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Abstract

We present a de novo hierarchical simulation framework for first-principles based predictive simulations of 
materials and their validation on high-end parallel supercomputers and geographically distributed 
clusters. In this framework, high-end chemically reactive and non-reactive molecular dynamics (MD) 
simulations explore a wide solution space to discover microscopic mechanisms that govern macroscopic 
material properties, into which highly accurate quantum mechanical (QM) simulations are embedded to 
validate the discovered mechanisms and quantify the uncertainty of the solution. The framework includes 
an embedded divide-and-conquer (EDC) algorithmic framework for the design of linear-scaling simulation 
algorithms with minimal bandwidth complexity and tight error control. The EDC framework also enables 
adaptive hierarchical simulation with automated model transitioning assisted by graph-based event 
tracking. A tunable hierarchical cellular decomposition parallelization framework then maps the O(N) EDC 
algorithms onto Petaflops computers, while achieving performance tunability through a hierarchy of 
parameterized cell data/computation structures, as well as its implementation using hybrid Grid remote 
procedure call + message passing + threads programming. High-end computing platforms such as IBM 
BlueGene/L, SGI Altix 3000 and the NSF TeraGrid provide an excellent test grounds for the framework. 
On these platforms, we have achieved unprecedented scales of quantum-mechanically accurate and well 
validated, chemically reactive atomistic simulations—1.06 billion-atom fast reactive force-field MD and 
11.8 million-atom (1.04 trillion grid points) quantum-mechanical MD in the framework of the EDC density 
functional theory on adaptive multigrids—in addition to 134 billion-atom non-reactive space-time 
multiresolution MD, with the parallel efficiency as high as 0.998 on 65,536 dual-processor BlueGene/L 
nodes. We have also achieved an automated execution of hierarchical QM/MD simulation on a Grid 
consisting of 6 supercomputer centers in the US and Japan (in total of 150 thousand processor-hours), in 
which the number of processors change dynamically on demand and resources are allocated and 
migrated dynamically in response to faults. Furthermore, performance portability has been demonstrated 
on a wide range of platforms such as BlueGene/L, Altix 3000, and AMD Opteron-based Linux clusters.

Keywords: Hierarchical simulation, molecular dynamics, reactive force field, quantum mechanics, density 
functional theory, parallel computing, Grid computing
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1 Introduction

Petaflops computers1 to be built in near future and Grids2-4 on geographically distributed parallel supercomputers 
will offer tremendous opportunities for high-end computational sciences. Their computing power will enable 
unprecedented scales of first-principles based predictive simulations to quantitatively study system-level behavior of 
complex dynamic systems.5 An example is the understanding of microscopic mechanisms that govern macroscopic 
materials behavior, thereby enabling rational design of material compositions and microstructures to produce desired 
material properties.

Multitude of length and time scales and the associated wide solution space have thus far precluded such first-
principles approaches. A promising approach is hierarchical simulation,6-8 in which atomistic molecular dynamics 
(MD) simulations9-12 of varying accuracy and computational costs (from classical non-reactive MD to chemically 
reactive MD based on semi-classical approaches) explore a wide solution space to discover new mechanisms, in 
which highly accurate quantum mechanical (QM) simulations13-17 are embedded to validate the discovered 
mechanisms and quantify the uncertainty of the solution.

A simple estimate indicates that a 100 billion-atom MD simulation for one nanosecond (or 500 thousand time 
steps), which embeds 200 million-atom reactive MD and 1 million-atom QM simulations, will require 45 days of 
computing on a Petaflops platform. To enable such ultrascale simulations in near future, however, nontrivial 
developments in algorithmic and computing techniques, as well as thorough scalability tests, are required today.

We are developing a de novo hierarchical simulation framework to enable first-principles based hierarchical 
simulations of materials and their validation on Petaflops computers and Grids. The framework includes:
• An embedded divide-and-conquer (EDC) algorithmic framework for: 1) the design of linear-scaling 

algorithms for approximate solutions of hard simulation problems with minimal bandwidth complexity and 
codified tight error control; and 2) adaptive embedding of QM simulations in MD simulation so as to guarantee 
the quality of the overall solution, where graph-based event tracking (i.e., shortest-path circuit analysis of the 
topology of chemical bond networks) automates the embedding upon the violation of error tolerance.

• A tunable hierarchical cellular decomposition (HCD) parallelization framework for: 1) mapping the linear-
scaling EDC algorithms onto Petaflops computers, while achieving performance tunability through a hierarchy 
of parameterized cell data/computation structures; and 2) enabling tightly coupled computations of considerable 
scale and duration on distributed clusters, based on hybrid Grid remote procedure call + message passing + 

threads programming to combine flexibility, fault tolerance, and scalability.
High-end parallel supercomputers such as IBM BlueGene/L and SGI Altix 3000, as well as Grid test-beds such 

as the NSF TeraGrid, are excellent test grounds for such scalable de novo hierarchical simulation technologies. This 
paper describes scalability tests of our hierarchical simulation framework on these platforms as well as its portability 
to other platforms such as AMD Opteron-based Linux clusters. In the next section, we describe the EDC algorithmic 
framework. Section 3 discusses the tunable HCD parallelization framework. Results of benchmark tests are given in 
Sec. 4, and Sec. 5 contains conclusions.

