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Although a comprehensive understanding of the basic properties of most elemental solids has been 

achieved, there are still fundamental, open questions regarding simple substances, e.g. boron. Based on an 
Ising model that describes the intrinsic defect states in elemental boron, we show that this system is the 
only known element to exhibit geometrical frustration in its solid form. Interestingly, we find that the 
peculiar transport properties of boron that have been reported over the past forty years originate from the 
presence of geometrical frustration. 
  

Elemental boron was first isolated in its pure 
form nearly a hundred years ago, a century after the 
discovery of the fifth element1. However, as recently 
pointed out in several studies2,3,4, the phase diagram of 
boron and its most stable allotrope under ambient 
conditions are still poorly understood5. Intrinsic defects 
have been shown to be responsible for making β-
rhombohedral boron the most stable phase3,4 down to 
temperature very close to zero; however, no long-range 
ordering of these defects has ever been found 
experimentally, and theory suggests that there are a 
macroscopic number of nearly degenerate ground state 
configurations4. These findings are seemingly at odds 
with what one would expect based on the third law of 
thermodynamics. We propose that many of the peculiar 
properties of solid boron arise from the fact that this 
element has a nearly degenerate ground state due to 
geometrical frustration.  

The most well known example of geometrical 
frustration is the proton disordered ice Ih, whose 
structure was first rationalized by L. Pauling in 19356. 
In the 1990s, spin systems represented by magnetic 
pyrochlore materials were shown to have geometrical 
frustration similar to that of ice7,8.  In particular, the 
proton disorder in ice and spin magnetism in magnetic 
pyrhochlore materials share the same underlying 
model7, the ferromagnetic Ising model on a corner 
sharing tetrahedron. This model, within the nearest 
neighbor (NN) interaction approximation, has an 
exactly degenerate and disordered ground state with a 
macroscopic zero point entropy that agrees surprisingly 
well with estimates based on experimental specific heat 
measurements. However, recent studies support the 
notion that the measured macroscopic residual entropy 
corresponds to a non-equilibrium state due to slow 
dynamics at low temperature, and thus, the third law of 

thermodynamics is unlikely to be violated8. 
Nevertheless, it was the identification of underlying 
model Hamiltonians that paved the road to the 
understanding of the complex behavior of frustrated 
systems6,7 ,9. 

In this paper, we report on the first known 
case of geometrical frustration in an elemental solid. In 
particular, we show that the imperfect atomic 
occupation in the elemental boron crystal, known as 
partial occupancy, can be modeled by an anti-
ferromagnetic (AF) spin Ising model on an expanded 
kagome lattice 10 , 11 , whose ground state is exactly 
degenerate and disordered. Therefore, boron bears 
striking similarities to ice and spin ice, with a nearly 
degenerate ground state. We also show that the rather 
peculiar transport properties of boron that have been 
reported over the past forty years 12 , 13 , 14 , 15  can be 
rationalized by presence of geometrical frustration.  

Upon slow cooling, liquid boron solidifies 
into the β-rhombohedral phase, 16  which has an 
unusually large unit cell, approximately 320 atoms per 
hexagonal cell (hex-cell hereafter). In this structure, six 
out of twenty crystallographic sites are only partially 
occupied (partially occupied site, POS) with 
occupation rates varying from 2% to 75% from site to 
site (23 out of 320 atoms are at POS)16. The topology of 
POS, determined by experiments, corresponds to a 
“quasi” 2D expanded kagome lattice10 of the double 
layer type (Fig. 1).  

 We have previously shown that the 
occupancy of POS, i.e. the distribution of unoccupied 
and occupied sites, can be mapped onto a generalized 
spin Ising model:4  
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H = UiSi + Ji, jSiSj
i, j
∑

i
∑ + Ti, j,kSiSjSk +C

i, j,k∈B13
∑

,    (1) 

where, Si is the occupation at site i, which takes values 
of either +1 (occupied) or -1 (occupied), Ui is the site 
dependent local potential, Ji,j is the pair interaction 
between sites, i and j, Ti,j,k are  three body interactions, 
and the sum is limited within the same B28 unit (see 
Figure 1a). C is a constant parameter.  

 

Figure 1: The lattice structure of Partially Occupied Sites 
(POS) in β-rhombohedral boron. (a) The POS forms a 
layered lattice structure at z=0 (not drawn), and z=c/2 
(drawn), where c is the lattice parameter of a rhombohedral 
crystal. Two clusters made of 28 boron atoms (B28, gold 
bonds) are connected by an interstitial atom and B13 
vacancies (red spheres), and they are located in the middle 
of the rhombohedral cell. (b) and (c) depict the connectivity 
between B13, B16-B20. B13 (red), B16 (blue), B17 
(magenta) and B18 (purple) are displayed in (b), and the 
rest, B19 (purple) and B20 (grey) are displayed in (c) 
separately for the sake of clarity. The viewpoint is from z-
axis, and the size of spheres and bonds correspond to the 
offset in the z-axis. (d) A single layer of this lattice, an 
expanded kagome lattice, is depicted, where the corners of 
the hexagonal lattice are decorated by triangles. The POS 
lattice of β-boron consists of two layers of expanded 
kagome lattices connected to each other through the B13 
site. For a more detailed explanation, see refs. [4,16]. 

