 288 eV have been
produced in cylindrical gold hohlraums with diameters of 4.8, 1.6, and 1 mm respectively.[1]
Resulting radiation fluxes >105 GW/sr/cm2 can be used for fusion capsule compression or for
a variety of measurements of basic material properties and/or physical processes. Large laser
facilities doing such experiments include Nova (recently shut down), Omega, and Nike in the
United States, Gekko XII in Japan, Phebus in France, Helen and Vulcan in the United
Kingdom, and Iskra in Russia.



Chirped pulse amplification techniques have been applied to many small lasers in the
United States, France, Japan, and elsewhere to achieve extraordinarily high-power intensities
(>1020 W/cm2) and make possible the study of relativistic plasmas.[2] That the extremely high
fields (~1014V/m), energy densities (~3 × 1010 J/cm3), and pressures (~300 Gbar) produced are
being used to do very interesting science is attested to by the more than 60 papers on the
subject presented at IFSA’99.

Pulsed power progress with Z pinches has resulted in record x-ray power output from fine
wire arrays. Experiments at the Z machine at Sandia National Laboratories have produced 280
TW of x-ray power output with high efficiency. Joint experiments with Lawrence Livermore
National Laboratory (LLNL) and Los Alamos National Laboratory are under way to use this
new capability for high-energy-density plasma physics experiments. Two sessions of IFSA’99
are devoted to progress in Z-pinch experiments.

Gesellschaft für Schwerionenforschung is steadily increasing its heavy ion, high-energy
(MeV-GeV/nucleon) beam intensity (×1000 upgrade nearing completion) and is planning to
add a kJ/petawatt laser to complement its particle beam capabilities. The laser will help
diagnose high-energy-density plasmas created by the ion beams and can also create hot, dense
plasma in which to study ion stopping.

The progress in fundamental science has significantly furthered development of inertial
fusion energy (IFE). The more than 15,000 experiments on Nova and the many thousands
more in other facilities around the world have provided the basis for construction of facilities
intended to ignite targets for the first time.

In this paper the authors will review (by showing representative examples, principally from
laser experiments) the exciting progress that is being made in basic high-energy-density
sciences. We will also discuss new strategies being developed by the community for fusion
energy development. Figure 1 shows construction activities on the National Ignition Facility
(NIF) at LLNL. Recently revised calculations indicate that NIF target performance may even
exceed that forecast for the baseline targets. We are currently reassessing how to bring the
NIF on line; there will be some delay and increased costs, but there is strong will to complete
the NIF Project.

Figure 1.  Aerial view of NIF (left photo) taken April 23, 1999, showing the nearly complete
Optics Assembly Building (upper right), the complete shells of the laser bays, and the half-
complete concrete structure of the target area building (lower left). The 10-m-diameter Al target
chamber (right photo) was set into place in the target area building after a dedication ceremony
June 11, 1999, featuring Secretary of Energy W. Richardson.



2. High-Energy-Density Science

For convenience, we will consider high-energy-density science in three categories: use of
the ultrahigh powers of femtosecond lasers, laboratory astrophysics, and studies of material
properties at high-energy densities.

2.1 Femtosecond Laser Science and Developments

The development of chirped pulse amplification has made possible extremely high-power
(>1015 W), short-pulse (<10–12 s), high-brightness lasers that can irradiate targets at intensities
approaching 1021 W/cm2.[3] Such lasers are being used to study the feasibility of the fast
igniter concept for high-gain IFE targets (see the many papers at this conference) and also for
research in relativistic plasma physics. Experiments have shown that a significant fraction of
high-intensity light is converted into relativistic electrons [4,5] with energies up to
100 MeV.[5,6] Intense gamma rays created in electron collisions have led to the production of
positrons.[6] As shown in figure 2, these gamma rays induce (γ,n) and (γ,p) nuclear reactions,
photo-dissociation of nuclei, and activated radionuclides in a wide range of materials.[6,7]
High-energy proton beams are generated and, in turn, induce strong (p,n) nuclear reactions.
These data suggest that high-intensity lasers may provide new sources of ions, nuclear
particles, and radionuclides, which may have significant future scientific and technical
applications.
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Figure 2.  The Petawatt laser at LLNL has produced strong nuclear (γ,xn) activation.

The Petawatt laser has also been focused upon deuterium clusters created in a gas jet, and
2.45-MeV neutrons have been observed from the resulting fusion reactions.[8] Figure 3
shows the experimental arrangement. A gas jet produced a deuterium cluster density of 1018 to
1019 cm–3. The graph in the figure shows the dramatic increase in neutron yield per shot as the
peak laser intensity is increased. This experiment produced interesting science, and the
technology should be studied as a possible neutron source for fusion materials testing.
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The femtosecond pulse laser technology is also finding near-term applications in materials
manufacturing processes. Drilling and cutting can be done with the short-pulse laser more
precisely and with little or no heat-damaged zone created. The physical processes involved in
the interaction of such short (<1 ps) high-power laser pulses and matter are very different
from those involved with long (>10 ps) pulses. Experiments have been done with metals,
ceramics, and biological materials with no collateral damage and with micron-scale precision.
This feature has already been found useful in specialized cutting applications.

