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Assessment of UF6 Equation of State 

 

 

Summary 

 

A common assumption in the mathematical analysis of flows of compressible fluids is to 

treat the fluid as a perfect gas.  This is an approximation, as no real fluid obeys the 

perfect gas relationships over all temperature and pressure conditions. An assessment of 

the validity of treating the UF6 gas flow field within a gas centrifuge with perfect gas 

relationships has been conducted.  

 

The definition of a perfect gas is commonly stated in two parts: 1) the gas obeys the 

thermal equation of state, p = ρRT (thermally perfect), and, 2) the gas specific heats are 

constant (calorically perfect). Analysis indicates the thermally perfect assumption is valid 

for all flow conditions within the gas centrifuge, including shock fields.  The low 

operating gas pressure is the primary factor in the suitability of the thermally perfect 

equation of state for gas centrifuge computations.   

 

UF6 is not calorically perfect, as the specific heats vary as a function of temperature. This 

effect is insignificant within the bulk of the centrifuge gas field, as gas temperatures vary 

over a narrow range.  The exception is in the vicinity of shock fields, where temperature, 

pressure, and density gradients are large, and the variation of specific heats with 

temperature should be included in the technically detailed analyses.  Results from a 

normal shock analysis incorporating variable specific heats is included herein, presented 

in the conventional form of shock parameters as a function of inlet Mach Number.  The 

error introduced by assuming constant specific heats is small for a nominal UF6 shock 

field, such that calorically perfect shock relationships can be used for scaling and initial 

analyses.  The more rigorous imperfect gas analysis should be used for detailed analyses. 

 

 

Introduction 

 
Thermally perfect 

 

No real gas obeys the perfect gas thermal equation of state, p = ρRT, for all temperatures 

and pressures.  However, all gases obey this equation of state in the limit as pressure goes 

to zero (and/or as temperatures increase), a consequence of a model in which the 

molecules are point masses—that is, they have no size—and in which there are no 

attractive forces between the molecules.  Experimental equations of state account for the 

real effects of size and attractive forces, and there is an extensive array of experimentally 

determined equations of state for UF6 [1,2,3,4]. This experimental data base allows 

evaluation of the deviations from ideal for UF6.  While the majority of the experimental 

data has been obtained for pressures from ~350 torr and above, published data does exist 

for pressures down to 50 torr. Nominal gas centrifuge operating conditions are on the 
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order of 100 torr and standard room temperature, and at these conditions the experimental 

data are in agreement such that the perfect gas thermal equation of state adequately 

defines the gas operating parameters. The deviations from ideal are 0.5% or less, within 

the range of experimental accuracy, and no benefit is gained from utilization of the more 

elaborate experimental equations of state.  The primary driver is the low gas pressure 

level, with the experimental data indicating significant deviations from the ideal at higher 

pressures of one atmosphere and above. 

 

Strong shocks are generated within a gas centrifuge when a blunt body is placed in the 

high speed gas stream.  While gas pressures increase substantially across a normal shock, 

gas temperatures also increase and the net effect is a parameter space of low to moderate 

pressure (10-50 torr) and high temperature (400-600 K).  Analysis indicates the perfect 

gas thermal equation adequately defines gas operating parameters in the shock field, with 

errors of less than 0.5%. 

 

Calorically perfect 

 

Many gases can be treated as calorically perfect, i.e., constant specific heat, as the 

specific heat varies weakly with temperature.  Air, for example, has a nearly constant 

specific heat over a wide range of temperatures, allowing the widespread use of standard 

shock tables at a fixed value of γ, the ratio of specific heats. 

 

The UF6 molecule has been exhaustively studied and characterized for the past half-

century, with notable amounts of experimental data on the specific heats of the gas.  

These data are in general agreement from experimenter to experimenter [1,3,6,7]. An 

analytical evaluation of specific heats using statistical mechanics is also available [5], and 

the experimental data are remarkably consistent with these theoretical results.  The net 

effect is precise, reliable and consistent characterization of UF6 specific heats.  The data 

indicate a variation of specific heats with temperature.  This variation is insignificant in 

computations involving the bulk of the centrifuge gas environment, as temperature 

variations are small. However, the effect can be significant in the strong shock fields 

characteristic of UF6.  Treating the gas as calorically perfect, i.e., a constant value of 

specific heat, can yield errors on the order of 2-3% for moderate shock inlet Mach 

numbers of 4 (i.e., moderate centrifuge wall speeds), with higher errors at higher wall 

speeds.   

