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Abstract

Sequential detection theory has been known for a long time evolv-
ing in the late 1940’s by Wald and followed by Middleton’s classic
exposition in the 1960’s coupled with the concurrent enabling tech-
nology of digital computer systems and the development of sequen-
tial processors. Its development, when coupled to modern sequential
model-based processors, offers a reasonable way to attack physics-
based problems. In this chapter, the fundamentals of the sequential
detection are reviewed from the Neyman-Pearson theoretical per-
spective and formulated for both linear and nonlinear (approximate)
Gauss-Markov, state-space representations. We review the develop-
ment of modern sequential detectors and incorporate the sequential
model-based processors as an integral part of their solution. Moti-
vated by a wealth of physics-based detection problems, we show how
both linear and nonlinear processors can seamlessly be embedded into
the sequential detection framework to provid a powerful approach to
solving non-stationary detection problems.

1 Introduction

Sequential detection is a methodology developed essentially by Wald [1]
in the late 1940’s providing an alternative to the classical batch methods
evolving from the basic Neyman-Pearson theory of the 1930’s [2], [3]. From
the detection theoretical viewpoint, the risk (or error) associated with a
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decision typically decreases as the number of measurements increase. Se-
quential detection enables a decision to be made more rapidly (in most
cases) employing fewer measurements while maintaining the same level of
risk. Thus, the aspiration is to reduce the decision time while maintaining
the risk for a fixed sample size. Its significance was truly brought to the
forefront with the evolution of the digital computer and the fundamental
idea of acquiring and processing data in a sequential manner. The semi-
nal work of Middleton ([2], [4]-[7]) as well as the development of sequential
processing techniques ([8]-[13]) during the 1960’s provided the necessary
foundation for the sequential processor/detector that is applied in a rou-
tine manner today ([7], [8], [9]-[11], [13]).

This chapter investigates the idea of a sequential processor from the
statistical perspective and relates its operation to that of the classical se-
quential Neyman-Pearson detector developed by Wald and termed the se-
quential probability ratio test (SPRT). Here the investigation of simple
binary hypothesis testing evolves as a common thread that leads to Wald’s
SPRT. We start with the batch detector developing its sequential variant
and then show how the SPRT easily follows from the results of Neyman-
Pearson theory ([1], [2], [3], [9]-[11], ).

In Sec. 2 we develop the sequential detector and compare it to the
SPRT indicating the similarities and differences. In Sec. 3 we discuss
how the Gauss-Markov linear processor can be applied to the model-based
problem followed by the nonlinear case in Sec. 4.

2 Sequential Detection

In this section we briefly develop sequential detection theory which will be
expanded to include the model-based approach in the section to follow. We
start with the “batch” solution and then develop the sequential approach.

Let us assume that we have a set of measurements defined by Mtk :=
{m(tk), · · · , m(t1), m(t0)} and we would like to decide between two hypoth-
esis, H0 and H1 respectively. We choose the Neyman-Pearson criterion to
develop our detector [10]. Recall that the Neyman-Pearson theorem states
that a detector is optimal if it maximizes the probability of detection, PDET

(or minimizes the miss probability) for any false alarm rate less than a pre-
specified value, say P ∗

FA. The theorem follows directly from a constrained
optimization problem formulation using Lagrange multipliers (see [3], [10]
for details), which yields the solution based on the ratio of likelihoods,
Pr(Mtk |Hi); i = 0, 1 (for the binary case). That is, to maximize PDET for
a fixed value of P ∗

FA, we have the likelihood ratio, L(tk) or equivalently the
sufficient statistic defined by the joint density functions
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L(tk) := L (Mtk) =
Pr (Mtk|H1)
Pr (Mtk|H0)

H1

>
<
H0

T (1)

for Pr(·) the respective joint probabilities under each hypothesis. Here
the threshold T is found from integrating the false alarm density for the
pre-specified value

PFA =
∫ ∞

T

Pr (Mtk |H0)dP = P ∗
FA (2)

Thus, based on the Neyman-Pearson criterion, the optimal detector can be
found for batch mode as

L(tk) =
Pr (Mtk|H1)
Pr (Mtk|H0)

=
Pr (m(tk), · · · ,m(t0)|H1)
Pr (m(tk), · · · ,m(t0)|H0)

(3)

It follows from the chain rule of probability theory [10] that

Pr (Mtk |Hi) =
tk∏

`=0

Pr
(
m(tk−`)|Mtk−`−1 ; Hi

)

= Pr
(
m(tk)|Mtk−1 ; Hi

)
× Pr

(
m(tk−1)|Mtk−2 ; Hi

)