2 Embedded Divide-and-Conquer Algorithms for De Novo Hierarchical Simulations

Prerequisite to successful hierarchical simulations and validation at the Petaflops scale are simulation algorithms 
that are scalable beyond 105 processors. We use a unified embedded divide-and-conquer (EDC) algorithmic 
framework based on data locality principles to design linear-scaling algorithms for broad scientific applications with 
tight error control.18, 19 In EDC algorithms, spatially localized sub-problems are solved in a global embedding field, 
which is efficiently computed with tree-based algorithms (Fig. 1). Examples of the embedding field are: 1) the 
electrostatic field in molecular dynamics (MD) simulation;11 2) the self-consistent Kohn-Sham potential in the 
density functional theory (DFT) in quantum mechanical (QM) simulation;19 and 3) a coarser but less compute-
intensive simulation method in hierarchical simulation.7

2.1 Linear-Scaling Molecular-Dynamics and Quantum-Mechanical Simulation Algorithms

In the past several years, we have used the EDC framework to develop a suite of linear-scaling MD algorithms, in 
which interatomic forces are computed with varying accuracy and complexity: 1) classical MD involving the 
formally O(N2) N-body problem; 2) reactive force-field (ReaxFF) MD involving the O(N3) variable N-charge 
problem; 3) quantum mechanical (QM) calculation based on the DFT to provide approximate solutions to the 
exponentially complex quantum N-body problem; and 4) adaptive hierarchical QM/MD simulations that embed 
highly accurate QM simulations in MD simulation only when and where high fidelity is required. The Appendix 
describes the three EDC simulation algorithms that are used in our adaptive hierarchical simulations:
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• Algorithm 1—MRMD: space-time multiresolution molecular dynamics.
• Algorithm 2—F-ReaxFF: fast reactive force-filed molecular dynamics.
• Algorithm 3—EDC-DFT: embedded divide-and-conquer density functional theory on multigrids for quantum-

mechanical molecular dynamics.

Fig. 1 (a) Schematic of embedded divide-and-conquer (EDC) algorithms. The physical space is subdivided 
into spatially localized cells, with local atoms constituting sub-problems (bottom), which are embedded in a 
global field (shaded) solved with a tree-based algorithm.  (b) In tunable hierarchical cellular decomposition 

(HCD), the physical volume is subdivided into process groups, PG!, each of which is spatially decomposed 

into processes, P!". Each process consists of a number of computational cells (e.g., linked-list cells in MD or 
domains in EDC-DFT) of size lcell, which are traversed concurrently by threads (denoted by dots with arrows) 

to compute blocks of cells. P!" is augmented with nlayer layers of cached cells from neighbor processes.

2.2 Controlled Errors of Embedded Divide-and-Conquer Simulation Algorithms

A major advantage of the EDC simulation algorithms for automated hierarchical simulations and validation is the 
ease of codifying (i.e., turning into a coded representation, in terms of programs, which is mechanically executable 
by other program components) error management. The EDC algorithms have a well-defined set of localization 
parameters, with which the computational cost and the accuracy are controlled. Figures 2a and 2b show the rapid 
convergence of the EDC-DFT energy as a function of its localization parameters (the size of a domain and the length 
of buffer layers to augment each domain for avoiding artificial boundary effects). The EDC-DFT MD algorithm has 
also overcome the energy drift problem, which plagues most O(N) DFT-based MD algorithms, especially with large 
basis sets (> 104 unknowns per electron, necessary for the transferability of accuracy) (Fig. 2c).19

Fig. 2 Controlled convergence of the potential energy of amorphous CdSe by localization parameters: (a) 
domain size (with the buffer size fixed as 2.854 a.u.); (b) buffer length (with the domain size fixed as 11.416 
a.u.). Numerals are the number of self-consistent iterations required for the convergence of the electron 

density within 10#
4

of the bulk density. (c) Energy conservation in EDC-DFT based MD simulation of liquid 
Rb at 1,400 K. The domain and buffer sizes are 16.424 and 8.212 a.u., respectively.
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2.3 Adaptive Hierarchical Simulation Framework

Adaptive hierarchical simulation combines a hierarchy of MD algorithms (e.g., MRMD, F-ReaxFF, and EDC-DFT 
described above) to enable atomistic simulations that are otherwise too large to solve, while retaining QM 
accuracy.6-8, 20 The EDC framework achieves this by using less compute-intensive coarse simulation as an 
embedding field. We have developed an adaptive EDC hierarchical simulation framework, which embeds accurate 
but compute-intensive simulations in coarse simulation only when and where high fidelity is required. The 
hierarchical simulation framework consists of: 1) hierarchical division of the physical system into subsystems of 
decreasing sizes and increasing quality-of-solution (QoSn) requirements, S0 $ S1 $ ... $ Sn; and 2) a suite of 
simulation services M% (% = 0, 1, ..., n) of ascending order of accuracy (e.g., MRMD  p F-ReaxFF  p EDC-DFT). In 
the additive hybridization scheme, an accurate estimate of the energy of the entire system is obtained from the 
recurrence relation,8, 21

E% (Si) = E%#1(Si) + E% (Si+1)# E%#1(Si+1) = E%#1(Si)+&E% /%#1(Si+1). (1)
This modular additive hybridization scheme not only allows the reuse of existing simulation codes but also 
minimizes the interdependence and communication between simulation modules. To further expose the data locality 
of hybrid QM/MD simulation, the EDC framework embeds EDC-DFT simulations of a number of domains within 
MD simulation of the total system:

E(total) = EMD (total)+ EQM(domain) # EMD (domain)[ ]
domain

' = EQM (total)+ &EQM/MD (domain)
domain

' . (2)