 

Results from a solution of the nonlinear Rankine-Hugoniot shock equations incorporating 

variable specific heats are presented below.  The results are presented in the conventional 

format of plots of shock parameters as a function of upstream Mach Number, with 

comparisons to constant specific heat results. The rigor of the nonlinear Rankine-

Hugoniot computation is recommended for precise analyses of shock effects in gas 

centrifuge flow fields.  The error associated with use of constant specific heat analyses, 

however, is small, and the calorically perfect analysis can be useful in scoping studies 

and initial evaluations of shock effects.  
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Discussion 

 
Thermally perfect 

 

 

Experimental observations indicate that a low density the behavior of gases is closely 

given by the ideal gas equation of state 

 

 RTp   (1) 

 

At higher pressures or lower temperatures the behavior of gases deviates from this 

relationship, with proposed formulations of  

 

 
....1 2  pCpB

RT

p


 (2) 

 

 

sometimes stated as  

 
...1 2  


CB

RT

p
 (3) 

 

 

The values of the virial coefficients (B and C) depend on temperature and are determined 

experimentally. Another common formulation and one of the first proposed, is the van 

der Waals equation of state,  

 

 
2v

a

b

RT
p 



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 (4) 

 

 

A comprehensive document on UF6 gas properties is Dewitt [1], which presents a number 

of experimental equations of state. Much of the data presented in Dewitt derives from an 

interest in gaseous diffusion parameter ranges, typically a pressure on the order of one 

atmosphere (760 torr).  Later work by Malyshev [2] specifically addresses the low 

pressure range appropriate to gas centrifuge operation, with data acquired at pressures as 

low as 50 torr, and temperatures as low as 290 K.  More recent work by Anderson [3] 

reviews and critiques the available data; however, the subject of interest is UF6 cylinder 

fires, and Anderson develops equations of state covering a wide range of operation, but 

pressures no lower than about 0.5 atm.   

 

Three equation of state formulations were chosen for evaluation: Malyshev, Weinstock 

[4], and the van der Waals formulation.  Malyshev is considered the most relevant to gas 

centrifuge conditions; Weinstock is representative of the numerous correlations in 

Dewitt; and the van der Waals formula is of historical interest and general application. 

The three equation of state models are summarized in Table 1 and the results presented in 
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Figure 1, in the form of a comparison of the difference in density computed by the 

experimental equation of state and the thermally perfect equation of state.   

 

 

Table 1.  UF6 equations of state 

Malyshev 



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Figure 1.  Difference in density in use of perfect gas law compared to use of experimental 

equations of state 
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All three correlations exhibit significant errors at pressures on the order of one 

atmosphere (760 torr), and all three exhibit errors on the order of 0.5% or less at 

pressures of 100 torr and less.  The experimental data error band is on the order of 0.5%; 

there is no benefit to the experimental correlations in the centrifuge operating pressure 

range, and the perfect gas thermal equation of state adequately describes gas properties.  

 

Another method of characterizing the non-ideality of gases is with the compressibility 

factor, Z, defined as  

 

RT

p
Z


  (5) 

 

An ideal gas has a value of 1.0 for Z, with deviations from 1.0 indicating deviations from 

the ideal gas assumption. Table 2 presents values of Z for the Malyshev correlation over 

the nominal gas centrifuge operating range of both temperature and pressure.  Malyshev 

is considered the most applicable correlation for gas centrifuges.  Errors over the entire 

parameter space are nominally below 0.5%. 

 

Table 2.  Compressibility factor Z for Malyshev equation of state 

Temp 

K 

Pressure, torr 

5 25 50 75 100 

300 .9997 .9984 .9968 .9952 .9936 

320 .9997 .9987 .9974 .9961 .9948 

400 .9999 .9995 .9989 .9984 .9978 

500 1.0000 .9999 .9997 .9996 .9995 

600 1.0000 1.0001 1.0001 1.0001 1.0003 

 

Calorically perfect 

 

The specific heats of UF6 vary with temperature, and this variation must be considered in 

analyses involving the strong shocks which appear within a gas centrifuge. There is an 

impressive array of experimental data available on the specific heats of UF6, and this gas 

property can be assigned with great precision.  Dewitt presents data and correlations from 

a number of sources. Anderson improved on the Dewitt correlations, by virtue of 

additional data and a more generalized correlation. The Anderson correlation is  
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with units of kJ/kg. While somewhat cumbersome, the Anderson correlation provides the 

most comprehensive and complete capture of the available data.  

