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Abstract

We study the region of the QCD phase transition using 2+1 flavors of domain wall fermions

(DWF) and a 163 × 8 lattice volume with a fifth dimension of Ls = 32. The disconnected light

quark chiral susceptibility, quark number susceptibility and the Polyakov loop suggest a chiral and

deconfining crossover transition lying between 155 and 185 MeV for our choice of quark mass and

lattice spacing. In this region the lattice scale deduced from the Sommer parameter r0 is a−1 ≈ 1.3

GeV, the pion mass is ≈ 300 MeV and the kaon mass is approximately physical. The peak in

the chiral susceptibility implies a pseudo critical temperature Tc = 171(10)(17) MeV where the

first error is associated with determining the peak location and the second with our unphysical

light quark mass and non-zero lattice spacing. The effects of residual chiral symmetry breaking on

the chiral condensate and disconnected chiral susceptibility are studied using several values of the

valence Ls.

PACS numbers: 11.15.Ha, 12.38.Gc, 11.30.Rd
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I. INTRODUCTION

The properties of strongly-interacting matter change dramatically as the temperature

is increased. At a sufficiently high temperature, the basic constituents of matter (quarks

and gluons) are no longer confined inside hadronic bound states, but exist as a strongly

interacting quark-gluon plasma (QGP). The properties of the QGP have been subject to

significant theoretical and experimental study. The physics of the transition region controls

the initial formation of the QGP in a heavy-ion collision, as well as the details of hadronic

freeze-out as the QGP expands and cools. Thus, the transition temperature and the order

of the transition are of fundamental importance in their own right and of particular interest

to both the theoretical and experimental heavy-ion community.

The location and nature of the QCD phase transition has been extensively studied using

lattice techniques with several different fermion actions [1–6]. Recently, the most detailed

studies of the transition temperature have been performed with different variants of the

staggered fermion action [1–4]. Although staggered fermions are computationally inexpen-

sive, they suffer the disadvantage that they do not preserve the full SU(2)×SU(2) chiral

symmetry of continuum QCD, but only a U(1) subgroup. This lack of chiral symmetry is

immediately apparent in the pion spectrum for staggered quarks, where there is only a sin-

gle pseudo-Goldstone pion, while the other pions acquire additional mass from O(a2) flavor

mixing terms in the action.

Thus, it is important to study the QCD phase transition using a different fermion dis-

cretization scheme. The Wilson fermion formulation is fundamentally different from the

staggered approach and would be an obvious basis for an alternative approach. However,

Wilson fermions may be a poor alternative because in that formulation chiral symmetry is

completely broken at the lattice scale and only restored in the continuum limit, the same

limit in which the breaking of SU(2)×SU(2) chiral symmetry in the staggered fermion for-

mulation disappears.

A particularly attractive fermion formulation to employ is that of domain wall

fermions [7–9]. This is a variant of Wilson fermions in which a fifth dimension is intro-

duced (the s direction). In this scheme, left and right-handed chiral states are bound to

the four dimensional boundaries of the five-dimensional volume. The finite separation, Ls

between the left- and right-hand boundaries or walls allows some mixing between these left-
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and right-handed modes giving rise to a residual chiral symmetry breaking. However, in con-

trast to Wilson fermions, this residual chiral symmetry breaking can be strongly suppressed

by taking the fifth-dimensional extent (Ls) to be large.

To leading order in an expansion in lattice spacing, the residual chiral symmetry breaking

can be characterized by a single parameter, the residual mass mres, which acts as an additive

shift to the bare input quark mass. Thus, the full continuum SU(2)×SU(2) chiral symmetry

can be reproduced to arbitrary accuracy by choosing Ls sufficiently large, even at finite

lattice spacing. However, this good control of chiral symmetry breaking comes with an

approximate factor of Ls increase in computational cost.

For these reasons, one of the first applications of the domain wall fermion approach was

to the study of QCD thermodynamics using lattices with a time extent of Nt = 4 and

6 [5]. These early results were quite encouraging, showing a clear signal for a physical, finite

temperature transition. However, these were two-flavor calculations limited to quarks with

relatively heavy masses on the order of that of the strange quark and with such large lattice

spacings that higher order residual chiral symmetry breaking effects, beyond mres 6= 0, may

have been important.