2.2 Laboratory Astrophysics

Two workshops on laboratory astrophysics and many laboratory experiments over the last
few years have contributed greatly to the understanding of what is required to exploit
laboratory-scale experiments to better understand astrophysical phenomena. Experimental
programs are ongoing in the following topics:
•  Explosion hydrodynamics—supernovae.
•  Radiative jets—Herbig-Haro objects.
•  Solid-state flow—earth interior.
•  Ablation fronts—Eagle nebula (“pillars of creation”).
Papers at this conference in the Laboratory Astrophysics sessions and a third workshop
scheduled for March 2000 at Rice University illustrate progress in this developing field.

Striking similarities were observed between simulations of hydrodynamic instability
growth in inertial fusion capsule implosions and core-collapse supernova explosions, in spite
of the huge scale difference.[9,10] It has been shown that the physics is invariant in Euler’s
equation by making suitable scale transformations.[11] Figure 4 (also from Ref. 11) shows
that, by proper design of a laboratory experiment, the calculated velocity, density, and
pressure profiles of a supernova explosion can also be reproduced. Figure 5 shows the
experimental arrangement, x-ray radiograph, and model/data comparisons of
Richtmyer–Meshkov  and Rayleigh–Taylor instability  growth  at the Cu-CH  interface  of  an



accelerated target employed in the laboratory experiments.[12,13] Excellent agreement is
observed. Recent striking experiments display the explosive phase of an x-ray-heated
cylinder, which qualitatively compares quite well with the calculated supernova
explosion.[14,15]
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Figure 4.  Velocity, density, and pressure profiles for a supernova (a) that are reproduced in a
laboratory experiment driven by laser-generated x rays (b).

Figure 5.  Scaled core-collapse supernova experiments on the Nova laser mimic the
hydrodynamics at the helium-hydrogen interface with surrogate materials.



Astrophysics is currently witnessing a spectacular extra-galactic colliding plasma
experiment in the ejecta-ring collision of SN1987a. The question has been posed: can
laboratory experiments help us understand what is going to happen during this collision?
Figure 6 shows some observations of the SN1987a remnant, an experiment designed to study
certain aspects of the collision [16] and earlier simulations relevant to the event.[17] Three
papers at IFSA’99 will explore this use of laboratory experiments further.[18,19,20]

An understanding of the equation of state (EOS) of hydrogen at pressures exceeding
1 Mbar is important for planetary science, brown dwarfs, and IFE. Study of the EOS along a
principal Hugoniot for numerous materials up to tens of megabars has been made possible by
high-energy-density facilities. For example, a study of the compressibility of liquid deuterium
at pressures from 0.2 Mbar to 3.4 Mbar using Nova has revealed high compressibility.[21]
This is understood as linked to pressure-induced molecular dissociation corresponding to the
transition to metallic hydrogen. The results, shown in figure 7, were obtained with numerous
diagnostics. Similar insulator-to-metal transitions have also been seen for LiF at ~6 Mbar and
carbon (diamond) at ~10 Mbar.

Figure 7.  Laboratory experiments used Nova laser energy to produce a shock that allowed
measurement of the EOS of hydrogen at megabar pressures.
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2.3 Material Properties at High-Energy Densities



3. Inertial Fusion Energy Development

To build and sustain support for the development of fusion energy, the community must
show that a fusion power plant will be competitive with other forms of energy. It must be
competitive from all viewpoints, e.g., economics, safety, environmental impact, reliability,
maintainability, political issues such as nonproliferation, licensing issues, waste disposal,
spin-off applications, and affordability of development. IFE is a potentially attractive
approach to fusion energy on all counts. The basics of why this is so and how an attractive
power plant can be developed have been described in a number of places.[22,23] In particular,
IFE has an affordable development path resulting from:

•  The separability and modularity of components and systems.
•  The breadth of possible attractive options in targets, drivers, and chambers.
•  The leverage from other applications of ICF technology such as those in national

security, high-energy physics, and industry.
•  The fact that engineering development of power plant chambers can be done in scaled,

lower-cost reaction chambers.[24,25]
Progress in target physics has been steady, supported in the United States by the

Department of Energy (DOE) for national security purposes. Accelerator technology is
furthered by the high-energy physics community, and lasers are being developed by industry
for other purposes.

The goal of the NIF is to achieve ignition and significant energy gain in the laboratory for
the first time. Given the progress in the field and the attractive features of IFE, a development
plan has been formulated by the community that, if funded and successful, would lay the
technical foundation for beginning construction of an engineering test facility (ETF) in the
second decade of the next century. The goal of this facility would be to produce average
fusion power (in the range of 100 to 400 MW) and to demonstrate the operability,
environmental and safety features, and the economics of IFE for a project cost in the range of
$2B to $3B.