 

Thermodynamic properties of a gas can be computed from molecular energy modes using 

statistical mechanics principles. Gentry [5] performed this computation in the 1980s, and 

the work is replicated in Appendix A in an expanded format.  Yet another approach was 

taken by Kirshenbaum [6], deriving a functional relationship for specific heat from 

thermodynamic functions and the vapor-pressure relationships of the condensate, yielding 

the relationship 

 

 
2

4068.32
)3936.7(43.32

T

e
Tecp   (7) 

 

 

with units of cal/mole K.  The Kirshenbaum correlation has seen use within the 

centrifuge community. 

 

Table 3a compares specific heats from the three sources mentioned above, together with a 

data set from Beirlesium [7]. Beirlesium is referenced in Anderson and is representative 

of the large amount of experimental data available on this topic. 

 

Table 3a.  Heat Capacity of UF6 vapor, cv, cal/mole K 

Temp 

K 

Bigeleisen Anderson Gentry Kirshenbaum 

Data set Data 

Corrleation 

Stat. mech. Thermo 

functions 

273 30.13 30.12 30.06 30.27 

298 31.00 30.98 30.93 31.16 

300  31.04 31.00 31.22 

320  31.63 31.60 31.81 

323 31.75 31.72 31.68 31.89 

348 32.38 32.35 32.32 32.52 

350  32.40 32.37 32.56 
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373 32.93 32.91 32.88 33.06 

400 33.46 33.42 33.40 33.57 

500 34.80 34.80 34.76 35.09 

600  35.64 35.59 36.27 

750 36.35 36.37 36.31 37.78 

1000 36.94 36.97 36.91 40.01 

 

 

 

 

 

The most notable feature of Table 3a is the precise agreement amongst the first three 

sources.  The last source, Kirshenbaum, agrees well over the lower temperature ranges, 

but deviates at higher temperatures.  Either the Anderson correlation or the Gentry 

computation is recommended for UF6 specific heat, both yielding essentially the same 

values.  Table 3a highlights the high precision in the values for specific heat.   

 

Table 3b presents values for , the ratio of specific heats.  This is computed from the 

specific heat value and the relationship 

 

 

 Rcc vp   (8) 

 

 

valid for a gas that obeys Equation 1.  

 

 

 

Table 3b. Ratio of heat capacities of UF6 vapor, γ, cp/cv 

Temp 

K 

Bigeleisen Anderson Gentry Kirshenbaum 

Data set Data 

Corrleation 

Stat. mech. Thermo 

functions 

273 1.0706 1.0706 1.0707 1.0702 

298 1.0684 1.0685 1.0686 1.0681 

300  1.0684 1.0685 1.0679 

320  1.0670 1.0671 1.0666 

323 1.0667 1.0668 1.0669 1.0664 

348 1.0653 1.0654 1.0655 1.0650 

350  1.0653 1.0654 1.0649 

373 1.0642 1.0642 1.0643 1.0639 

400 1.0631 1.0632 1.0632 1.0629 

500 1.0605 1.0605 1.0606 1.0600 

600  1.0590 1.0591 1.0579 

750 1.0578 1.0578 1.0579 1.0555 

1000 1.0568 1.0568 1.0569 1.0522 
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Gentry used the nonlinear variation of specific heat with temperature from Table 3a, 

together with the ideal equation of state (equation 1) and the Rankine-Hugoniot shock 

relationship 
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to compute shock parameters for UF6.  Figure 2 presents results from this computation, in 

a conventional form for shock results. As a gas centrifuge generality, a shock inlet Mach 

number of 3 would be characteristic of a low speed machine, values of 4-5 characteristic 

of moderate speed machines, and a Mach number of 6 and above is associated with very 

high speed machines.  

 

Normal shock relations for a perfect gas are also presented in Figure 2, for comparison to 

the Gentry non-ideal computations.  The normal shock relationships from Shapiro [8], 

summarized in Equations 10-12 below, were used for this computation. 
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Errors associated with the use of ideal gas shock parameters are moderate, such that the 

ideal solution provides useful insight into shock effects.  For precise computations, 

particularly at higher Mach numbers, the rigor of the Gentry nonlinear Rankine-Hugonoit 

computation is recommended. 