Traditionally, termination atoms are added to the QM and MD domains to minimize artificial boundary effects. 
However the solution is sensitive to the choice of the termination atoms, and thus the domains need to be determined 
manually before the simulation.8 The buffer-layer approach of the EDC-DFT algorithm considerably reduces this 
sensitivity, and accordingly we are among the first to automate the adaptive domain redefinition during 
simulations.22

2.4 Graph-based Event Tracking for Adaptive Hierarchical Simulations and Validation

An MD simulation method usually has a validation database that compares MD values with corresponding higher-
accuracy QM values for a set of physical properties of selected atomic configurations (i.e., the training set). For 
example, the ReaxFF potential of RDX (1,3,5-trinitro-1,3,5-triazine) has an extensive training database of DFT 
calculations not only for 1,600 equilibrated molecular fragments but also for 40 key reaction pathways (i.e., chains 
of intermediate structures that interpolate the structures of reactant and product molecules).23 Our QM/MD 
simulation ensures the overall accuracy by using MD simulation only within its range of validity. Our current 
adaptive hierarchical simulation manages the error based on a simple heuristic, i.e., the deviation of bond lengths 
from their equilibrium values, for which the MD interatomic potential has been trained.22 For tighter error 
management, we extend this approach by encoding the deviation of local topological structures of atoms from those 
in the training set, based on an abstraction of the structures as a graph and its shortest-path circuit analysis. Though 
the modeling error is readily quantified by |&E%/%#1(Si+1)| in Eq. (1) and can be reduced by incrementally enlarging 
the size of the high-accuracy subsystem once it is defined, the challenge here is to speculate the error in advance so 
as to minimize subsequent readjustments (if the subsystem is defined too small) or costly speculative high-accuracy 
simulations (if it is too large).

We abstract the structure of a material as a graph G = (V, E), in which atoms constitute the set of vertices V, and 
the edge set E consists of chemical bonds. Bonds are defined between a pair of atoms for which Pauling’s bond 
order is larger than a threshold value or the pair distance is less than a cutoff radius. Each vertex is labeled with its 
three-dimensional position and auxiliary annotations such as atomic species, and each bond with attributes such as 
bond length and chemical bond order. Given a vertex x and two of its neighbors w and y of G, a shortest-path circuit 
generated by triplet (w, x, y) is any closed path that contains edges (w, x) and (x, y) and has a shortest path (w, y) in 
graph G#x.24 The shortest-path circuit analysis has been used successfully to characterize topological order of 
amorphous materials and to identify and track topological defects such as dislocations (Fig. 3).25-28 Efficient 
algorithms with near linear scaling are essential for the graph analysis to be embedded as part of simulation in real 
time. We have developed a scalable parallel shortest-path circuit analysis algorithm with small memory usage, based 
on dual-tree expansion and spatial hash-function tagging (SHAFT).29 SHAFT utilizes the vertex-position label to 
design a compact, collision-free hash table, thereby avoiding the degradation of cache utilization for large graphs.
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Fig. 3 Network of topological defects (or dislocations) during hypervelocity impact of aluminum nitride 
ceramic.

28
Only atoms that participate in non-6-membered circuits are visualized, where the color represents 

the pressure value. (A perfect crystal has only 6-membered circuits.)

The graph abstraction is also used to track discrete events to automate the discovery of mechanisms, i.e., cause-
effect relations on a sequence of well-delineated microscopic events that govern system-level macroscopic behavior. 
An example is a damage mechanism recently discovered by our MD simulation, in which the intersection of an 
elastic shock-wave front (detected as a discrete jump in pressure) and a high-pressure structural transformation front 
(the boundary between a sub-graph of vertex degree 4 and that of vertex degree 6) nucleates topological defects and 
eventually causes the fracture of ceramic under impact.28 Large classical MD simulations involving multibillion 
atoms are performed to search for events within a wide solution space, and only when distinct events are detected by 
the graph analysis, QM simulations are invoked only where the local topological anomaly has been detected.

3 Tunable Hierarchical Cellular Decomposition Parallelization Framework

Data locality principles are key to developing a scalable parallel computing framework as well. We have developed 
a tunable hierarchical cellular decomposition (HCD) framework for mapping the O(N) EDC algorithms onto 
massively parallel computers with deep memory hierarchies. The HCD maximally exposes data locality and exploits 
parallelism at multiple decomposition levels, while providing performance tunability30 through a hierarchy of 
parameterized cell data/computation structures (Fig. 1b). At the finest level, the EDC algorithms consist of 
computational cells—linked-list cells (which are identical to the octree leaf cells in the fast multipole method31) in 
MRMD and F-ReaxFF,11 or domains in EDC-DFT.19 In the HCD framework, each compute node (often comprising 
multiple processors with shared memory) of a parallel computer is identified as a subsystem (P!" in Fig. 1b) in 
spatial decomposition, which contains a large number of computational cells. Our EDC algorithms are implemented 
as hybrid message passing interface (MPI)32 + shared memory (OpenMP)33 programs, in which inter-node 
communication for caching and migrating atoms between P!"’s is handled with messages, whereas loops over cells 
within each P!

" (or MPI process) are parallelized with threads (denoted as dots with arrows in Fig. 1b). To avoid 
performance-degrading critical sections, the threads are ordered by blocking cells, so that the atomic n-tuples being 
processed by the threads share no common atom. On top of computational cells, cell-blocks, and spatial-
decomposition subsystems, the HCD framework introduces a coarser level of decomposition by defining process 
groups (PG! = (" P!