× · · · × Pr (m(1)|m(0); Hi) × Pr (m(0); Hi) (4)

can be expressed succinctly using Bayes rule as

Pr (Mtk |Hi) = Pr
(
m(tk), Mtk−1 |Hi

)
= Pr

(
m(tk)|Mtk−1 ; Hi

)
Pr

(
Mtk−1 |Hi

)

(5)
Substituting this expression into Eq. (1), we obtain

L(tk) =

[
Pr

(
Mtk−1 |H1

)

Pr
(
Mtk−1 |H0

)
]

Pr
(
m(tk)|Mtk−1 ; H1

)

Pr
(
m(tk)|Mtk−1 ; H0

)

= L(tk−1)
Pr

(
m(tk)|Mtk−1 ; H1

)

Pr
(
m(tk)|Mtk−1 ; H0

) (6)

which is precisely the sequential form of the likelihood ratio. It is also
clear that not just the likelihood function can be used but any monotonic
function of the likelihood can also be used as well [10]. Taking natural
logarithms of both sides of the equation, and defining Λ(tk) := lnL(tk), we
obtain the sequential log-likelihood ratio as
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Λ(tk) = Λ(tk−1) + ln Pr
(
m(tk)|Mtk−1 ; H1

)
− ln Pr

(
m(tk)|Mtk−1 ; H0

)
(7)

To construct the sequential probability ratio test (SPRT) or equivalently
the sequential likelihood ratio test (SLRT) based on the Neyman-Pearson
criterion, we must define two time-varying thresholds T0(tk) and T1(tk). If
the likelihood ratio at time tk is greater than threshold T1(tk), we accept
hypothesis H1. If it is less than T0(tk), we accept H0, but if its value lies
between the thresholds, we continue to take another sample. The sequential
test differs from the fixed sample size batch test and is capable of handling
non-stationary statistics.

To implement the SLRT at the tthk -stage, we must know the prior prob-
abilities or equivalently the prior likelihood ratio, L(tk−1) (or Λ(tk−1) )
containing all of the past information and the corresponding stage condi-
tional probabilities Pr(m(tk)|Mtk−1 ; Hi) to sequentially update the likeli-
hood. The tthk stage thresholds are constructed following Neyman-Pearson
theory in terms of the detection and false alarm probabilities as

T0(tk) =
PDET

PFA

=
1 − PMISS

PFA

, and T1(tk) =
1 − PDET

1 − PFA

=
PMISS

1 − PFA

(8)

In the case of the log-likelihood, the thresholds are:

Λ(tk) ≥ lnT1(tk) [AcceptH1]

lnT0(tk) < Λ(tk) < ln T1(tk) [Continue]

Λ(tk) ≤ lnT0(tk) [AcceptH0]

(9)

This completes the fundamental concepts for the construction of the
sequential detection approach, next we investigate the development of the
model-based sequential detector.

3 Model-Based Sequential Detection: Linear

Case

In this section we develop the model-based approach to sequential detec-
tion employing the SLRT as the mechanism to implement the model-based
designs starting with the linear time-varying (non-stationary) problem (see
[13], [15] for more details). We begin with the development of the generic
Gauss-Markov signal model defined by its state (signal) vector, s(tk), where
the linear state-space process model is given by
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s(tk) = A(tk−1)s(tk−1) + B(tk−1)u(tk−1) + w(tk−1) (10)

with corresponding measurement model as

m(tk) = C(tk)s(tk) + v(tk) (11)

where s, w are the Ns-dimensional signal and process noise vectors, with
m, v the Nm-dimensional measurement and noise vectors along with u the
Nu-dimensional known input vector. Both w and v are zero-mean Gaussian
with respective covariances, Rww(tk−1) and Rvv(tk). The corresponding
system, input and measurement matrices are appropriately dimensioned
and given by A(tk−1), B(tk−1) and C(tk), respectively. The initial state
vector is Gaussian with s(0) ∼ N (s(0), Pss(0)).

Because the underlying distributions are Gaussian, we know that the
optimal solution to the signal estimation problem is given by the model-
based processor (Kalman filter) providing the predicted conditional mean
estimate, ŝ(tk|tk−1) := E{s(tk)|Mtk−1)

1 with corresponding predicted con-
ditional (error) covariance, P̃ (tk|tk−1) [12]-[15].