Given the substantial increase in computer capability and the deeper understanding of

domain wall fermions that has been achieved over the past decade, it is natural to return to

this approach. Now significantly smaller quark masses and much finer lattices with Nt = 8

can be studied and important aspects of residual chiral symmetry breaking can be recognized

and explored.

This paper presents such a first study of the QCD finite temperature transition region

using domain wall fermions at Nt = 8 and is organized as follows. Section II gives the

details of our simulation, with regard to the choice of actions, simulation parameters, and

algorithms. Section III presents our results for finite-temperature observables such as the

chiral condensate, chiral susceptibility, quark number susceptibility, Polyakov loop, and

Polyakov loop susceptibility. Section IV gives results for the zero-temperature observables:

the static quark potential and the hadron spectrum, that were calculated to determine the

lattice spacing and quark masses in physical units. Section V discusses the effects of residual

chiral symmetry breaking on our calculation and consistency checks of this finite temperature

application of the domain wall method. Section VI makes an estimate of the pseudo critical

temperature Tc which characterizes the critical region and its associated systematic errors.
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Finally, Section VII presents our conclusions and outlook for the future.

II. SIMULATION DETAILS

For our study we utilize the standard domain wall fermion action and the Iwasaki gauge

action. The properties of this combination of actions has been extensively studied at zero

temperature by the RBC-UKQCD collaboration [10–13].

Using the data from Ref. [10, 11, 13, 14], we extrapolated to stronger coupling in order

to estimate the bare input parameters: the gauge coupling, input light quark mass, and

input strange quark mass (β, ml, ms), appropriate for the region of the finite-temperature

transition at Nt = 8. The value of the critical gauge coupling was estimated to be βc ∼ 2.00

and the corresponding residual mass mres ∼ 0.008 for Ls = 32. As a result, we have used

ml = 0.003 and ms = 0.037 for the input light and strange quark masses in all of our runs.

This corresponds to (ml +mres)/(ms +mres) ≈ 0.25.

For the finite temperature ensembles, we have used a lattice volume of 163 × 8, with

Ls = 32. Table I shows the different values of β that we chose, as well as the total number

of molecular dynamics trajectories generated for each β. In the immediate vicinity of the

transition, we have approximately 2000 − 3000 trajectories, with fewer trajectories as we

move further away from the critical gauge coupling, βc.

We use the rational hybrid Monte Carlo (RHMC) algorithm [15, 16] to generate the

dynamical field configurations. An Omelyan integrator [17, 18] with λ = 0.22 was used to

numerically integrate the molecular dynamics trajectory. A three-level integration scheme

was used, where the force from the gauge fields was integrated with the finest time-step.

The ratio of the determinant of three flavors of strange quark to the determinant of three

flavors of Pauli-Villars bosons was included at the intermediate time-step, while the ratio of

the determinant of the two light quarks and the determinant of two strange pseudoquarks

was integrated with the largest step-size. The molecular dynamics trajectories were of unit

length (τ = 1), with a largest step size of δτ = 0.2 or δτ = 0.167. This allowed us to achieve

an acceptance rate of approximately 75%. Table I summarizes the parameters that we have

used for the finite temperature ensembles, as well as important characteristics of the RHMC

evolution. Figure 1 shows the time history for ∆H at a few selected gauge couplings.

We also generated 1200 trajectories at β = 2.025 with a volume of 163 × 32 and Ls = 32,
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β 1.95 1.975 2.00 2.0125 2.025 2.0375 2.05 2.0625 2.08 2.11 2.14

Trajectories 745 1100 1275 2150 2210 2690 3015 2105 1655 440 490

Acceptance Rate 0.778 0.769 0.760 0.776 0.745 0.746 0.754 0.753 0.852 0.875 0.859
√

〈∆H2〉 0.603 0.583 0.647 0.687 0.824 1.072 1.248 1.599 0.478 0.472 0.345

〈exp(−∆H)〉 1.026 1.022 0.969 1.017 0.987 0.995 0.987 1.051 1.002 1.010 0.9979

TABLE I: Values for β, numbers of trajectories accumulated, results for the rms shift in the RHMC

Hamiltonian and the average exponentiated Hamiltonian shift (which should be unity). All runs

were carried out with a trajectory length of 1 and an outer step size of 0.2 except for the case of

β = 2.08 where δτ = 0.167 was used.

also with ml = 0.003 and ms = 0.037. We used these zero temperature configurations to

determine the meson spectrum, as well as the static quark potential.