" in Fig. 1b) as MPI Communicators (within a tightly coupled parallel computer) or Grid remote 
procedure calls34 (on a Grid of clusters). 

Our programs are designed to minimize global operations across PG!’s and to overlap computations with inter-
group communications.4 For example, the potential energy is computed locally within each group and the global 
sum is computed only when it needs to be reported to the user. Also our spatial decomposition scheme splits the 
computations on each processor into those involving only interior linked-list cells and those involving boundary 
cells. The interior computation is then fully overlapped with the communication of the boundary data. The effect of 
these latency-hiding techniques on performance is most noticeable on Grid environments, since the communication 
overhead is already very small on each parallel supercomputer as shown in Sec. 4.



6

The cellular data structure offers an effective abstraction mechanism for performance optimization. We 
optimize both data layouts (atoms are sorted according to their cell indices and the linked lists) and computation 
layouts (force computations are re-ordered by traversing the cells according to a spacefilling curve, a mapping from 
the 3D space to a 1D list). Cells are traversed along either a Morton curve (Fig. 1b) or a Hilbert curve.35 In a multi-
threading case, the Morton curve ensures maximal separation between the threads and thus eliminates critical 
sections. Furthermore, the cell size is made tunable to optimize the performance. There is also a trade-off between 
spatial-decomposition/message-passing and threads parallelisms in the hybrid MPI+OpenMP programs.36-38 While 
spatial decomposition involves extra computation on cached cells from neighbor subsystems, its disjoint memory 
subspaces are free from shared-memory protocol overhead. The computational cells are also used in our multilayer 
cellular decomposition scheme for inter-node caching of atomic n-tuple (n = 2-6) information (Fig. 1b), where n
changes dynamically in the MTS or MPCG algorithm (see Appendix). The Morton curve also facilitates a data 
compression algorithm based on data locality to reduce the I/O. The algorithm uses octree indexing and sorts atoms 
accordingly on the resulting Morton curve.39 By storing differences between successive atomic coordinates, the I/O 
requirement for a given error tolerance level reduces from O(NlogN) to O(N). An adaptive, variable-length encoding 
scheme is used to make the scheme tolerant to outliers and optimized dynamically. An order-of-magnitude 
improvement in the I/O performance was achieved for MD data with user-controlled error bound. The HCD 
framework includes a topology-preserving computational spatial decomposition scheme to minimize latency through 
structured message passing and load-imbalance/communication costs through a wavelet-based load-balancing 
scheme.40, 41

High-end hierarchical simulations often run on thousands of processors for months. Grids of geographically 
distributed parallel supercomputers could satisfy the need of such ‘sustained’ supercomputing. In collaboration with 
scientists at the National Institute for Advanced Industrial Science and Technology (AIST) and Nagoya Institute of 
Technology in Japan, we have recently proposed a sustainable Grid supercomputing paradigm, in which 
supercomputers that constitute the Grid change dynamically according to a reservation schedule as well as to 
faults.22 We use a hybrid Grid remote procedure call (GridRPC) + MPI programming to combine flexibility and 
scalability. GridRPC enables asynchronous, coarse-grained parallel tasking and hides the dynamic, insecure and 
unstable aspects of the Grid from programmers (we have used the Ninf-G GridRPC system, http://ninf.apgrid.org), 
while MPI supports efficient parallel execution on clusters.

4 Performance Tests

Scalability tests of the three parallel simulation algorithms, MRMD, F-ReaxFF and EDC-DFT, have been performed 
on a wide range of platforms, including the 10,240-processor SGI Altix 3000 at the NASA Ames Research Center, 
the 131,072-processor IBM BlueGene/L at the Lawrence Livermore National Laboratory (LLNL), and the 2,048-
processor AMD Opteron-based Linux cluster at the University of Southern California (USC). We have also tested 
our sustainable Grid supercomputing framework for hierarchical QM/MD simulations on a Grid of 6 supercomputer 
centers in the US and Japan. The codes have been ported without any modifications to all the platforms, except that 
only the pure MPI implementations have been run on BlueGene/L since it does not support OpenMP.

4.1 Experimental Platforms

The SGI Altix 3000 system, named Columbia, at NASA Ames uses the NUMAflex global shared-memory 
architecture, which packages processors, memory, I/O, interconnect, graphics, and storage into modular components 
called bricks (detailed information is found at http://www.nas.nasa.gov/Resources/Systems/columbia.html). The 
computational building block of Altix is the C-Brick, which consists of four Intel Itanium2 processors (in two 
nodes), local memory, and a two-controller application-specific integrated circuit called the Scalable Hub (SHUB). 
Each SHUB interfaces to the two CPUs within one node, along with memory, I/O devices, and other SHUBs. The 
Altix cache-coherency protocol implemented in the SHUB integrates the snooping operations of the Itanium2 and 
the directory-based scheme used across the NUMAflex interconnection fabric. A load/store cache miss causes the 
data to be communicated via the SHUB at the cache-line granularity and automatically replicated in the local cache.