The proposed development program has been formulated with the entire U.S. fusion
community on a common basis. The IFE “road map” that has resulted from this effort is
shown in figure 8. This figure shows the different stages of development and
demonstration—concept exploration, proof of principle, performance extension, and fusion
energy development (the ETF) leading to a demonstration plant. To progress to higher, more
costly stages, specific scientific and technical objectives must be met. The existing ICF
program engages the road map at the first three levels, with significant ongoing investment by
DOE’s national security program (illustrated by the shaded region in the performance
extension stage). Examples of activities in the first level include exploring ways of extending
the successful Z-pinch efforts into an IFE concept (repetition-rate, stand-off, waste stream),
examining the high-gain (G > 200) “fast igniter” concept in which isochorically compressed
fuel is ignited by a separate high-intensity driver, and exploring high-gain (G > 100) indirect-
drive target concepts with lasers. Examples of the second stage include the development of
high rep-rate (>5 Hz) 100-J class KrF (the Electra project at the Naval Research Laboratory)
and diode-pumped solid-state lasers (Mercury project at LLNL). Overview papers on the
status of each driver are included in IFSA’99.

The third stage includes the demonstration of ignition and gain on the NIF and Laser
MegaJoule (LMJ) and the construction of high rep-rate, multikilojoule (~15 kJ to 300 kJ)
drivers that also address key chamber issues (driver/chamber interface, beam propagation in
the chamber, etc.). Because of these system objectives, these facilities have been named
integrated research experiments (IREs).
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The results of the IREs and the target physics from the NIF, described in the next section,
would form the basis of proceeding with an ETF. In the ETF, a power-plant-scale, high-pulse-
rate driver would drive reaction chambers to demonstrate the ability of the various chamber
concepts to operate at 5–10 Hz. In an IFE power plant, the combination of rep-rate and
capsule yield determine fusion power. These variables are independent for IFE. Therefore,
reaction chambers scaled down to the size necessary for lower-yield targets could test the
ability to achieve the necessary rep-rate.[24] These low-power chambers would be less
expensive. Separately, experiments in a single-pulse chamber could demonstrate the high
yield necessary to obtain a driver efficiency/target gain product greater than about ten, a
necessary condition for IFE power plant economics.[22] Significantly, the low yield necessary
to do the high-rep-rate demonstration will have already been demonstrated on the NIF.

Finally, if the ETF is successful, an IFE demo could be built. Depending upon the outcome
of the ETF experiments, it may only be necessary to add a high-power reaction chamber to the
driver and target factory built for the ETF, to close the fuel and target materials cycles, and to
add electricity-producing systems. This development path would be more affordable than one
that requires completely separate facilities at each stage.

4. The National Ignition Facility

Demonstration of the critical features of ICF and IFE targets, that is, ignition and
propagating thermonuclear burn, is a principal goal of the NIF, now under construction at
LLNL (see figure 1). The NIF is intended to be an extremely flexible facility. It will have the
ability to irradiate both indirect- and direct-drive targets with a variety of pulse formats,
including the complicated pulses required for high-gain IFE targets. The NIF should be able



to do experiments relevant to all target types and most drivers. Figure 9 shows current
projections for gain expected from a variety of target types, including fast ignition targets.
The fast ignition curves, of course, are based on models that have not yet been validated by
experiments. However, the figure shows why we are so interested in this high-risk but high-
payoff approach. The NIF will truly be able to explore all options. A number of papers on the
baseline targets and on the fast ignition approach are presented at IFSA’99.
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More recently, work exploring higher gain with indirect-drive targets has shown promise.
In figure 10, the energy-power parameter space available on the NIF is shown along with the
location of the nominal, gain 10 design and one with gain 30. As shown in the figure, by
optimizing the hohlraum and laser, it may be possible to produce indirect-drive targets in
which the capsule absorbs >600 kJ of x rays (the baseline NIF capsule absorbs 150 kJ of x
rays). Such targets may produce gains greater than 30 with yields of 70 to 100 MJ.[26]
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Figure 10.  Recent calculations are exploring ways to increase the capsule energy on the NIF for
indirect-drive targets.

The NIF also promises to extend the work done in basic high-energy-density plasma
physics, laboratory astrophysics, and all the fundamental fields discussed above. The



experiments that have been done to date on all the high-energy-density facilities have
established the fundamental feasibility to obtain useful data to further a wide variety of fields.
Experiments are being designed now for the NIF and LMJ that will utilize their fullest
capabilities.

Inertial fusion has value for analyzing nuclear weapon performance. Consequently, there is
concern about proliferation of weapon-relevant information through inertial fusion work.
Progress in IFSA and the ability to share future results will depend on the Comprehensive
Test Ban Treaty and on reducing global nuclear danger. The next century has the potential to
be very exciting for all inertial fusion sciences and applications.

This work was performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
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