III. FINITE TEMPERATURE OBSERVABLES

For QCD with massless quarks, there is a true phase transition from a low-temperature

phase with spontaneous chiral symmetry breaking to a high temperature phase where chiral

symmetry is restored. If the quarks have a finite mass (mf ), that explicitly breaks chiral

symmetry, the existence of a chiral phase transition persists for masses up to a critical

quark mass, mf < mcrit
f , above which the theory undergoes a smooth crossover rather

than a singular phase transition as the temperature is varied. The value of mcrit
f is poorly

known and depends sensitively on the number of light quark flavors. For a transition region

dominated by two light quark flavors mcrit
f is expected to vanish and the transition to be

second order only for massless quarks. For three or more light flavors a first order region

0 ≤ mf < mcrit
f should be present.

A. Chiral condensate

The order parameter that best describes the chiral phase transition is the chiral conden-

sate, 〈ψqψq〉, which vanishes in the symmetric phase, but attains a non-zero expectation

value in the chirally broken phase. For quark masses above mcrit
f , the chiral condensate
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will show only analytic behavior, but both the light and strange quark chiral condensates,

〈ψlψl〉, 〈ψsψs〉, and the disconnected part of their chiral susceptibilities, χl, χs, still contain

information about the chiral properties of the theory in the vicinity of the crossover tran-

sition. The chiral condensate and the disconnected chiral susceptibility for a single quark

flavor are defined as:

〈ψqψq〉
T 3

=
1

V T 2

∂ lnZ

∂mq

=
N2

t

N3
s

〈TrM−1
q 〉 (1)

χq

T 2
=

1

V T
〈
(

TrM−1
q

)2 − 〈TrM−1
q 〉2〉 = V T 3〈

(

ψqψq

)2 − 〈ψqψq〉2〉 (2)

where mq is the mass of the single quark q being examined, T the temperature, V the spatial

volume and Nt and Ns are the number of lattice sites in the temporal and spatial directions,

respectively.

On our finite temperature ensembles, we calculate both the light (ml = 0.003) and strange

(ms = 0.037) chiral condensates using 5 stochastic sources to estimate 〈ψqψq〉 on every fifth

trajectory. Using multiple stochastic sources on a given configuration allows us to extract

an unbiased estimate of the fluctuations in ψqψq and to calculate the disconnected chiral

susceptibility. The Polyakov loop is calculated after every trajectory.

Figures 2 and 3 show the chiral condensate and the disconnected part of the chiral

susceptibility, respectively. Examining the light and strange quark chiral condensates, it is

difficult to precisely determine an inflection point. Such an inflection point could be used

to locate the mid-point of a thermal crossover. We can also study the disconnected chiral

susceptibility. This is computed from the fluctuations in the chiral condensate and will show

a peak near the location of the inflection point of the chiral condensate. Examining the time

history of ψlψl shown in Fig. 4, one can see that the fluctuations have a strong β dependence.

We will identify the peak in these fluctuations with the location of the chiral crossover. The

chiral susceptibility shown in Fig. 3, has a clear peak near β = 2.0375.

At finite quark mass the chiral condensate contains an unphysical, quadratically diver-

gent, additive contribution coming from eigenvectors of the Dirac operator with eigenvalue

λ ∼ 1/a. These perturbative ∝ mf/a
2 terms will show no finite temperature effects and ob-

scure the physically important contribution from vacuum chiral symmetry breaking. Since

these terms enter both the light and strange condensates 〈ψlψl〉 and 〈ψsψs〉 in the same way

it is appealing to remove this unphysical portion of 〈ψlψl〉 by subtracting (ml/ms)〈ψsψs〉
from it [19]. This should effectively remove the ml/a

2 term from 〈ψlψl〉 while having little
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effect on the contribution from vacuum chiral symmetry breaking. The result for such a

subtracted light chiral condensate is shown in Fig. 5.