The 64-bit Itanium2 processor operates at 1.5GHz and is capable of issuing two multiply-add operations per 
cycle for a peak performance of 6Gflops. The memory hierarchy consists of 128 floating-point registers and three 
on-chip data caches (32KB L1, 256KB L2, and 6MB L3). The Itanium2 cannot store floating-point data in L1, 
making register loads and spills a potential source of bottlenecks; however, a relatively large register set helps 
mitigate this issue. The superscalar processor implements the Explicitly Parallel Instruction set Computing (EPIC) 
technology, where instructions are organized into 128-bit VLIW bundles. The Altix platform uses the NUMAlink3 
interconnect, a high-performance custom network in a fat-tree topology, in which the bisection bandwidth scales 
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linearly with the number of processors. Columbia runs 64-bit Linux version 2.4.21. Our experiments use a 6.4TB 
parallel XFS file system with a 35-fiber optical channel connection to the CPUs.

Columbia is configured as a cluster of 20 Altix boxes, each with 512 processors and 1TB of global shared-
access memory. Of these 20 boxes, 12 are model 3700 and the remaining eight are BX2—a double-density version 
of the 3700. Four of the BX2 boxes are linked with NUMAlink4 technology to allow the global shared-memory 
constructs to significantly reduce inter-processor communication latency. This 2,048-processor subsystem within 
Columbia provides a 13Tflops peak capability platform, and was the basis of the computations reported here.

The BlueGene/L (http://www.llnl.gov/ASC/platforms/bluegenel) has been developed by IBM and LLNL, and it 
uses a large number of low power processors coupled with powerful interconnects and communication schemes. The 
BlueGene/L comprises of 65,536 compute nodes (CN), each with two IBM PowerPC 440 processors (at 700MHz 
clock speeds) and 512 MB of shared memory. The theoretical peak performance is 5.6Gflops per CN, or 367Tflops 
for the full machine. Each processor has a 32KB instruction and data cache, a 2KB L2 cache and a 4MB L3 cache, 
which is shared with the other processor on the CN. Each CN has two floating-point units that can perform fused 
multiply-add operations. In its default mode (co-processor mode), one of the processors in the CN manages the 
computation, while the other processor manages the communication. In an alternative mode of operation (virtual 
mode), both processors can be used for computation. It uses a highly optimized lightweight Linux distribution and 
does not allow access to individual nodes.

The nodes are interconnected through multiple complementary high-speed low-latency networks, including a 
3D torus network and a tree network. The CNs are connected as a 64 ! 32 ! 32 3D torus, which is used for common 
inter-processor communications. The tree network is optimized for collective operations such as broadcast and 
gather. The point-to-point bandwidth of the 3D torus network is 175MB/s per link and 350MB/s for the tree 
network.

The Opteron cluster used for the scalability test consists of 512 nodes, each with two dual-core AMD Opteron 
processors (at 2GHz clock speeds) and 4GB of memory (in total of 2,048 cores), which is part of a 5,384-processor 
Linux cluster at USC (http://www.usc.edu/hpcc/systems/l-overview.php). Each core has a 64KB instruction cache, a 
64KB data cache, and a 1MB L2 cache. A front side bus operating at 2GHz provides a maximum I/O bandwidth of 
24GB/s. The floating-point part of the processor contains three units: a Floating Store unit that stores results to the 
Load/Store Queue Unit and Floating Add and Multiply units that can work in superscalar mode, resulting in two 
floating-point results per clock cycle. The 512 nodes are interconnected with Myrinet, which provides over 200MB/s 
in a ping-pong experiment. Besides the high bandwidth, an advantage of Myrinet is that it entirely operates in the 
user space, thus avoiding operating systems interference and associated delays. This reduces the latency for small 
messages to 15µs.

4.2 Scalability Test Results

We have first tested the trade-off between MPI and OpenMP parallelisms on various shared-memory architectures. 
For example, we have compared different combinations of the number of OpenMP threads per MPI process, ntd, and 
that of MPI processes, np, while keeping P = ntd ) np constant, on P = 8 processors in an 8-way 1.5GHz Power4 
node. The optimal combination of (ntd, np) with the minimum execution time is (1, 8) for the MRMD algorithm for 
an 8,232,000-atom silica material and is (4, 2) for the F-ReaxFF algorithm for a 290,304-atom RDX crystal. Since 
BlueGene/L does not support OpenMP, we will use ntd = 1 in the following performance comparisons.

Figure 4a shows the execution time of the MRMD algorithm for silica material as a function of the number of 
processors P. We scale the problem size linearly with the number of processors, so that the number of atoms N = 
1,029,000P (P = 1, ..., 1,920). In the MRMD algorithm, the interatomic potential energy is split into the long-range 
and short-range contributions, and the long-range contribution is computed every 10 MD time steps. The execution 
time increases only slightly as a function of P, and this signifies an excellent parallel efficiency. We define the speed 
of an MD program as a product of the total number of atoms and time steps executed per second. The constant-
granularity speedup is the ratio between the speed of P processors and that of one processor. The parallel efficiency 
is the speedup divided by P. On 1,920 processors, the isogranular parallel efficiency of the MRMD algorithm is 
0.87. A better measure of the inter-box scaling efficiency based on NUMAlink4 is the speedup from 480 processors 
in 1 box to 1,920 processors in 4 boxes, divided by the number of boxes. On 1,920 processors, the inter-box scaling 
efficiency is 0.977. Also the algorithm involves very small communication time, see Fig. 4a.

