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Executive Summary 

 

Before the advent of concrete and steel, masonry helped build civilizations. From Egypt 

in Africa, Rome in Europe, Maya in the America to China in Asia, masonry was 

exploited to construct the most significant, magnificent and long lasting structures on the 

Earth. Looking at the Egyptian pyramids, Mayan temples, Roman coliseum and Chinese 

Great Wall, one cannot stop wondering about the significance and popularity that 

masonry has had through out history. Lourenco et al (1989) summed up the reasons for 

the popularity of masonry in the following, 

 

“The most important characteristic of masonry construction is its 

simplicity. Laying pieces of stone or bricks on top of each other, either 

with or without cohesion via mortar, is a simple, though adequate, 

technique that has been successful ever since remote ages. Other 

important characteristics are the aesthetics, solidity, durability, low 

maintenance, versatility, sound absorption and fire protection.” 

 

Despite these advantages, masonry is no longer preferred structural material in many 

parts of the developed world, especially in seismically active parts of the world. Partly, 

masonry and especially unreinforced masonry (URM) has mechanical properties such as 

strength and ductility inferior to those of reinforced concrete and steel. Moreover, 

masonry structures were traditionally built based on rules of thumb acquired over many 

years of practice and/or empirical data from testing. Accordingly, we do not have a 

rigorous and uniform method of analysis and design for masonry. Nevertheless, the world 

still possesses numerous historic and ordinary masonry structures, which require 

maintenance and strengthening to combat the assault of time and nature. Hence, it is 

important to study fundamental properties of masonry so that new masonry structures can 

be effectively designed and built, and the cost for servicing old structures and for 

building new ones will be less expensive.   
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Mechanical Properties of Unreinforced 

Brick Masonry 

 

Masonry is a heterogeneous composite in which brick units are held together by mortar.  

Brick units can be made from clay, compressed earth, stone or concrete. Mortar can be 

lime or a mixture of cement, lime, sand and water in various proportions.  Consequently, 

masonry properties vary from one structure to the next depending on the type of brick 

units and mortar used. For each type of brick units and mortar, their properties depend 

upon the properties and composition of the constituents. Other factors contributing to the 

variability of masonry properties include anisotropy of units, dimension of units, mortar 

joint width, arrangement of bed-joints and head-joints, arrangement of brick units and 

workmanship. Nevertheless, bricks and mortar being the most visible components still 

determine the performance of masonry. Therefore, we should examine the properties of 

mortar and brick units in order to gain an insight into the behavior of masonry.   

 

1.1 Properties of Mortar and Brick Units 

Mortar is composed of cement and/or lime, sand and water. Properties of mortar vary 

depending on the proportions of these constituents. For instance, mortar with high water-

cement (cementitious materials) ratio has lower compressive strength than low water-

cement ratio. In order to standardize the practice, ASTM (American Standard Testing and 

Measurement) has designated four types of mortar for use in masonry construction in the 

United States. Table 1.1 lists the proportions and compressive strengths of the four types 

of mortar in accordance with ASTM 270. 

Table 1.1: Volume proportions and compressive strength 

Type 
Portland 

Cement 
Hydrated Lime  Sand 

Strength, 

psi (MPa) 

M 1 Min: 0, Max: 1/4 
Not < 2-1/4 nor > 3 times 

sum of the total volume of 

cement and lime 

2500 (17.2) 

S 1 Min: 1/4, Max: 1/2 1800 (12.4) 

N 1 Min: 1/2, Max: 1-1/4 750 (5.2) 

O 1 Min: 1-1/4, Max: 2 350 (2.4) 
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Practically, the values given in Table 1.1 are only benchmarks for each type of mortar.  

The actual composition and strength can differ greatly from values given by ASTM. For 

instance, compression tests by McNary & Abrams (1985) on Type M (1:1/4:3 

cement:lime:sand ratio and 1.83 water/cement ratio) and Type O (1:2:9 cement:lime:sand 

ratio and 0.51 water/cement ratio) give the average compressive strengths for 2-inch 

mortar cubes to be 7646 psi (52.6 MPa) and 498 psi (3.4 MPa), respectively. Type M 

mortar has higher compressive strength than Type O mortar as indicated in Table 1.1 and 

Figure 1.1. 