The exact form for this subtraction is complicated for domain wall fermions by the

presence of residual chiral symmetry breaking. In particular, the factor ml/ms might be

constructed from the bare input quark masses or from the more physical combination

(ml + mres)/(ms + mres). As is discussed in Section VB, theoretical expectations and our

numerical results suggest that the short-distance, 1/a2 portion of the chiral condensate will

not show the 1/Ls behavior seen in the residual mass so this latter subtraction would not be

appropriate. Instead, 〈ψqψq〉 approaches a constant rapidly with increasing Ls and in the

limit of infinite Ls the ratio of the explicit chiral symmetry breaking parameters ml/ms is

the correct factor to use. Thus, it is this approach which is shown in Fig. 5.

B. Polyakov loop

For a pure SU(3) gauge theory, there exists a first-order deconfining phase transition.

The relevant order parameter in this case is the Polyakov loop, L, which is related to the free

energy of an isolated, static quark, Vhq: L ∼ exp(−Vhq/T ). In the confined phase, producing

an isolated quark requires infinite energy and the Polyakov loop vanishes. However, at suf-

ficiently high temperatures, the system becomes deconfined and the Polyakov loop acquires

a non-vanishing expectation value in a sufficiently large volume. The Polyakov loop and its

susceptibility are defined in terms of lattice variables as:

L =
1

3N3
s

∑

~r

Tr

(

Nt−1
∏

t=0

U0(~r, t)

)

(3)

χL = N3
s

{

〈L2〉 − 〈L〉2
}

. (4)

Figures 6 and 7 show the Polyakov loop and the Polyakov loop susceptibility. As in the

case of the chiral condensate, it is difficult to precisely locate an inflection point in the β

dependence of the Polyakov loop although the region where the Polyakov loop begins to

increase more rapidly is roughly coincident with the peak in chiral susceptibility. There is

no well-resolved peak in the data for the Polyakov loop susceptibility, so we are unable to use

this observable to locate the crossover region. We list our results for these finite temperature

quantities in Table II.

8



β 〈ψlψl〉/T 3 χl/T
2 〈ψsψs〉/T 3 χs/T

2 〈L〉 (10−3) χL

1.95 22.8(2) 6.4(17) 40.9(1) 3.5(8) 4.40(62) 0.47(4)

1.975 17.9(2) 8.2(14) 36.8(1) 4.1(7) 5.44(42) 0.58(4)

2.00 13.5(2) 9.4(27) 33.2(1) 2.7(7) 6.52(47) 0.54(5)

2.0125 11.6(2) 16.4(20) 31.6 5.7(7) 9.02(53) 0.60(2)

2.025 9.9(2) 17.8(26) 30.2(1) 4.7(6) 10.18(61) 0.59(3)

2.0375 8.2(2) 28.2(25) 28.9(1) 5.3(5) 13.61(55) 0.59(2)

2.05 6.0(2) 20.5(18) 27.4(1) 4.5(8) 16.77(71) 0.64(3)

2.0625 5.1(2) 20.7(27) 26.6(1) 4.2(5) 18.22(86) 0.70(4)

2.08 3.5(2) 11.4(20) 25.2(1) 3.0(6) 25.91(129) 0.73(5)

2.11 2.37(7) 3.7(30) 23.51(5) 0.9(2) 34.74(99) 0.57(2)

2.14 2.03(2) 0.15(2) 22.59(7) 0.6(3) 45.6(20) 0.73(4)

TABLE II: Results obtained for the light and strange quark chiral condensates and disconnected

chiral susceptibilities as well as the Polyakov loop and its susceptibility.

C. Quark Number Susceptibilities

Calculations performed with staggered and Wilson fermions at finite temperature have

shown that the analysis of thermal fluctuations of conserved charges, e.g. baryon number,

strangeness or electric charge, gives sensitive information about the deconfining features of

the QCD transition at high temperature. Charge fluctuations are small at low temperature,

rapidly rise in the transition region and approach the ideal gas Stefan-Boltzmann limit at

high temperature. These generic features are easy to understand. Charge fluctuations are

small at low temperatures as charges are carried by rather heavy hadrons, while they are

large at high temperature where the conserved charges are carried by almost massless quarks.

Charge fluctuations therefore reflect deconfining aspects of the QCD transition.