Figure 4b shows the execution time of the F-ReaxFF MD algorithm for RDX material as a function of P, where 
the number of atoms is N = 36,288P. The computation time includes 3 conjugate gradient (CG) iterations to solve 
the electronegativity equalization problem for determining atomic charges at each MD time step. On 1,920 
processors, the isogranular parallel efficiency of the F-ReaxFF algorithm is 0.953 and the inter-box scaling 
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efficiency is 0.995.
Figure 4c shows the performance of the EDC-DFT based MD algorithm for 720P atom alumina systems. In the 

EDC-DFT calculations, each domain of size 6.66)5.76)6.06Å3 contains 40 electronic wave functions, where each 
wave function is represented on 283 = 21,952 grid points. The execution time includes 3 self-consistent (SC) 
iterations to determine the electronic wave functions and the Kohn-Sham potential, with 3 CG iterations per SC 
cycle to refine each wave function iteratively. The largest calculation on 1,920 processors involves 1,382,400 atoms, 
for which the isogranular parallel efficiency is 0.907 and the inter-box scaling efficiency is 0.966.

The largest benchmark tests on Columbia include 18,925,056,000-atom MRMD, 557,383,680-atom F-ReaxFF, 
and 1,382,400-atom (121,385,779,200 electronic degrees-of-freedom) EDC-DFT calculations. We have observed 
perfect linear scaling for all the three algorithms, with prefactors spanning five orders-of-magnitude. The only 
exception is the F-ReaxFF algorithm below 100 million atoms, where the execution time scales even sub-linearly. 
This is due to the decreasing communication overhead, which scales as O((N/P)#1/3).

Fig. 4 Total execution (circles) and communication (squares) times per MD time step as a function of the 
number of processors P (= 1, ..., 1,920) of Columbia, for three MD simulation algorithms: (a) MRMD for 
1,029,000 P atom silica systems; (b) F-ReaxFF MD for 36,288P atom RDX systems; and (c) EDC-DFT MD for 
720P atom alumina systems.

The EDC simulation algorithms are portable and have been run on various high-end computers including IBM 
BlueGene/L and dual-core AMD Opteron. Since the EDC framework exposes maximal locality, the algorithms scale 
well consistently on all platforms. Figure 5 compares the isogranular parallel efficiency of the F-ReaxFF MD 
algorithm for RDX material on Altix 3000, BlueGene/L, and Opteron. In Fig. 5a for Altix 3000, the granularity is 
the same as that in Fig. 4b. Figure 5b shows the parallel efficiency as a function of P on BlueGene/L, where the 
number of atoms is N = 36,288P. On 65,536 BlueGene/L nodes (the computation uses only one processor per node 
in the co-processor mode), the isogranular parallel efficiency of the F-ReaxFF algorithm is over 0.998. Figure 5c 
shows the parallel efficiency of F-ReaxFF on Opteron, where the number of atoms is N = 107,520P. The 
measurements on Opteron have been curried out on one core per CPU for P = 1 and two cores per CPU for the other 
cases. The inter-core communication overhead (between P = 1 and 2) is negligible. The intra-node bandwidth (P = 
4) and network speed (P " 8) affect the total execution time by 4~12%. The sharp drop of efficiency in Fig. 5c above 
1,000 cores may be attributed to interference with other jobs on the Linux cluster, which was in general use during 
the non-dedicated scalability test. The parallel efficiency is high for all three platforms, where the higher efficiency 
is achieved for a platform with the higher communication-bandwidth/processor-speed ratio (in descending order for 
BlueGene/L > Altix 3000 > Opteron/Myrinet).
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Fig. 5 Isogranular parallel efficiency of F-ReaxFF as a function of the number of processors P for RDX 
material: (a) the number of atoms per processor, N/P = 36,288 on Altix 3000 (P = 1, ...,1,920); (b) N/P = 10,752 
on BlueGene/L (P = 1, ..., 65,536); and (c) N/P = 107,520 on an AMD Opteron cluster (P = 1, ..., 2,000).

Major design parameters for reactive and nonreactive MD simulations of materials include the number of atoms 
in the simulated material and the method to compute interatomic forces (classically in MRMD, semi-empirically in 
F-ReaxFF MD, or quantum-mechanically in EDC-DFT MD). Figure 6 shows a design-space diagram for MD 
simulations on BlueGene/L, Altix 3000, and Opteron. The largest benchmark tests in this study include 
133,982,846,976-atom MRMD, 1,056,964,608-atom F-ReaxFF, and 11,796,480-atom (1,035,825,315,840 electronic 
degrees-of-freedom) EDC-DFT calculations on 65,536 dual-processor BlueGene/L nodes.

Fig. 6 Benchmark tests of reactive and nonreactive MD simulations on 1,920 Itanium2 processors of the 
Altix 3000 at NASA (open symbols), 2,000 Opteron processors at USC (solid symbols), and 65,536 dual-
processor BlueGene/L nodes at LLNL (shaded symbols). The execution time per MD step is shown as a 
function of the number of atoms for: quantum-mechanical MD based on the embedded divide-and-conquer 
density functional theory (EDC-DFT, circles); fast reactive force-field MD (F-ReaxFF, squares); and 
nonreactive space-time multiresolution MD (MRMD, triangles). Lines show O(N) scaling.