 
 

Type M Type O 

Figure 1.1: Measured properties of types M and O mortars for different confining 

stresses [1.0 ksi = 6.90 MPa] (McNary & Abrams, 1985) 

 

Moreover, experiments have shown that masonry prism under uniaxial compression 

perpendicular to bed joint, refer to Figure 1.4, produces tri-axial compression stress in the 

mortar. Under tri-axial compression, mortar behavior depends upon confining stresses 

and mortar type. Maximum crushing stress and strain increase with increase confining 

stresses. Also, lower strength mortars exhibit greater ductility than higher strength 

mortars. The plots of axial stress-axial strain and axial strain-lateral strain in Figure 1.1 

for the two types of mortar clearly show that mortar exhibits nonlinear behavior under 

increasing confining pressure. Weaker mortar (Type O) exhibits greater axial shorting 



 6 

and lateral expansion than stronger mortar (Type M). Though, both strong and weak 

mortars exhibit brittle behavior at low confining stress. With regard to tensile strength of 

mortar, it is minimal and usually assumed to be zero. 

 

Brick units also have many types and shapes. Although burned clay brick units seem to 

be ubiquitous around the world, there are other types of brick units such as unburned clay 

units, sand/clay mixed with cement, concrete units, calcium silicate bricks, and 

stone/rock. Similar to mortar, each type (SW: Severe weathering, MW: Moderate 

weathering, NW: No weathering, N: High strength and resistance to moisture penetration, 

S: moderate strength and resistance to moisture penetration) of brick units possesses its 

own properties. Table 1.2 lists the strengths for the three types of structural masonry units 

specified in ASTM. 

Table 1.2: Compressive strengths of several types of bricks 

ASTM C62: Clay or Shale bricks 

Type Average compressive strength of 5 bricks Compressive strength of 1 brick 

SW 3000 psi (20.7 MPa) 2500 psi (17.2 MPa) 

MW 2500 psi (17.2 MPa) 2200 psi (15.2 MPa) 

NW 1500 psi (10.3 MPa) 1250 psi (8.6 MPa) 

ASTM C55: Concrete bricks 

Type Average compressive strength of 3 bricks Compressive strength of 1 brick 

N 3500 psi (24.1 MPa) 3000 psi (20.7 MPa) 

S 2500 psi (17.2 MPa) 2000 psi (13.8 MPa) 

ASTM C73: Calcium Silicate (Sand-Lime bricks) 

Type Average compressive strength of 3 bricks Compressive strength of 1 brick 

SW 5500 psi (37.9 MPa) 4500 psi (31.0 MPa) 

MW 3500 psi (24.1 MPa) 3000 psi (20.7 MPa) 

 

In addition, a yield criterion for masonry units and uniaxial behavior of masonry units 

can be illustrated in Figure 1.2 according to Lofti & Shing (1994). Furthermore, 

mechanical properties of brick units such as clay units are directional in nature due to the 

extrusion process. Rad (1978) tested cylinders (0.667-in diameter by 1.3-in height) 

extracted from three faces of brick units and found that the variation in compressive 

strengths is as listed in Table 1.3. The same author also found that compressive strength 

of brick units on average is 2 to 3 times larger than the tensile strength. 
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Figure 1.2: A yield criterion (a) and a typical stress-strain model (b) for brick unit (Lotfi 

& Shing, 1994) 

Table 1.3:  Directional compressive strength 

Direction Richtex brick Southern brick 

X (width of brick) 3042 ± 610 3140 ± 710 

Y (length of brick) 5162 ± 822 6154 ± 2584 

Z (direction of extrusion) 2475 ± 467 5089 ± 1369 

 

Additionally, uniaxial compression tests of stack bonded masonry prisms show that brick 

units experience a compression-tension-tension state of stress. Since compressive 

strength of brick units is much stronger than tensile strength, brick units usually fail in 

tension. Biaxial compression-tension tests on brick by McNary & Abrams (1985) shows 

the interaction between compression (C) and tension (T) to fit the following relationship, 

58.0
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C

C
          (1.1) 

where C0 and T0 are uniaxial compressive strength and direct tensile strength, 

respectively. Khoo & Hendry (1973) also found such interaction between compression 

and tension in bricks tested under biaxial compression-tension. The concavity in the 

compression-tension interaction diagram, refer to Figure 1.3, is the indication of the 

interaction. 
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Figure 1.3:  Interaction curve for bricks under biaxial compression-tension 

 

1.2 Properties of Interface 

The interface between a brick unit and a mortar joint is an important component of 

masonry. Being the weak link in masonry, interfaces usually dominate the behavior of 

masonry assemblage. Under certain load combinations such as pure tension normal to 

mortar joint and pure shear along mortar joint the interface controls the behavior of 

masonry. Tension and shear are the two different failure modes normally associated with 

unit-mortar interface. 