Thermal fluctuations of conserved charges can be calculated from diagonal and off-

diagonal quark number susceptibilities which are defined as second derivatives of the QCD
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partition function with respect to quark chemical potentials [20], (µu, µd, µs),

χf
2

T 2
=

2cf2
T 2

=
1

V T 3

∂2 lnZ(V, T, µu, µd, µs)

∂(µf/T )2

∣

∣

∣

∣

µf =0

=
1

V T 3

{〈

tr

(

M−1
f

d2Mf

dµ2
f

)〉

−
〈

tr

(

M−1
f

dMf

dµf

M−1
f

dMf

dµf

)

〉

+

〈

tr2

(

M−1
f

dMf

dµf

)

〉}

, f = u, d, s , (5)

χfg
11

T 2
=
cfg
11

T 2
=

1

V T 3

∂2 lnZ(V, T, µu, µd, µs)

∂µf/T ∂µg/T

∣

∣

∣

∣

µg=µf =0

=
1

V T 3

〈

tr

(

M−1
f

dMf

dµf

)

tr

(

M−1
g

dMg

dµg

)

〉

, f, g = u, d, s , f 6= g , (6)

where cf2 and cfg
11 are the second-order coefficients in a Taylor expansion of p/T 4.

In the DWF formalism the introduction of quark chemical potentials is straightfor-

ward [21–23]. It follows the same approach used in other fermion discretization schemes [24],

i.e. in the fermion determinant for quarks of flavor f the parallel transporters in forward

[backward] time direction are multiplied with exponential factors exp(µfa) [exp(−µfa)], re-

spectively [48]. Since these time direction parallel transporters couple to the fermion fields

for all locations 0 ≤ s < Ls in the fifth dimension, fermionic charge is assigned in a consis-

tent way throughout the fifth dimension. Just as in the case of the fermionic action [9, 25],

a precaution must be taken to ensure that unphysical, 5-dimensional modes do not begin

to contribute as Ls becomes large. The contribution of individual 5-dimension modes, not

bound to the s = 0 or s = Ls − 1 walls, will vanish in the continuum limit. However, for

finite lattice spacing and large Ls the number of these modes may be sufficient to distort

physical quantities. In our calculation this is avoided by adding an additional compensating

Pauli-Villars pseudo-fermion field for each quark flavor. Thus, the chemical potential µf for

each quark flavor enters the time parallel transporters for both the light quark and the cor-

responding Pauli-Villars pseudo-fermion carrying that flavor. These Pauli-Villars fields have

mf = 1 and therefore satisfy anti-periodic boundary conditions in the 5-dimension. Thus,

they contribute no “physical” 4-dimensional surface states but act to cancel any possible

bulk contributions ∝ Ls introduced by the domain wall quarks.

Introducing chemical potentials for conserved charges, e.g. baryon number (µB),

strangeness (µS) and electric charge (µQ), allows us to define susceptibilities (charge fluctu-
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ations) by taking derivatives with respect to these chemical potentials [49],

χX
2

T 2
=

2cX2
T 2

=
1

V T 3

∂2 lnZ(V, T, µB, µS, µQ)

∂(µX/T )2
|µX=0 , X = B, S, Q (7)

Expressed in terms of quark number susceptibilities, one finds,

cS2 = cs2 (8)

cB2 =
1

9

(

2cu2 + cs2 + cud
11 + 2cus

11

)

(9)

cQ2 =
1

9

(

5cu2 + cs2 − 2cud
11 − cus

11

)

(10)

Similar to the chiral susceptibility, the two derivatives appearing in Eq. 5 generate ’dis-

connected’ and ’connected’ contributions to the flavor diagonal susceptibilities. The mixed

susceptibilities defined in Eq. 6, on the other hand, only receive contributions from discon-

nected terms. As the disconnected terms are much more noisy than the connected terms,

those susceptibilities that are dominated by contributions from the latter are generally eas-

ier to calculate. This makes the electric charge susceptibility and the isospin susceptibility,

cI2 =
(

2cu2 − cud
11

)

/4, most suitable for our current, exploratory analysis with domain wall

fermions.

Computing the susceptibilities involves measuring traces of operators. We used stochastic

estimators with 100-200 random vectors per configuration. Our measurements are summa-

rized in Table III. Some of the results presented here have been shown previously [26].