 

An interesting observation concerns the sensitivity of the ideal gas computation to the 

choice of γ, the ratio of specific heats.  A value of 1.067 was chosen for the constant 

value of γ, using Table 2 data at a shock inlet temperature of 320 K.  This is a 

conventional choice, as the inlet temperature is known or specified in a shock analysis, 

and the calorically ideal assumption specifies a constant value for γ. The ideal gas 

computations in Figure 2 were repeated with a value of 1.062 for γ, a value roughly 

equivalent to the mean shock temperature (average of upstream and downstream shock 

temperature) at a nominal Mach number of 5.  Results are show in Figure 3. This new 

choice for γ yielded errors less than 1% between Gentry and ideal computations over all 

but the uppermost end of the Mach number range.  This is certainly an interesting result, 

indicating that the choice of a value for γ based on mean shock temperature rather than 

upstream temperature yields a more accurate representation of actual (Gentry) shock 

conditions. There is some justification for a use of mean parameters, as Equation 9 states 

that the increase in internal energy across a shock is the work done by the mean pressure 

in compressing the flow from inlet density to outlet density.  A caution is noted that this 

approach lacks rigor, but does provide a path for more accurate scoping and initial shock 

evaluations.   
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Figure 2.  Comparison of normal shock computations for perfect gas and the non-ideal 

Gentry gas, inlet temperature 320 K, γ=1.067. 
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Figure 3.  Comparison of normal shock computations for perfect gas and the non-ideal 

Gentry gas, inlet temperature 320 K, γ=1.062. 
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Appendix 

Derivation of the thermodynamic properties of UF6

The following work details the derivation of the internal energy and specific heats for UF6  as outlined in

Gentry [5].  Statistical mechanics can be used to calculate the thermodynamic properties of a gas from its

molecular energy modes, i.e.translational, rotational, vibrational and electronic motion.  Each energy mode has

an associated partition function, q, which is obtained from the quantitized molcular energy levels, Εi, of the

mode. Additionally, if an energy level is degenerate the degeneracy, gi, must be included (in general gi = 1).

The molecular partition function for each mode is then:

(1)q = â
i

¥

gi e
-Εi

kT

When Εi » kT  or Εi < kT quantum effects are significant and the summation in equation (1) must be main-

tained. When Εi > kT all of the energy levels are assumed to be accessible to the molecule, thus enabling the

discrete summation of the partition function to be replace by an integral approximating the continuim. This

leads to  the classical  representation of the system, i.e.  the kinetic theory of gases,  where the equipartition

theorm states that at equilibrium each degree of freedom contributes, on average, 
kT

2
 of energy per molecule.

Another  way  of  determining  whether  the  quanitized  or  continium representation  of  the  partition  function

should be used is to calculate the characteristic temperature, Q,  for each mode.  For some modes multiple

characheristic temperatures may be calculated due to molecular degeneracies, in which case the characteristic

temperature closest to the to temperature range of interest is commonly quoted. The characteristic temperature

simply defines what is met by "high" and "low" temperatures for the system, i.e. systems with temperatures at

or below the characteristic temperature must use the quanitized form of the partition function. 

(2)Q = �
Ε

k

In the following sections the transational, rotational, vibrational and electronic energy levels of UF6  will be

examined.  

Using q for partition funciton of an individual molecule the overall canonical ensemble partion function for N

independent molecules Q, can be calculated.  The N! associated with the translational term is necessary to

account for the N! ways of permuting N molecules. 

(3)Q =
qtrans

N

N!
 qrot

N
 q

vib

N
 q

elec

N

Because the modes are assumed to be decoupled the thermodynamic properties of a moledule can be calculated

by summing the individual contributions from each mode.  For instance the total internal energy of a moledule,

UTot, is given below along with the thermodynamic functions relating the canonical partition functions derived

from statitistcal mechanics to the relevant thermodynamic properties .
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Because the modes are assumed to be decoupled the thermodynamic properties of a moledule can be calculated

by summing the individual contributions from each mode.  For instance the total internal energy of a moledule,

UTot, is given below along with the thermodynamic functions relating the canonical partition functions derived

from statitistcal mechanics to the relevant thermodynamic properties .