 

1.2.1 Tension Mode 

There are two types of bonds between mortar and brick units: chemical and friction.  

Tensile strength at the interface is primarily due to chemical bond. This bond depends 

upon the absorption rate of brick units. High absorption rate decreases the strength of the 

bond. Thus, brick units are usually wetted before they are laid. Direct tension and 

bending usually cause the bond to break, and where the break occurs we have separation 

of brick units and mortar layers. The tensile bond strength at the interface due to uniaxial 

tension and bending can be respectively calculated from, 

n
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S

M
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ft           (1.3) 

where uF  and nA  are ultimate axial force and net bonded area, respectively; uM  and S  

are bending moment at failure and elastic section modulus, respectively. The net bonded 
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area is usually smaller than the cross-sectional area of the brick unit and concentrates in 

the middle of the unit. This is due to shrinkage of mortar and the process of laying units. 

Moreover, tensile failure at interface is brittle in nature. To capture the descending 

branch, Lourenco et al (1995) used the following expression which gives good 

approximation to the test results by Pluijm (1997), 

nI

f

t

t

w
G

f

f
exp          (1.4) 

where I

fG  and nw  are Mode-I fracture energy and crack band width in tension, 

respectively. Lourenco (1996) reported that the tensile fracture energy ranges from 0.005 

N-mm/mm
2
 (0.029 lbs-in/in

2
) to 0.02 N-mm/mm

2
 (0.11 lbs-in/in

2
) for tensile bond 

strength ranging from 0.3 N/mm
2
 (43.5 psi) to 0.9 N/mm

2
 (130.5 psi). The fracture 

energy is defined as energy per net cracked area. 

 

1.2.2 Shear Mode 

Shear strength at the interface comes from friction due the asperities between the surface 

of mortar layer and the surface of the brick unit, and the chemical bond between mortar 

and brick units. Normal compression perpendicular to the interface further increases its 

shear strength because the asperities cannot easily slide over one another. Coulomb 

friction is often used to model this mode at the interface. Similar to the tension mode, 

formulation by Lourenco et al (1995) captures the descending branch under shear by the 

following expression, 

sII

f

w
G

c

c
exp          (1.5) 

where c , II

fG  and sw  are cohesion at interface, Mode-II (shear) fracture energy and 

crack width in shear, respectively. From Lourenco (1996), shear fracture energy is the 

area under the curve showing the relationship between shear displacement and residual 

dry friction shear level. This energy ranges from 0.01 N-mm/mm
2
 (0.055 lbs-in/in

2
) to 

0.25 N-mm/mm
2
 (1.43 lbs-in/in

2
) for initial cohesion, c, values ranging from 0.1 N/mm

2
 

(14.5 psi) to 1.8 N/mm
2
 (261 psi). This energy level increases linearly with increasing 

confining stress. Also, initial and residual internal friction angles can be measured from 
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shear versus normal stress diagram. The initial (tan 0 ) ranges from 0.7 to 1.2 and 

residual (tan r ) is constant at 0.75. Dilatancy angle (tan ), which measures the uplift of 

one unit over the other, ranges from 0.2 to 0.7; the value depends upon the roughness and 

confining stress. For either high pressure or increasing slip, tan  decreases to zero.  

Increasing slip grinds down the asperities at the interface, and increasing compression 

limits the uplift of brick units. 

 

1.3 Behavior of Masonry under Uniaxial Compression 

Previously, we have examined the properties of the components making up masonry. As 

we already know that masonry is a composite material composed of mortar, brick units 

and interfaces; thus, its properties are deemed to be different from those of each of its 

components. Now, we will examine mechanical properties of masonry as a composite. 

 

1.3.1 Uniaxial Static Compression 

Masonry is composed of two discrete entities: relatively stiffer masonry units and 

relatively softer mortar layers. They are chemically and physically bonded together.  

Under uniaxial compression, stacked masonry prism as shown in Figure 1.4 expands 

laterally in the plane perpendicular to the direction of loading. Yet, the stiffer masonry 

units expand less than the softer mortar, and restrain the expansion of mortar layers. As a 

result, masonry units experience a compression-bilateral tension state of stresses. At the 

same time, each mortar joint experiences a state of tri-axial compressive stresses. The in-

plane compressive stresses in the mortar joint come from the restraining action by the 

stiffer masonry units. 