The interaction coefficients U, J, T, and C 
were fitted to ab-initio total energy calculations of β-
boron, carried out for an extensive amount of 
independent POS occupation configurations, and using 
different sizes of unit-cells (rhombohedral cell and 
1280 atom supercell). The resulting model reproduces 
the ab-initio total energies to within a few meV/atom 
(see ref. [4] for details) and favors the β phase over the 
α phase, in agreement with previous studies3.  
Remarkably these calculations demonstrated that the 
presence of intrinsic defects significantly lowers the 
internal energy of β-boron due to the peculiar chemical 
properties of this element, which tends to form three-

centre, two-electron bonds4. Interestingly, all of the 
nearest neighbor (NN) interactions in Eq. (1)  (the β-
boron Ising model hereafter) are anti-ferromagnetic 
(AF) except for the pairing occupation at B17 and B18 
sites (see Fig. 1 for site definitions). Given the crucial 
role that the simplest NN Ising models played in the 
development of the theory of frustration6,7,9, we first 
examined a simplified version of the β-boron Ising 
model, that is a NN AF Ising model on an expanded 
kagome lattice10. The ground state of this model is 
essentially equivalent to that of the NN AF Ising model 
on the kagome lattice, which is exactly degenerate and 
disordered 17 . A simple mapping that shows the 
equivalence of the ground state properties of those two 
models is illustrated in Fig. 2. 

 

 
 

Figure 2: Schematic illustrations describing the 
equivalence between the ground states of the AF Ising 
model on an expanded kagome lattice and that on the 
kagome lattice. In (a), one of the ground state spin 
configurations of AF Ising model on a kagome lattice is 
realized, which is described as “two-up one-down” or 
“two-down one-up” spin configurations, maximizing the 
number of opposite spins on a triangle. The expanded 
kagome lattice is made by decorating the corner of 
hexagonal rings with triangles. If one duplicates the spins 
on the kagome lattice, (a), onto the spins on an expanded 
kagome lattice, (b) is obtained. Choose half of the 
triangles in an alternating manner (shaded triangles in (c)), 
and flip the spins on the shaded triangles, (d). The 
resulting spin configuration in (d) gives the ground state of 
the AF Ising model on the expanded kagome lattice, since 
all the inter-triangle bonds are AF in addition to “two-up 
one-down” rule for the spin configuration on each triangle.  

 
We now turn to the thermodynamic properties 

of the β-boron Ising model (Eq. 1). The model 
Hamiltonian, which was originally developed to 
reproduce the first-principles DFT total energies of β-
rhombohedral boron quantitatively4, required a large 
number of interaction parameters (40 in total). 
Therefore, it is extremely challenging to examine it 
directly with an analytical approach. Here, we 
employed a numerical approach based on the replica 
exchange Monte Carlo (REMC) method, which was 
developed to overcome slow dynamics at low 
temperatures18. In this method, many MC runs on a 
discretized temperature grid are performed, and 
exchanging configurations at adjacent temperatures are 
repeatedly attempted with an algorithm that ensures 
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detailed balance18. As a consequence, all configurations 
repeatedly undergo high temperature annealing cycles. 
In the present case, the occupation state at each site 
turned out to change on average by 18% after one 
REMC cycle at the lowest temperature, demonstrating 
the effectiveness of the approach.  

 

 
Figure 3: (a) Specific heat of the Ising model fit to ab-initio 
data, including error bars, as a function of temperature. (b) 
Entropy as a function of temperature calculated by 
thermodynamic integration from the high temperature limit. 
The data were obtained for a 4x4x6 supercell (4,032 sites) 
derived from the rhombohedral-cell. The solid lines in (a) 
and (b) are guides to the eye. The horizontal dotted line in 
b) is the high temperature limit of the entropy, 

€ 

S(T →∞) = −R(pocc log pocc + punocc log punocc ), where, pocc is 
the occupation rate (23/126), punocc=1-pocc, and R is the gas 
constant. We obtained 1280 data points, and only ten 
percent (with error bars) are plotted for clarity.  (c) 
Measured specific heat (crosses)19, together with calculated 
phonon specific heat (blue line) and the sum of phonon and 
configurational specific heats (red line). The temperature 
range below 300K is magnified in the inset.  