Different characteristics of the MRMD, F-ReaxFF and EDC-DFT algorithms are reflected in their floating-point 
performances. The interatomic potential in MRMD is precomputed and tabulated as a function of the interatomic 
distance. The MRMD computation is thus predominantly table look-ups for atomic pairs and triplets. The F-ReaxFF 
algorithm, on the contrary, performs a large number of floating-point operations, but it involves more complex list 
management for atomic n-tuples (n = 2-6). In contrast to these particle-based algorithms, the EDC-DFT algorithm 
deals with wave functions on regular mesh points. In all the three O(N) algorithms, however, the data layout and 
computations are highly irregular compared with their higher-complexity counterparts. The floating-point 
performances of the MRMD (N/P = 1,029,000), F-ReaxFF (N/P = 36,288) and EDC-DFT (N/P = 720) algorithms on 
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1,920 Itanium2 processors are 1.31, 1.07, and 1.49 Tflops, respectively, whereas the theoretical peak performance is 
11.5 Tflops.

4.3 Grid Test Results

Using our sustainable Grid supercomputing framework, we have achieved an automated execution of hierarchical 
QM/MD simulation on a Grid consisting of 6 supercomputer centers in the US (USC and two NSF TeraGrid nodes 
at the Pittsburgh Supercomputing Center and the National Center for Supercomputing Applications) and Japan 
(AIST, University of Tokyo, and Tokyo Institute of Technology).22 The simulation was sustained autonomously on 
~700 processors for 2 weeks, involving in total of 150,000 CPU-hours, where the number of processors changed 
dynamically on demand and resources were allocated and migrated dynamically according to both reservations and 
unexpected faults.

5 Conclusions

We have motivated and supported the need for Petaflops computing for advanced matarials research, and have 
demonstrated that judicious use of divide-and-conquer algorithms and hierarchical parallelization frameworks 
should make these applications highly scalable on Petaflops platforms. We have illustrated the value of this work 
with real-world experiments involving quantum-mechanical and molecular-dynamics simulations on high-end 
parallel supercomputers such as SGI Altix 3000, IBM BlueGene/L and AMD Opteron, as well as on a Grid of 
globally distributed parallel supercomputers.

We are currently applying the de novo hierarchical simulation framework to study deformation and damage 
mechanisms of nanophase ceramics and nanoenergetic materials in harsh environments, thereby assisting the design
of superhard, tough and damage-tolerant nanomaterials as well as nanoenergetic materials with high specific impact 
and reduced sensitivity.

One application is hypervelocity impact damage of advanced ceramics (aluminum nitride, silicon carbide, and 
alumina),28 for which we have recently performed 500 million-atom MD simulations. The simulation has revealed 
atomistic mechanisms of fracture accompanying structural phase transformation in AlN under hypervelocity impact 
at 15 km/s. We are extending these classical MD simulations to those involving surface chemical reactions under 
high temperatures and flow velocities relevant to micrometeorite impact damages to the thermal and radiation 
protection layers of aerospace vehicles, understanding of which is essential for safer space flights.

Another application is the combustion of nanoenergetic materials. We have performed 1.3 million-atom F-
ReaxFF MD simulations to study shock-initiated detonation of RDX (1,3,5-trinitro-1,3,5-triazine, C3N6O6H6) matrix 
embedded with aluminum nanoparticles (n-Al) on 1,024 dual-core Opteron processors at the Collaboratory for 
Advanced Computing and Simulations of USC (Fig. 7). In the simulation, a 320 ) 210 ) 204 Å3 RDX/n-Al 
composite is impacted by a plate at a velocity of 5 km/s. The simulation has revealed atomistic processes of shock 
compression and subsequent explosive reaction. Strong attractive forces between oxygen and aluminum atoms break 
N-O and N-N bonds in the RDX and, subsequently, the dissociated oxygen atoms and NO molecules oxidize Al, 
which has also been observed in our DFT-based MD simulation.42

Fig. 7 F-ReaxFF MD simulation of n-Al/RDX simulation shown on a tiled display at the Collaboratory for 
Advanced Computing and Simulations of USC. Visualization software, with embedded graph analysis 
algorithms,

29
has been developed by Sharma, et al.

43



11

De novo hierarchical simulations also have broad applications in nanoelectronics.20 The hybrid QM/MD 
simulation on the US-Japan Grid described in Sec. 4 has studied the SIMOX (separation by implantation by oxygen) 
technique for fabricating high speed and low power-consumption semiconductor devices. The simulation of the 
implantation of oxygen atoms toward a Si substrate has revealed a strong dependence of the oxygen penetration 
depth on the incident beam position, which should be taken into consideration in extending the SIMOX technique to 
lower incident energies.

These applications on high-end computing platforms today are paving the way for predictive, first-principles 
simulation based sciences in coming years.5
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Appendix: Embedded Divide-and-Conquer Simulation Algorithms

This Appendix describes computational characteristics of the three embedded divide-and-conquer simulation 
algorithms that are used in our adaptive hierarchical simulations: 1) MRMD: space-time multiresolution molecular 
dynamics; 2) F-ReaxFF: fast reactive force-field molecular dynamics; and 3) EDC-DFT: embedded divide-and-
conquer density functional theory on adaptive multigrids for quantum-mechanical molecular dynamics.