 

Compressive strength of masonry under uniaxial compression depends chiefly on the 

tensile strength of the brick units. Nevertheless, Young’s moduli and Poisson ratios of 

brick units and mortar, and thickness of mortar joints and brick units also play a role in 

the strength of the composite. Pande et al (1994) developed a sophisticate model for 

calculating the strength as follows, 
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where fS  is a dimensionless stress factor as a function of elastic constants and 

thicknesses of mortar and bricks, 
b

tf  is tensile strength of brick unit, and nA  and gA  are 

net sectional area and gross area of the brick unit, respectively. The details for calculating 

mf  are in Pande et al (1994). 

 

Figure 1.4: State of stresses in a masonry prism subjected to vertical compression 

 

Experimentally, masonry prisms as observed by McNary & Abrams (1985) begin to spall 

at 85% of the ultimate load. Cracks form on the narrow faces of the prisms at 90% of the 

ultimate load. These cracks propagate and failure occurs with vertical splitting down the 

narrow face of the test prisms. Failure under uniaxial compression often begins in brick 

units due to its low tensile strength. The increment of stress inside brick units leading to 

failure , xb , , can be computed as a function of the increment of vertical stress on the 

prism, y , by the following expression from McNary & Abrams (1985), 
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where subscripts b and m denote brick and mortar, respectively,  is Poisson ratio, E is 

Young’s modulus, and t is the thickness. It is noted that the mortar’s Young modulus and 

Poisson ratio are functions of confining stresses. 

 

Furthermore, failure modes under uniaxial compression also depend upon the type of 

mortar used. Strong mortars are usually associated with brittle and explosive failure; 

weak mortars are associated with ductile and slower rate of crack propagation. As mortar 

strength decreases, the stress-strain curve for the prism becomes more nonlinear.  

Meanwhile, brick strength has little influence on the nonlinearity of the stress-strain of 

the masonry prisms; the properties of brick are constant up to failure. This fact reflects 

upon the limited tensile strength of brick units and its brittleness. In short, the stress-

strain of masonry depends primarily upon the properties of mortar beyond the linear 

range. Figure 1.5 clearly shows masonry prism built with Type O mortar has a greater 

nonlinearity than masonry prism built with stronger Type M mortar. Moreover, under 

uniaxial compression, average prism strength is almost equal to the average compressive 

strength of bricks and about 3 times greater than their tensile strength (Rad, 1978).    

 

Figure 1.5: Stress-strain curves for prisms with different types of mortar (McNary & 

Abrams, 1985). 

 

1.3.2 Behavior under Uniaxial Cyclic Compression 

Compared to static loading, cyclic compression reduces brick masonry prisms 

compressive strengths by 30% (Naraine & Sinha, 1989). Under cyclic loading, stress-
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strain history of masonry prisms, according to Naraine & Sinha (1989) possesses a locus 

of common points and stability points. Common points are where the reloading portions 

of any loading cycles cross the unloading portions of the previous cycles; stresses above 

these points will produce additional strains, while stresses below will not and result in 

stress-strain path going into a loop where the point of intersection of the reloading curve 

and unloading curve descents and stabilizes at a lower bound called the stability point.  

The general form of stress-strain curves for common point and stability point under 

cyclic loading can be given as, 

)/1exp(         (1.8) 

where the stress, σ, and the strain, ε, are normalized values with respect the failure stress 

and the associated strain; β and α are constants. For loading perpendicular to the bed-

joint, 15.085.0  and for loading parallel to bed-joints, 23.077.0 . Table 

1.4 gives the values of β for different curves and loading.  

Table 1.4: Value of β for envelope, common point and stability point     

curves for uniaxial cyclic compression (Naraine & Sinha, 1989) 

Loading case Curve Value of β 

Perpendicular to bed-joints  

Envelope 1.00 

Common-point 0.84 

Stability 0.65 

Parallel to bed-joints 

  

Envelope 1.00 

Common-point 0.85 

Stability 0.71 

 

This empirically derived expression is for frog-clay brick unit of size 230 mm × 110 mm 

× 70 mm and 10 mm thick mortar joints. The strength of the brick unit was 13.1 N/mm
2
 

(1,900 psi), and 70-mm mortar cube was 6.1 N//mm
2
 (885 psi). The loading rate was 2.9 

N/mm
2
 (421 psi) per minute and unloading was 5.8 N/mm

2
 (841 psi) per minute. The 

plots of these curves are shown below in Figure 1.6. 
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Figure 1.6: Stress-strain curves under uniaxial cyclic compression   

 