In Fig. 8, we show our results for the diagonal, light and strange quark number, sus-

ceptibilities cu2 and cs2, respectively. We see that these susceptibilities do transit from a

low value to a high one as β increases. However, given the current statistical accuracy of

our calculation, it is difficult to assign any definite value of β around which the transition

takes place. To a large extent the fluctuations observed in the data arise from contributions

of off-diagonal susceptibilities, cfg
11 , with f ≡ g. In fact, with our current limited statistics

these susceptibilities vanish within errors and therefore only contribute noise to the diagonal

susceptibilities.

The disconnected parts however, either completely or partially cancel out in the two

susceptibilities cI2 and cQ2 . As a result, one obtains much better results for these quantities,

as seen in Fig. 9.

We have tried to determine the inflection point for the electric charge and isospin sus-

ceptibilities, which may serve as an estimate for the transition point, although the slope of
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β measurements separation random vectors cu2 cs2 cI2 cQ2

1.95 73 10 200 0.08(11) 0.01(5) 0.046(8) 0.060(10)

1.975 61 10 200 0.03(10) 0.03(7) 0.070(8) 0.085(10)

2.0125 125 10 150 0.22(6) 0.16(2) 0.119(7) 0.148(10)

2.025 71 20 150 0.30(5) 0.19(3) 0.141(6) 0.176(8)

2.0375 96 20 150 0.30(6) 0.16(2) 0.160(6) 0.205(8)

2.05 81 25 150 0.38(5) 0.25(4) 0.191(9) 0.243(11)

2.0625 111 10 150 0.32(6) 0.24(4) 0.200(9) 0.252(10)

2.11 35 10 100 0.51(6) 0.44(5) 0.233(11) 0.303(14)

2.14 40 10 100 0.51(3) 0.43(2) 0.256(4) 0.333(5)

TABLE III: Details of the calculation of quark number susceptibilities. The column labeled ”mea-

surements” gives the number of measurements that were performed. That labeled ”separation”

gives the number of time units between those measurements while the ”random vectors” column

gives the number of random vectors used in each measurement.

these observables also receives contributions from the regular part of the free energy. We

have fit the data using two different fit ansätze,

fI(β) = A tanh(B(β − β0)) + C ,

fII(β) = A3 +B3β + C3β
2 +D3β

3 . (11)

To estimate systematic errors in the fits we performed fits for the entire data set as well as

in limited ranges by leaving out one or two data points at the lower as well as upper edge

of the β-range covered by our data sample. From this we find inflection points in the range

2.024 ≤ β0 ≤ 2.037 for cI2 and 2.024 ≤ β0 ≤ 2.034 for cQ2 . Summarizing this analysis we

therefore conclude that the inflection points in the electric charge and isospin susceptibilities

coincide within statistical errors and are given by β0 = 2.030(7). This is in good agreement

with the determination of a pseudo-critical coupling obtained from the location of peak in

the chiral susceptibility, β = 2.0375, found in Section IIIA.
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IV. ZERO TEMPERATURE OBSERVABLES

In this section we present the results for physical quantities at zero temperature computed

on a 163 × 32 lattice for β = 2.025 which, as Fig. 3 suggests, lies in the lower temperature

part of the Nt = 8 transition region.

A. Static quark potential

To determine the lattice scale, we measured the static quark-anti-quark correlation func-

tion, W (r, t), on 148 configurations (every 5 MD trajectories from 300-1035) on these zero

temperature configurations. The quantity W (r, t) is the product of two spatially separated

sequences of temporal gauge links connecting spatial hyperplanes, each containing links that

have been fixed to Coulomb gauge [12, 27]:

W (r, t) =
1

Npairs(r)

∑

|~r1−~r2|=r

tr
{

U0(~r1, 0)U0(~r1, 1) . . . U0(~r1, t− 1) (12)

·U †
0(~r2, t− 1) . . . U †

0(~r2, 1)U †
0(~r2, 0)

}

,

where Npairs(r) is the number of pairs of lattice points with a given spatial separation r. In

our calculation the results obtained from orienting the “time” axis along each of the four

possible directions are also averaged together. The time dependence of W (r, t) was then fit

to an exponential form in order to extract the static quark potential V (r):