 
The specific heat of the β-boron Ising model 

was calculated on a temperature grid between 11.6K 
and 1.16×109 K (see Fig. 3a) at a fixed occupation rate 
pocc=23/126, which corresponds to the experimental 
atomic density16; an analytical high temperature 
expansion form (∝T-2) was used for extrapolation to 
infinite temperature. Thermodynamic integration was 
performed to calculate the entropy as a function of 
temperature, using infinite temperature as the reference 
point (see Fig 3b). Within the system sizes considered 
here, corresponding to 2x2x3, 3x3x3 and 4x4x6 
repetitions of the rhombohedral cell, we did not 
observe any evidence of phase transitions, and the 
calculated specific heat for each cell size was in 
agreement within statistical error bars. As can be seen 
in Fig 3b, the β-boron Ising model has a macroscopic 
amount of entropy, roughly ¼ of the high temperature 
limit, at the lowest temperature of our simulation. In 
our simulations, when the temperature decreases from 

the high T limit, first a large variation in the POS 
occupation rate is observed at 2000-10000K; most of 
the short-range correlations observed in our 
calculations develop in this temperature range. 
Subsequently, the interstitial B19/B20 occupation (see 
Fig.1 for definition of specific sites) gradually 
decreases, while the number of B17-B18 pairs (see 
Fig.1) remains roughly constant. Below 200 K, the 
relative locations of B16 interstitials are gradually 
optimized against the orientation of B13 vacancies and 
its occupied pairs such as a B17-B18 pair, a B19, or a 
B20. This sequence of geometrical arrangements 
corresponds to three peaks in the specific heat.  

 

 
 

Figure 4: The total energy eV per rhombohedral-cell along 
the reaction coordinates of the two lowest energy barrier 
paths. The B16 → B16 diffusion (the blue arrow) 
corresponds to the intra-triangle diffusion along a 
symmetric direction with respect to the B19 atom. The 
B19→B20 diffusion (the purple arrow) takes place with the 
far side B16 site occupied (as drawn).  

 
The configurational constant volume specific 

heat, C(T), of spin ice has been measured precisely, 
and this contributed significantly to the development of 
the theory of frustration in spin ice8. Unfortunately the 
C(T) of β-boron has not been as extensively studied, 
and the separation of configurational and vibrational 
contributions has never been attempted. The vibrational 
specific heat calculated from our first-principles 
phonon density of states is shown in Fig. 3c and is in 
excellent agreement with experiments19, including the 
T3 behavior below T=100 K and the non-T3 behavior 
above this temperature. A small scatter in the 
experimental data for C(T) at T~200K can be seen, 
although it is not clear if the scatter is within 
experimental uncertainties or if it corresponds to a 
dynamical temperature induced change in POS 
configuration.  

Apart from the specific heat, we found that 
there are several experimental evidences that the POS 
atoms diffuse over a wide range of temperature, whose 
potential relation to geometrical frustration has never 
been discussed. For example, Tsagareishlili et al. 
performed internal friction experiments over a range of 
temperatures (77K to 1000K)13, and found two clear 
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peaks of inelastic response at T=150K and at 
T=530K,13 indicating the presence of defect diffusion 
processes in β-boron. Werheit and Wehmoller 
measured the relaxation behavior in conductivity data, 
and identified the presence of various relaxation 
mechanisms down to T~100K, which was attributed to 
boron diffusion processes15.  

In order to examine a connection between the 
observed boron diffusion and the near degenerate POS 
configuration due to geometrical frustration, we have 
calculated the energy barriers between several different 
POS occupation configurations among of the lowest 
energy structures found in ref [4] from first-principles, 
using the elastic band method20. We have identified 
two low-activation diffusion paths connecting (near) 
degenerate low energy POS occupation configurations 
(see Fig. 4): inter B16 hopping and B19-B20 hopping, 
with barriers of 0.25eV and of 0.5eV, respectively (see 
Figs. 1 and 4 for site definitions), in qualitative 
agreement with the experiments13. All the other 
diffusion paths, particularly, the ones that change the 
location of B13 vacancies have high activation barriers 
(several eV) higher than the melting temperature 
(~2350K) of β-boron. An autocorrelation function 
analysis of the Ising model Monte Carlo calculations, 
in addition to the calculated activation barriers, leads to 
the following conclusion. Hopping between B19 and 
B20 can still take place at around T=600K (or the 
temperature range corresponding to the middle peak in 

C(T)), while below T=200K,  only inter B16 hopping 
takes place. This suggests that the two diffusion 
processes at T=150K and T=530K, inferred from the 
internal friction experiments13, correspond to these two 
hopping mechanisms. Based on our simulation results, 
we also suggest that the change in the optical 
absorption observed around T=150~200K14 can be 
attributed to the inter B16 hopping, and the 
introduction of gap levels due to an unfavorable B16 
occupation configuration4.  

In summary, we have demonstrated that the 
partial occupancy of β-rhombohedral boron is 
described by an AF Ising model on a double layer 
expanded kagome lattice, which possesses a (nearly) 
degenerate ground state due to geometrical frustration. 
We have also provided computational evidence to 
support the interpretation that the observed boron 
diffusion processes correspond to dynamical 
reconfigurations of POS atoms between near 
degenerate ground states. 

We thank Dr. Leonardo Spanu (UC Davis, 
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suggestions. This work was performed under the 
auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under 
Contract DE-AC52-07NA27344 and partially 
supported by DOE/Scidac grant no. DE-FG02-
06ER46262.
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