(4)UTot = Utrans + Urot + Uvib + Uelec

(5)U = kT
2 

¶ ln Q

¶ T V,N

(6)CV =
¶ U

¶ T V,N

(7)

CP =

¶ H

¶ T P,N

where H = kT
2 

¶ ln Q

¶ T V,N

+ kTV 
¶ ln Q

¶ V T,N

assuming an ideal gas CP = U + R

TRANSLATIONAL                                    CONTRIBUTION:

The transational contribution the molecular energy is caclulated by examing the translational energy levels that

are available to a molecule confined to a cubic box of volume V=a3. The quantized translational energy in three

dimensions is

(8)Εi =
h2 Inx

2 + ny
2 + nz

2M
8 m a2

where n_ are the transational quantum numbers, h is Planck's constant (6.626 * 10
-34

J sec) and m is the mass of

the molecule.  The characteristic rotational energy per mole of UF6 is:

(9)

Qtrans =

h2

8 m a2

k
=

h2

8 mkV
2�3 Hassume one mole of ideal gasL so Qtrans =

h2

8 m k5�3 T2�3 P-2�3 N
A

2�3 Hcombining Qtrans and TL Qtrans =
h3

NA H8 * mL3�2 * k5�2 * P-1

2�5

For a UF6 having a mass of 352 amu  at an assumed pressure of 10
5
 Pa, the characteristic translational tempera-

ture is Qtrans = 1.8 * 10
-25 K  per mole of UF6.  For the temperatures currently under consideration, 300 K-1000

K, the translational contributions to the thermodynamic properties of UF6  can clearly be treated classically.

This translational characteristic temperature is higher than most due to the large mass of UF6. Using the expres-

sion for the quanitized translational energy given in Equation (7), the definition of the partion function given in

Equation (1) and the fact that there is no translational degeneracy (g=1)

(10)qtrans = â
nx=1

¥ â
ny=1

¥ â
nz=1

¥

e

-
h2 Jnx

2+ny
2+nz

2N
8 m a2

kT

Because Qtrans is less than the temperatures of interest the summations in the above equation may be replaced

by integrals (see "Statistical Mechanics and Thermodynamics of Matter" by Joachim Lay for details) to give

the following translational partition function for a molecule
16



Because Qtrans is less than the temperatures of interest the summations in the above equation may be replaced

by integrals (see "Statistical Mechanics and Thermodynamics of Matter" by Joachim Lay for details) to give

the following translational partition function for a molecule

(11)qtrans =
2 ΠmkT

h2

3�2
 V

For N molecules the total translational contribution to the partition function is

(12)Q =
qtrans

N

N!
=

VN

N!
 

2 ΠmkT

h2

3 N�2
=

VN eN

VN
N

 
2 ΠmkT

h2

3 N�2 Husing the Sterling approximation L

Using the Equations (4-6),  the thermodynamic relationships are given below. Note that each degree of freedom

(translation in x,y and z) contributes 
kT

2
   per molecule, thereby showing agreement with the results obtained

from the classical  kinetic theory of gases.

(13)U@transD =
3 NkT

2

(14)CV@transD =
3 NkT

2

(15)CP@transD =
5 NkT

2

ROTATIONAL                            CONTRIBUTION:

The quantized rotaional energy is given by

(16)Εi =
h2 J HJ + 1L
8 Π2 IA,B,C

where J is the rotational quantum number and IA,B,C  the princple moments of interia of the molecule. The

characteristic rotational temperature of a molecule is

(17)Qrot =
A h

k
where A =

h2

8 Π2 IA

UF6 is a sherical top molecule, therefore the principal moments of inertia are equal, IA = IB = IC or A = B = C .

By taking the F-U-F line as the inertial axis the moment of intertia, IA=Úi=1
4

mi ri
2, as well as a  F-U bond length

of  1.9993*10
-10 m  and  the  mass  of  F  as  18.998 amu the  characteristic  rotational  temperature  for  UF6  is

Qtrans = 0.08 K. Because all of the principal moments of inertia are the same for UF6, there is only one character-

istic temperature.  Typically Qtransis of the order of 0.1K for heavy molecules to 100K for light molecules.  The

quanitized rotational partition is given by 
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UF6 is a sherical top molecule, therefore the principal moments of inertia are equal, IA = IB = IC or A = B = C .