Algorithm 1—MRMD: Space-Time Multiresolution Molecular Dynamics

MRMD is used as a template for developing broad particle and continuum simulation algorithms. The MD approach 
follows the time evolution of the positions, rN = {ri|i = 1,...,N}, of N atoms by solving coupled ordinary differential 
equations.11 Atomic force law is mathematically encoded in the interatomic potential energy EMD(rN), which is often 
an analytic function EMD({rij},{rijk}) of atomic pair, rij, and triplet, rijk, positions. For the long-range electrostatic 
interaction, we use the fast multipole method (FMM) to reduce the O(N2) computational complexity of the N-body 
problem to O(N).31 In the FMM, the physical system is recursively divided into subsystems to form an octree data 
structure, and the electrostatic field is computed recursively on the octree with O(N) operations, while maintaining 
spatial locality at each recursion level. Our scalable parallel implementation of the FMM has a unique feature to 
compute atomistic stress tensor components based on a complex charge method.44 MRMD also utilizes temporal 
locality through multiple time stepping, which uses different force-update schedules for different force 
components.11, 45, 46 Specifically, forces from neighbor atoms are computed at every MD step, whereas forces from 
farther atoms are updated less frequently. For parallelization, we use spatial decomposition. The total volume is 
divided into P subsystems of equal volume, and each subsystem is assigned to a node in an array of P compute 
nodes. To calculate the force on an atom in a subsystem, the coordinates of the atoms in the boundaries of neighbor 
subsystems are ‘cached’ from the corresponding nodes. After updating the atom positions due to time stepping, 
some atoms may have moved out of its subsystem. These atoms are ‘migrated’ to the proper neighbor nodes. With 
spatial decomposition, the computation scales as N/P, while communication scales as (N/P)2/3. The FMM incurs an 
O(logP) overhead, which is negligible for coarse-grained (N/P >> P) applications.

Algorithm 2—F-ReaxFF: Fast Reactive Force-Field Molecular Dynamics

In the past 5 years, we have developed a first principles-based reactive force-field (ReaxFF) approach to 
significantly reduce the computational cost of simulating chemical reactions.23, 47 However, its parallelization has 
seen only limited success, with the previously largest ReaxFF MD involving N < 104 atoms. We have developed F-
ReaxFF to enable ReaxFF MD involving 109 atoms.18, 48 The variable N-charge problem in ReaxFF amounts to 
solving a dense linear system of equations to determine atomic charges {qi|i = 1,...,N} at every MD step.49, 50 F-
ReaxFF reduces its O(N3) complexity to O(N) by combining the FMM based on spatial locality and iterative 
minimization to utilize the temporal locality of the solution. To accelerate the convergence, we use a multilevel 
preconditioned conjugate-gradient (MPCG) method that splits the Coulomb-interaction matrix into short- and long-
range parts and uses the sparse short-range matrix as a preconditioner.51 The extensive use of the sparse 
preconditioner enhances the data locality and thereby improves the parallel efficiency. The chemical bond order Bij

is an attribute of atomic pair (i, j) and changes dynamically adapting to the local environment. In ReaxFF, the 
potential energy EReaxFF({rij},{rijk},{rijkl},{qi},{Bij}) between atomic pairs rij, triplets rijk, and quadruplets rijkl

depends on the bond orders of all constituent atomic pairs. Force calculations in ReaxFF thus involve up to atomic 
6-tuples due to chain-rule differentiations through Bij. To efficiently handle the multiple interaction ranges, the 
parallel F-ReaxFF algorithm employs a multilayer cellular decomposition scheme for caching atomic n-tuples (n = 
2-6).18

Algorithm 3—EDC-DFT: Embedded Divide-and-Conquer Density Functional Theory on Adaptive 
Multigrids for Quantum-Mechanical Molecular Dynamics

EDC-DFT describes chemical reactions with a higher quantum-mechanical accuracy than ReaxFF. The DFT 
problem is formulated as a minimization of the energy functional EQM(rN, *Nel) with respect to electronic wave 
functions (or Kohn-Sham orbitals) *Nel(r) = {*n(r)|n = 1,...,Nel}, subject to orthonormality constraints (Nel is the 
number of wave functions on the order of N).52 The data locality principle called quantum nearsightedness53 in DFT 
is best implemented with a divide-and-conquer algorithm,54, 55 which naturally leads to O(N) DFT calculations.56

However, it is only in the past several years that O(N) DFT algorithms, especially with large basis sets (> 104

unknowns per electron, necessary for the transferability of accuracy), have attained controlled error bounds, robust 
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convergence properties, and energy conservation during MD simulations, to make large DFT-based MD simulations 
practical.19, 57 We have designed an embedded divide-and-conquer density functional theory (EDC-DFT) algorithm, 
in which a hierarchical grid technique combines multigrid preconditioning and adaptive fine mesh generation.19 The 
EDC-DFT algorithm represents the physical system as a union of overlapping spatial domains, + = (% +%, and 
physical properties are computed as linear combinations of domain properties. For example, the electronic density is 
expressed as ,(r) = -% p%(r) -n fn

%|*n
%(r)|2, where p%(r) is a support function that vanishes outside the %-th domain 

+%, and fn
% and *n

%(r) are the occupation number and the wave function of the n-th Kohn-Sham orbital in +%. The 
domains are embedded in a global Kohn-Sham potential, which is a functional of ,(r) and is determined self-
consistently with {fn

%,*n
%(r)}. We use the multigrid method to compute the global potential in O(N) time. The DFT 

calculation in each domain is performed using a real-space approach,58 in which electronic wave functions are 
represented on grid points. The real-space grid is augmented with coarser multigrids to accelerate the iterative 
solution. Furthermore, a finer grid is adaptively generated near every atom, in order to accurately operate ionic 
pseudopotentials for calculating electron-ion interactions. The EDC-DFT algorithm on the hierarchical real-space 
grids is implemented on parallel computers based on spatial decomposition. Each compute node contains one or 
more domains of the EDC algorithm. Then only the global density but not individual wave functions needs to be 
communicated. The resulting large computation/communication ratio makes this approach highly scalable.
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