In another similar experiment but with stronger “sand plast” (a type of calcium silicate) 

bricks with mean compressive strength of 23.4 N/mm
2 

(3,394 psi), Alshebani & Sinha 

(1999) found cracks initiated at 55% and 45% of peak load perpendicular and parallel to 

bed-joints, respectively. The same types of failure modes as in the weaker clay brick 

specimens were observed. Also, the mathematical models for the envelope, common 

point and stability point curves still have the same forms as in weaker clay brick 

experiment by Naraine & Sinha (1989). For loading normal to bed-joints, the envelope 

stress-strain curve has the following form, 

)/1exp(           (1.9) 

On the other hand, for loading parallel to bed-joints, the envelope stress-strain curve has 

the following form, 

)1(exp         (1.10) 

Common point and stability point stress-strain curves, for both loading normal and 

parallel to bed joints, have the following form, 

])/1exp[(         (1.11) 

As before, the stress, σ, and strain, ε, are normalized values with respect to the average 

peak stress and strain. The constants α and β are determined from experimental data.  

Clearly, different types of bricks result in different expressions for stress-strain curves. 

However, an exponential stress-strain relationship in general fits the test data well. 
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Failure mode of brick masonry prisms varied according to the orientation of bed-joints.  

For specimens loaded perpendicular to bed-joints, failure was characterized by splitting 

of bricks in plane parallel to the plane of the prism and by formation of tensile cracks 

parallel to the axis of loading. For specimens loaded parallel to bed-joints, failure was 

characterized by splitting of bed-joints along the interfaces and some parallel cracks in 

the bricks. As an example from tests by Naraine & Sinha (1989), the mean failure stress 

for loading perpendicular to bed-joints was 5.40 N/mm
2
 (783 psi) with standard deviation 

of 0.25 N/mm
2 

(36 psi) and for loading parallel to bed-joints was 5.80 N/mm
2
 (841 psi) 

with standard deviation of 0.30 N/mm
2
 (44 psi). Moreover, the associated axial strains 

were 6.1×10
-3

 ± 3.4×10
-4

 and 6.0×10
-3

 ± 4.0×10
-4

, respectively. 

 

1.4 Biaxial Behavior 

Due to the variety of masonry, it is difficult to propose a truly general and representative 

stress-strain relationship in order to best describe masonry behavior. Testing is usually a 

preferred way to obtain behavior of the desired type of masonry. However, these tests are 

too specific for the types of masonry under investigation. Nevertheless, laboratory tests 

were performed by various researchers in an attempt to generalize the behavior of 

masonry under biaxial loading.   

 

1.4.1 Biaxial Monotonic Behavior 

Biaxial compression-compression and compression-tension tests are usually performed 

on masonry panels to obtain the stress-strain relationship. Dhanasekar et al (1985) 

performed tests on 180 half-scale brick masonry specimens, 360 mm (14.2 in) square.  

The brick dimensions were 110 mm × 50 mm × 35 mm (4.3 in × 2 in × 1.4 in). The 

mortar composition contained by volume 1 part cement, 1 part lime and 6 parts sand.  

Monotonically increasing load was applied to the specimens at an angle with respect to 

the bed-joint. In general, from the tests, most of nonlinear behavior is caused by the 

slippage at the mortar joints along the interfaces. These interfaces act as planes of 

weakness. Under compression-compression, tangent modulus changes as the load 

increases until failure. Under compression-tension, masonry fails elastically at low level 
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of load; thus, masonry is considered to be linear elastic-brittle material when one of the 

principal stresses is tensile stress.   

 

Furthermore, nonlinearity only occurs when masonry is under compression-compression 

state of stress. Initially, masonry behaves as a linear elastic material; therefore, masonry 

can be modeled, on average, as an isotropic continuum. From the experiment by 

Dhanasekar et al (1985), on an average, the value of elastic modulus in the direction 

normal to bed-joint is 5,600 MPa (813 ksi) with Poisson’s ratio of 0.19; the value of 

elastic modulus in the direction parallel to bed-joints is 5,700 MPa (827 ksi) with 

Poisson’s ratio of 0.19; the mean value of shear modulus is 2,350 MPa (341 ksi). These 

properties are also strongly influenced by the type of brick units used to construct the 

panel. Brick units with markedly directional properties will give rise to strongly 

orthotropic masonry. Beyond elastic range, Dhanasekar et al (1985) proposed Ramsberg-