By taking the F-U-F line as the inertial axis the moment of intertia, IA=Úi=1
4

mi ri
2, as well as a  F-U bond length

of  1.9993*10
-10 m  and  the  mass  of  F  as  18.998 amu the  characteristic  rotational  temperature  for  UF6  is

Qtrans = 0.08 K. Because all of the principal moments of inertia are the same for UF6, there is only one character-

istic temperature.  Typically Qtransis of the order of 0.1K for heavy molecules to 100K for light molecules.  The

quanitized rotational partition is given by 

(18)qrot = â
J=0

¥ H2 J + 1L e

-
h2 J HJ+1L

8 Π2  I

kT

Because Qrot is less than the temperatures of interest the summations in the above equation may be replaced by

integrals  to give the following translational partition function for a molecule

(19)qrot =
I kT

h
M3�2

 Π1�2

Σ HABCL1�2

 UF6  belongs to the Oh  symmetry point group meaning the the rotational symmetry number is Σ=24.   For N

molecules the total rotational partition function, energy, and heat capacities given below.  Note that the symme-

try parameter does not enter the calculations below as it only appears in thermodynamic functions involving the

entropy of the molecule. 

(20)Q = qrot
N =

I kT

h
M3�2

 Π1�2

Σ HABCL1�2

N

(21)U@rotD =
3 NkT

2

(22)CV@rotD =
3 NkT

2

(23)CP@rotD =
3 NkT

2

VIBRATIONAL                             CONTRIBUTION:

The quantized vibrational energy is given by

(24)Εi = hΝi

where Νi  is a fundamental vibrational frequency. Note that the vibrational energy is measured relative to the

ground state (Ν=0) as opposed to the bottom of the energy well.   The characteristic vibrational temperature of a

molecule is

(25)Qvib =
hΝc

k

As seen in Table I of Gentry [5], there are six experimentally obtained fundamental frequencies for UF6.  Using

this information the characteristic vibrational temperatures from from 205 K - 959 K.  Thus indicating the the

quantized model of the vibrational contributions to the thermodynamic properties of UF6 must be used.  
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As seen in Table I of Gentry [5], there are six experimentally obtained fundamental frequencies for UF6.  Using

this information the characteristic vibrational temperatures from from 205 K - 959 K.  Thus indicating the the

quantized model of the vibrational contributions to the thermodynamic properties of UF6 must be used.  

(26)qvib = â
Ν=1

¥

gΝ e
-Qi

T

Expanding the partiation function as a geometric series the partition function for each vibrational frequency can

be written as follows 

(27)qi =
gi

1 - e
-Qi

T

For N molecules the total vibrational partition function is

(28)Q = ä
i=1

6
gi

1 - e
-Qi

T

N

(29)U@vibD = R â
i=1

6
gi Qi e

-Qi

T

1 - e
-Qi

T

(30)CV@vibD = R â
i=1

6
gi Qi

2 e
Qi

T

T2 J1 - e
Qi

T N2
= R â

i=1

6
gi xi

2 e-xi

H1 - e-xiL2
where xi =

Qi

T
as in Gentry

(31)CP@vibD = R â
i=1

6
gi Qi

2 e
Qi

T

T2 J1 - e
Qi

T N2
= R â

i=1

6
gi xi

2 e-xi

H1 - e-xiL2

ELECTONIC                         CONTRIBUTION:

Typical characteristic temperatures for electronic contributions to the thermodynamic properties of a molecule

are on the order of 10
5 K and therefore will not be considered in this derivation.

SUMMARY:

In summary the total thermodynamic properties of one mole of UF6 are as follows:

(32)UTot =
3 NkT

2
+

3 NkT

2
+ R â

i=1

6
gi Qi e

-Qi

T

1 - e
-Qi

T

= 3 RT + R â
i=1

6
gi Qi e

-Qi

T

1 - e
-Qi

T

(33)CV =
3 NkT

2
+

3 NkT

2
+ R â

i=1

6
gi xi

2 e-xi

H1 - e-xiL2
= 3 RT + R â

i=1

6
gi xi

2 e-xi

H1 - e-xiL2
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(34)CP =
5 NkT

2
+

3 NkT

2
+ R â

i=1

6
gi xi

2 e-xi

H1 - e-xiL2
= 4 RT + R â

i=1

6
gi xi

2 e-xi

H1 - e-xiL2

20


	EOS_0216092.pdf
	UF6 Thermo Properties3.pdf