With this signal model in hand we can now define the binary problem
to decide whether the measurement contains the signal or just noise alone,
that is, we are testing the hypotheses that:

H0 : m(tk) = v(tk) [NOISE]
H1 : m(tk) = C(tk)s(tk) + v(tk) [SIGNAL+NOISE]

From the underlying Gauss-Markov assumption, the sequential likelihood-
ratio solution is specified by the ratio of conditional Gaussian posterior
distributions, Pr(m(tk)|Mtk−1 ; Hi); i = 0, 1. That is,

Pr(m(tk)|Mtk−1 ; H0) ∼ N (m(tk) : 0, Rvv(tk))
Pr(m(tk)|Mtk−1 ; H1) ∼ N (m(tk) : C(tk)ŝ(tk|tk−1), Ree(tk))

where the innovations, e(tk) and its corresponding covariance, Ree(tk) are
obtained as outputs of the model-based processor (Kalman filter) specified
by:

e(tk) = m(tk) − m̂(tk|tk−1) = m(tk) − C(tk)ŝ(tk|tk−1)
Ree(tk) = C(tk)P̃ (tk|tk−1)C′(tk) + Rvv(tk) (12)

Thus, under the null hypothesis we have that
1This notation is defined in terms of predicted conditional means and covariances by:

ŝ(tk |tk−1) and P̃ (tk|tk−1) := cov(s̃(tk|tk−1)) for the predicted state estimation error,
s̃(tk |tk−1) := s(tk)− ŝ(tk|tk−1).
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Pr(m(tk)|Mtk−1 ; H0) =
1

(2π)Nm/2|Rvv(tk)|1/2
exp

{
−1

2
m′(tk)R−1

vv (tk)m(tk)
}

(13)
while the conditional probability under alternate hypothesis is given by

Pr(m(tk) | Mtk−1 ; H1) =
1

(2π)Nm/2|Ree(tk)|1/2
×

exp
{
−1

2
(m(tk) − m̂(tk|tk−1))′R−1

ee (tk)(m(tk) − m̂(tk|tk−1))
}

(14)

or simply

Pr(m(tk)|Mtk−1 ; H1) =
1

(2π)Nm/2|Ree(tk)|1/2
exp

{
−1

2
e′(tk)R−1

ee (tk)e(tk)
}

(15)
Moving all known terms to the threshold, the required sequential log-

likelihood of Eq. 7 for the linear Gauss-Markov signal model becomes

Λ(tk) = Λ(tk−1) −
1
2
e′(tk)R−1

ee (tk)e(tk) +
1
2
m′(tk)R−1

vv (tk)m(tk)

H1

>
<
H0

T (tk)

T (tk) = lnT(tk) − ln
(

1
(2π)Nm/2|Ree(tk)|1/2

)
+ ln

(
1

(2π)Nm/2|Rvv(tk)|1/2

)

(16)

All that remains is to specify the predicted and corrected means and
covariances to implement the sequential detector. These are available as
part of the model-based algorithm given by:

ŝ(tk|tk−1) = A(tk−1)ŝ(tk−1|tk−1) + B(tk−1)u(tk−1) [Prediction]
P̃ (tk|tk−1) = A(tk−1)P̃ (tk−1|tk−1)A′(tk−1) + Rww(tk−1) [Prediction Cov.]

ŝ(tk|tk) = ŝ(tk|tk−1) + K(tk)e(tk) [Correction]
P̃ (tk|tk) = [I− K(tk)C(tk)] P̃ (tk|tk−1) [Correction Cov.]

for K(tk) the corresponding gain (see [15] for more details), next we consider
the nonlinear case.
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4 Model-Based Sequential Detection: Non-
linear Case

In this section we use the development of the linear case as a road map and
develop the sequential model-based detector for the nonlinear case. We
start with the nonlinear (approximate) Gauss-Markov model given by:

s(tk) = a [s(tk−1)] + b [u(tk−1)] + w(tk−1)
m(tk) = c [s(tk)] + v(tk) (17)

where (as before) s, w are the Ns-dimensional signal and process noise
vectors with m, v the Nm-dimensional measurement and noise vectors along
with u the Nu-dimensional known input vector. Both w and v are zero-
mean Gaussian with respective covariances, Rww(tk−1) and Rvv(tk). The
corresponding nonlinear system, input and measurement vector functions
are appropriately dimensioned and given by a[·], b[·] and c[·], respectively.
The initial state vector is Gaussian with s(0) ∼ N (s(0), Pss(0)).

Because the underlying distributions are assumed approximately Gaus-
sian, we know that one possible solution to the signal estimation problem
is given by the model-based processor (extended Kalman filter2) providing
the predicted conditional mean estimate, ŝ(tk|tk−1), with corresponding
predicted conditional (error) covariance, P̃ (tk|tk−1) [15].