Osgood relationship to account for plastic strain, 

n

BE
          (1.12) 

where B is constant with dimension of stress and n is dimensionless constant. Tests on 69 

masonry panels give the values for B and n equal to 3.8 MPa (552 psi) and 3.1, 

respectively. Moreover, plastic strain is non-isotropic and related to joint directions. The 

authors found that for stress states 25.0/ pn  and 1/ n , the plastic strains 

normal to bed-joints, parallel to bed-joints and shear can be expressed as the powers of 

stresses normal to bed-joints ( n ), parallel to bed joints ( p ) and shear along the bed-

joints ( ), respectively. These expressions are given in the following, 
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where pp

p

p

n ,,  are normal, parallel and shear plastic strain components; rprnr ,,  are 

reference strains; spn BBB ,,  are stress levels at which the reference strains were reached; 

and spn nnn ,,  are dimensionless constants in the power law. Table 1.5 gives the mean 

and coefficient of variation (COV) values of n and B (Dhanasekar et al, 1985), 

Table 1.5: Constants in plastic stress-strain relationship 

Direction Mean B psi (MPa) COV B Mean n COV n 

Normal 1,060 (7.3) 0.19 3.3 0.29 

Parallel 1,161 (8.0) 0.25 3.3 0.34 

Shear 290 (2.0) 0.19 4.0 0.40 

 

For stress state 1/ n , the bilinear stress-strain relationship is appropriate.  

Furthermore, the incremental form of plastic strain can be expressed as the ratio of 

incremental stress and the hardening modulus, H, as follows, 

H

p           (1.14) 

where H for each direction is given by, 

MPa) )(17.9 (i.e. psi )(600,2 70.070.0 p

n

p

nnH      (1.15a) 

MPa) )(19.7 (i.e. psi )(860,2 70.070.0 p

p

p

ppH      (1.15b) 

MPa) )(2.8 (i.e. psi )(410 75.075.0 pp

sH       (1.15c) 

The above is for masonry made of solid pressed bricks. The model is not applicable to 

bricks with well defined directional properties or to mortar with strength closely matched 

to that of bricks. 

 

1.4.2 Biaxial Cyclic Behavior 

Unlike uniaxial compression, failure in the plane perpendicular to the plane of the panel 

is prevented by compression. Failure in the plane parallel to the free surface at mid- 

thickness, however, is not prevented. Failure is characterized by splitting of the panel into 

several columns. Naraine & Sinha (1991) found this type of failure in their test specimens 

when the following principal stress ratios ( pn / = 0.2, 0.6, 1.0, 1.67 & 5.0, where n  is 

principal stress normal to bed-joint and p  is principal stress parallel to bed-joint) were 
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applied to the specimens. Also, an average of 30% increase in dominant stress at failure 

was observed for the specimens under a low level of restraining stress. There was not 

observable increase in dominant stress at failure for high level of restraining stress. The 

authors found that a failure interaction curve can be expressed in terms of principal stress 

invariants and given as, 

1)1( 212 CIICJC           (1.16) 

where 2

02 )//( mpmnJ , )//( 01 mpmnI , )/( 02 mmpnI ;  m  

and 0m  are average uniaxial compressive strengths normal and parallel to bed-joint, 

respectively. C is a constant governing the nature of interaction; for C =1.0, the equation 

reduces to Von Mises criterion; from the experiment, the authors found C =1.6. The 

stress-strain relationship of the panel is governed by critical principal strain and the 

associated stress. The principal strain ratios ( pn / ) are linear up to failure. For small 

pn /  ratios, n  changes very insignificantly until failure; similarly for p  when 

pn /  is large. The stress-strain curve can be expressed as following, 

1exp         (1.17) 

The constants  and  are parameters representing envelope curves, which are stress-

strain curves obtained from monotonically increasing load, not cyclic loading. The 

constants can be determined by least square method in combination with test data. The 

stress-strain for envelope curves has the following form, 

1exp          (1.18) 

In the above equations, the stress and strain are normalized with the critical stress and 

strain given in Tables 1.6 and 1.7. The constants  and  are linearly related and given 

in Table 1.8. 