W (r, t) = c(r) exp (−V (r)t) . (13)

The potential V (r) was subsequently fit to the Cornell form, and used to determine the

Sommer parameter r0, as defined below:

V (r) = −α
r

+ σr + V0 (14)
(

r2dV (r)

dr

)

r=r0

= 1.65 . (15)

Table IV gives the details of the fit which determines the parameters α and σ of Eq. 14 and

results in a value of r0/a = 3.08(9). For the physical value of r0, we use the current standard

result r0 = 0.469(7) fm [28]. This gives a lattice spacing a ≈ 0.15 fm, or a−1 ≈ 1.3 GeV.

It should be emphasized that this value for r0 has been determined for a single light quark
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β r0/a a−1 (GeV) t fit range r fit range χ2/dof.

2.025 3.08(9) 1.30(4) (4, 9) (
√

3, 6) 1.03

TABLE IV: Results for r0. The errors are calculated by the jackknife method, with data binned

into blocks, each containing 10 molecular dynamics time units.

mass and no extrapolation to the physical value of the light quark mass has been performed.

This failure to extrapolate to a physical value for the light quark mass is likely to result in

an overestimate of the lattice spacing a by about 3%.

B. Meson mass spectrum

In addition to the static quark potential, we also calculated the meson spectrum on the

same zero temperature ensemble at β = 2.025. The meson spectrum was determined using

55 configurations, separated by 10 MD time units, from 500 and 1040. Table V gives the

results for mρ and mπ for three different valence mass combinations, as well as their values

in the chiral limit from linear extrapolation. Equating the physical value of mρ = 776 MeV

with the chirally extrapolated lattice value gives a lattice scale of a−1 = 1.26(11) GeV,

which is consistent with the scale determined from r0. Examining the data for the light

pseudoscalar meson, we find mπ ≈ 308 MeV, somewhat larger than twice the mass of the

physical pion. For the kaon, we have mK ≈ 496 MeV, very close to the physical kaon mass.

mval
x mval

y mavg fit range mρa χ2/dof mπa χ2/dof

0.003 0.003 0.0030 8-16 0.646(63) 0.3(4) 0.2373(20) 2.4(11)

0.003 0.037 0.0200 8-16 0.716(23) 0.8(7) 0.3815(15) 2.0(10)

0.037 0.037 0.0370 8-16 0.776(10) 2.2(11) 0.4846(11) 1.2(8)

−mres 0.617(56) 0.073(6)

TABLE V: The calculated masses mρ and mπ for various combinations of valence quark mass. The

last line represents extrapolation of the light quark mass to mavg = (mx +my)/2 = −mres.
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V. RESIDUAL CHIRAL SYMMETRY BREAKING

We now examine the central question in such a coarse-lattice calculation using domain

wall fermions: the size and character of the residual chiral symmetry breaking effects. We

examine the residual mass computed at finite temperature, its Ls dependence and the de-

pendence of the chiral condensate on Ls. In both cases we examine the value of Ls = 32 used

for the dynamical quarks as well as ”non-unitary”, valence values of Ls varying between 8

and 128.

A. Residual Mass

One of the primary difficulties with the calculation presented here is the rather large

residual chiral symmetry breaking at the parameters that we employ. This manifests itself

in a value for the residual mass, mres which is larger than the input light quark mass,

mud = 0.003 over almost the entire temperature range of our calculation.

For the Iwasaki gauge action, the residual chiral symmetry breaking has been extensively

studied by the RBC-UKQCD collaboration for β ≥ 2.13 and Ls = 16 [10, 11, 13, 14].

However, the lattice ensembles that we use here are significantly coarser, resulting in larger

residual chiral symmetry breaking, even for our increased value of Ls = 32.

β mres (mf = 0.003) mres (mf = 0.037)

1.95 0.0253(5) 0.0244(5)

2.00 0.0105(3) 0.0095(2)

2.025 0.0069(3) 0.0059(3)

2.05 0.0046(5) 0.0034(2)

2.08 0.0023(5) 0.0016(2)

2.11 0.0011(2) 0.0009(1)

2.14 0.0010(4) 0.0006(2)

TABLE VI: The residual mass as a function of β computed on the finite temperature, 163 × 8

lattice volume.