With this nonlinear signal model in hand we can now define the binary
problem to decide whether the measurement contains the signal or just
noise alone, that is, we are testing the hypotheses that:

H0 : m(tk) = v(tk) [NOISE]
H1 : m(tk) = c [s(tk)] + v(tk) [SIGNAL+NOISE]

Before we proceed with the sequential detection development for non-
linear, non-Gaussian problems, we have chosen to employ the first-order
Taylor series representation to approximate the nonlinear vector functions.
The development evolves quite naturally from a linearized model-based
processor (linearized Kalman filter) [15]. These approximations when ex-
panded about a reference s = s∗ take the general form

c [s(tk)] ≈ c [s∗(tk)] + C [s∗(tk)] × (s(tk) − s∗(tk)) + H.O.T.(18)

2It is well-known that some of the modern variants currently available offer alterna-
tives like the unscented Kalman filter or particle filter ([15]-[26]) that are better than
the EKF but we choose this formulation since its easily tracks the linear case developed
previously.
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with C[s∗(tk)] := ∂
∂sc[s]

∣∣
s=s∗(tk)

. Each of the nonlinear system, input and
measurement functions are approximated in this manner using the Taylor
series. For the ad-hoc nonlinear EKF processor, the most current estimate
available, ŝ(tk|∗), is used as a reference during the prediction and correction
steps for the linearization, that is, the state estimates are

ŝ(tk|tk−1) = a [̂s(tk−1|tk−1)] + b [u(tk−1)]
ŝ(tk|tk) = ŝ(tk|tk−1) + K [ŝ(tk|tk−1)] e(tk) (19)

where the Jacobians appear in the covariance equations.
With this in mind and from the underlying approximate Gauss-Markov

assumption, the sequential likelihood-ratio solution is again specified by the
ratio of conditional Gaussian posterior distributions, Pr(m(tk)|Mtk−1 ; Hi); i =
0, 1 as before. That is,

Pr(m(tk)|Mtk−1 ; H0) ∼ N (m(tk) : 0, Rvv(tk))
Pr(m(tk)|Mtk−1 ; H1) ∼ N (m(tk) : c [ŝ(tk|tk−1)] , Ree(tk))

where the innovations, e(tk) and its corresponding covariance, Ree(tk) are
obtained as outputs of the model-based processor (extended Kalman filter)
specified by:

e(tk) = m(tk) − m̂(tk|tk−1) = m(tk) − c [ŝ(tk|tk−1)]
Ree(tk) = C [̂s(tk|tk−1)] P̃ (tk|tk−1)C′ [ŝ(tk|tk−1)] + Rvv(tk) (20)

Thus, under the null hypothesis we have that

Pr(m(tk)|Mtk−1 ; H0) =
1

(2π)Nm/2|Rvv(tk)|1/2
exp

{
−1

2
m′(tk)R−1

vv (tk)m(tk)
}

(21)
while the conditional probability under alternate hypothesis is given by

Pr(m(tk)|Mtk−1 ; H1) =
1

(2π)Nm/2|Ree(tk)|1/2
exp

{
−1

2
e′(tk)R−1

ee (tk)e(tk)
}

(22)
Again moving all known terms to the threshold, the required sequen-

tial log-likelihood of Eq. 7 for the nonlinear Gauss-Markov signal model
becomes

Λ(tk) = Λ(tk−1) −
1
2
e′(tk)R−1

ee (tk)e(tk) +
1
2
m′(tk)R−1

vv (tk)m(tk)

H1

>
<
H0

T (tk)
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T (tk) = lnT(tk) − ln
(

1
(2π)Nm/2|Ree(tk)|1/2

)
+ ln

(
1

(2π)Nm/2|Rvv(tk)|1/2

)

(23)

All that remains is to specify the predicted and corrected covariances
to implement the sequential detector, since the state estimates we given in
Eq. 19 above. These are available as part of the nonlinear model-based
algorithm (EKF) given by:

P̃ (tk|tk−1) = A [ŝ(tk|tk−1)] P̃ (tk−1|tk−1)A′ [̂s(tk|tk−1)] + Rww(tk−1)
[Prediction Cov.]

P̃ (tk|tk) = [I− K [ŝ(tk|tk−1)]C [ŝ(tk|tk−1)]] P̃ (tk|tk−1) [Correction Cov.]

for K [ŝ(tk|tk−1)] the corresponding gain (see [15] for more details), This
completes the development.

5 Summary

In this chapter we have motivated and summarized the development of
sequential detection theory from the original Neyman-Pearson theory fol-
lowing the Wald approach [1]. We then showed how a model-based ap-
proach can be incorporated into the sequential paradigm. We developed
the Gauss-Markov (state-space) representation of both linear and nonlinear
systems capable of capturing the dynamics of many physics-based problems
[15] and showed how they can be embedded into the sequential theoretical
framework. The solution lead to the implementation of a linear model-
based processor (linear Kalman filter) as well as the nonlinear model-based
scheme (extended Kalman filter).
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