Table 1.6: Critical stress-strain parameters perpendicular to bed-joint 

σn/σp Mean σmn (N/mm
2
) COV σmn Mean εmn COV εmn 

∞ 6.10 0.05 0.0065 0.08 

5.00 8.02 0.07 0.0060 0.09 

1.67 8.32 0.08 0.0054 0.11 

1.00 8.10 0.07 0.0043 0.11 
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Table 1.7: Critical stress-strain parameters parallel to bed-joint 

σn/σp Mean σmn (N/mm
2
) COV σmn Mean εmn COV εmn 

0.0 6.70 0.08 0.00580 0.15 

0.2 8.65 0.07 0.00545 0.13 

0.6 8.84 0.07 0.00490 0.12 

 

Table 1.8: Values of α, β, ic (degree of fit between experimental and theoretical) 

σn/σp Expression for α 
Envelope vurve Common point Stability point 

β ic  β ic β ic 

0.00 0.78β + 0.22 1.0 0.95 0.87 0.95 0.68 0.85 

0.20 0.59β + 0.41 1.0 0.96 0.83 0.94 0.65 0.93 

0.60 0.88β + 0.12 1.0 0.95 0.85 0.93 0.69 0.94 

1.00 0.68β + 0.32 1.0 0.96 0.84 0.96 0.64 0.95 

1.67 0.79β + 0.21 1.0 0.95 0.83 0.95 0.66 0.95 

5.00 0.62β + 0.38 1.0 0.94 0.83 0.95 0.68 0.93 

∞ 0.89β + 0.11 1.0 0.97 0.88 0.92 0.71 0.94 

 

The plastic strain normalized to the critical value is given by, 

bar

2           (1.19) 

where constants a and b are given in Table 1.9. 

Table 1.9: Values of a and b for plastic strain 

σn/σp 
εr vs. εE (Envelope) εr vs. εC (Common) εr vs. εS (Stability) 

a b ic a b ic a b ic 

0.00 0.240 0.150 0.96 0.250 0.150 0.90 0.250 0.220 0.94 

0.20 0.270 0.122 0.95 0.254 0.146 0.96 0.340 0.084 0.96 

0.60 0.292 0.095 0.96 0.301 0.101 0.97 0.395 0.029 0.95 

1.00 0.312 0.110 0.95 0.318 0.108 0.94 0.443 0.071 0.96 

1.67 0.304 0.132 0.95 0.320 0.127 0.96 0.386 0.118 0.96 

5.00 0.302 0.126 0.96 0.332 0.116 0.96 0.323 0.175 0.97 

∞ 0.270 0.170 0.96 0.270 0.181 0.95 0.340 0.151 0.95 

 

Alshebani & Sinha (2000) performed the same experiment with stronger bricks (sand-

plast, a type of calcium silicate) and with principal stress ratios, pn / = 0.25, 0.50, 1.0, 

2.0 & 6.0. The mean compressive strength of bricks was 23.4 N/mm
2
 (3,394 psi). The 

same type of failure (splitting at mid-thickness) was observed. However, reflecting the 

difference in compressive strength between sand-plast brick and clay brick, the analytical 

expressions for failure interaction curve, envelope curve, common-point curve, and 
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stability-point curve are different. Though still a function of principal stress invariants, 

the failure interaction curve is expressed as follows, 

1)1( 211121 IXIXJX         (1.20) 

where 2

02 )//( mpmnJ , )//( 01 mpmnI , )/( 02 mmpnI , and 

)/1(1 npX . X1 is equal to 1.0 for uniaxial loading. For envelope curve normal to 

bed-joints, 

)/1exp(          (1.21) 

For envelope curve parallel to bed-joints, 

)1(exp         (1.22) 

For common-point and stability-point, 

)1(exp         (1.23) 

Again, σ and ε are non-dimensional stress and strain, normalized by the critical stress and 

strain, respectively. Tables 1.10 and 1.11 list the values for the critical stress and strain 

and the constants α and β.  

Table 1.10: Critical stress-strain parameters 

σn/σp σmn (N/mm
2
) εmn σmp (N/mm

2
) εmp 

∞ 9.5 5.2×10
-3

 None None 

4.00 12.0 4.9×10
-3

 None None 

2.00 12.4 4.5×10
-3

 None None 

0.00 None None 8.2 5.7×10
-3

 

0.25 None None 11.2 5.4×10
-3

 

0.50 None None 12.1 5.0×10
-3

 

1.00 None None 11.8 4.3×10
-3

 

 

Table 1.11: Values for α, β and ic 

σn/σp 
Envelope curve Common point curve Stability point curve 

 β ic  β ic  β ic 

0.00 0.73 0.70 0.96 0.70 0.73 0.92 0.54 0.73 0.89 

0.25 0.73 0.70 0.94 0.66 0.78 0.94 0.50 0.76 0.93 

0.50 0.73 0.70 0.94 0.65 0.76 0.93 0.49 0.76 0.92 

1.00 0.73 0.70 0.96 0.63 0.78 0.95 0.47 0.76 0.90 

2.00 1.00 1.00 0.93 0.69 0.81 0.92 0.54 0.85 0.91 

4.00 1.00 1.00 0.91 0.70 0.82 0.92 0.54 0.82 0.88 

∞ 1.00 1.00 0.97 0.73 0.80 0.95 0.58 0.80 0.90 
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Furthermore, it is important to recognize that properties of brick masonry prisms vary 

depending on the type of bricks used, joint geometry and workmanship. 

 

1.5 Shear Behavior 

Peak shear resistance depends upon mortar type, mortar water/cement ratio, brick surface 

structure as measured by initial rate of absorption (IRA) and workmanship (Atkinson et 

al, 1989). Under direct shear tests, shear distribution is uniform along bed joints for 

specimens subjected to unit shear and zero normal loads. Plot of shear load versus 

relative shear displacement (Figure 7) from direct shear test experiments by Atkinson et 

al (1989) shows a very steep ascend to peak value and a steep descend to residual value 

in the first cycle, and shows no secondary peak after the first cycle. Yet, for the case of 

low normal load, a secondary peak can be observed upon shear reversal of the first cycle.  

The residual shear strength after first cycle does not seem to be affected by the number of 

cycles. Moreover, in the first cycle softening in bed-joints can be seen as indicated in the 

decrease of slope before peak shear. Also, bed-joints dilate and contract twice per cycle.  

Except for cases of low normal load levels, the net result of shearing is contraction; 

dilatation part is insignificant under medium and high normal load levels. Vertical 

deformation in bed-joints is small and elastic.    

 

Figure 1.7: An example of shear stress-strain relationship 

 

To represent the peak and residual shear strengths, the following Mohr-Coulomb criterion 

was found to be well matched by Atkinson et al (1989). 
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tannc          (1.24) 

The parameters c and tan  can be evaluated by regression analysis. The parameter tan  

ranges from 0.7 to 0.85. Table 1.12 gives the values for c and tan  from the tests by 

Atkinson et al (1989). 

Table 1.12: Results of linear regression on direct shear test data (Goodness of fit=R
2

p) 

Specimen type (number of tests) 
Peak values (MPa) Residual values (MPa) 

tan υp cp R
2

p tan υr cr R
2

r 

Old bricks and 1:2:9 mortar, 7 mm (9) 0.640 0.213 0.995 0.693 0.038 0.996 

Old bricks and 1:2:9 mortar, 13 mm (16) 0.695 0.127 0.994 0.678 0.023 0.995 

New bricks and 1:1.5:4.5 mortar, 7 mm (9) 0.745 0.811 0.985 0.747 0.037 0.999 

 

For shear stiffness, the following empirical model for nominal shear stress and the 

relative displacement (u) can be used, 

bua

u
          (1.25) 

where a and b are parameters obtained by fitting experimental data and in general they 

vary with the normal stress level. The shear stiffness is given by, 

u
ks           (1.26) 

The constant, a, is reciprocal of the initial bed-joint shear stiffness (= sik/1 ), and 1/b is 

horizontal asymptote to the hyperbolic τ-u curve. Table 1.13 gives the expressions for a 

and b in the experiment by Atkinson et al (1989).  

Table 1.13: Expressions for a and b 

Specimen type Regression on a Regression on 1/b 

Old clay units 1:2:9, 7mm a = 0.054 – 0.005σn 1/b = 0.166 - 0.976σn  

Old clay units 1:2:9, 13 mm a = 0.065 – 0.001σn 1/b = 0.457 - 0.762σn 

New clay units 1:1.5:4.5, 7 mm a = 0.046 – 0.004σn 1/b = 0.808 - 1.231σn 

 

1.6 Conclusion 

In this chapter, we have investigated the mechanical properties of masonry from 

experiments by various researchers. Masonry is a composite material of brick units and 

mortar joints and interface between mortar and unit. Together, they determine the 

properties of masonry. The interface is known as the weak link in the system with 

minimal tensile bond strength, thus masonry has limited tensile strength and usually 
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negligible. Under uniaxial compression, state of stresses in the brick in a masonry prism 

is compression-tension-tension; whereas, softer mortar joint is under tri-axial 

compression. Under tension, masonry is linear elastic material; tensile failure is 

characterized by splitting along the interface. Masonry exhibits nonlinearity under biaxial 

loading. Cyclic loading reduces compressive strength of masonry prism by 30%. Shear 

behavior of masonry depends upon normal stress; under high normal stress, dilatancy is 

insignificant. Mohr-Coulomb model is appropriate for modeling shear behavior in joint. 
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