Table VI shows our results for mres on several of the 163×8 finite temperature ensembles.

We follow the standard method, described for example in Ref. [10], determining the residual
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mval mres fit range

0.003 0.006647(84) 8-16

0.020 0.006227(74) 8-16

0.037 0.005835(71) 8-16

0.000 0.006713(85)

TABLE VII: The residual mass as a function of valence quark mass computed on the zero temper-

ature, 163 × 32 lattice volume with β = 2.025, with the extrapolated mval → 0 value.

Ls mres (mf = 0.003) mres (mf = 0.037)

8 0.0529(9) 0.0508(7)

16 0.0235(5) 0.0220(4)

32 0.0105(3) 0.0095(2)

64 0.0048(3) 0.0044(3)

128 0.0024(2) 0.0025(2)

TABLE VIII: The residual mass as a function of the valence Ls computed on a 163 × 8 lattice

volume with β = 2.00.

mass by computing the ratio of the midpoint correlator to the pion correlator evaluated at

source-sink separations sufficiently large to suppress short-distance lattice artifacts. This is

most easily done on these finite temperature lattices by choosing the source-sink separation

to lie in a spatial rather than temporal direction.

Table VII gives mres on the 163 × 32 ensemble at β = 2.025 where the correlators are

measured in the temporal direction. It is important to observe that the values of mres deter-

mined at β = 2.025 at finite and zero temperature, 0.0069(5) and 0.006647(84) respectively,

are consistent. This is an important check on the domain wall method since mres should be a

temperature-independent constant representing the leading long-distance effects of residual

chiral symmetry breaking.

Table VIII shows results for mres evaluated at different values for the valence Ls at

β = 2.00. The expected behavior of mres as a function of Ls is given by [14]:

mres(Ls) =
c1
Ls

exp(−λcLs) +
c2
Ls

. (16)
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Here the exponential term comes from extended states with eigenvalues near the mobility

edge, λc, while the 1/Ls piece reflects the presence of localized modes with small eigenvalues

and is proportional to the density of such small eigenvalues at λ = 0 [14, 29–31]. This

formula describes our data very well as can be seen from Fig. 10 where both the data

presented in Table VII and the resulting fit to Eq. 16 are shown. The proportionality of mres

to 1/Ls shown in Table VIII for Ls ≥ 32 indicates that our choice of Ls = 32 has effectively

suppressed the exponential term in Eq. 16 but that a large contribution remains from the

significant density of near-zero eigenvalues on our relatively coarse lattice.

Since we have chosen the input light quark mass ml = 0.003 to be fixed for the different

values of β, the strong dependence of mres on β shown in Table VI means that the total light

quark mass, mq = ml +mres, changes significantly in the crossover region, from mq ≈ 0.0075

at β = 2.05 increasing to mq ≈ 0.013 at β = 2.00. This substantial increase may significantly

affect the quantities whose temperature dependence we are trying to determine.

B. Chiral condensate and susceptibility at varying Ls

The change in the total quark mass as we vary β is expected to cause a distortion

of the chiral susceptibility curve that we use to locate the crossover transition. In order to

understand how this varying mass affects our results, we have computed the chiral condensate

and its susceptibility with different choices for the valence Ls and valence ml at several values

of β.

In one set of measurements, we increased Ls from 32 to 64, while keeping the input quark

masses fixed at ml = 0.003 and ms = 0.037. This has the result of reducing the total light

and strange quark masses, as the residual masses are reduced by approximately a factor of

two. In another set of measurements, we increased Ls to 96 but adjusted the input quark

masses to compensate for the reduced residual mass so that the total light and strange quark

masses, ml +mres and ms +mres respectively, matched those in the Ls = 32 calculation for

each value of beta. Finally, for one value of the gauge coupling, β = 2.0375, we used several

choices of valence Ls (8, 16, 24, 48) at fixed input quark mass (ml, ms) = (0.003, 0.037) in

order to examine the Ls dependence of our observables at fixed β. Table IX gives the results

of these measurements. Figures 2 and 3 show the results with the valence Ls = 64 and

Ls = 96 in context with the Ls = 32 results.
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Ls β ml 〈ψlψl〉/T 3 χl/T
2 ms 〈ψsψs〉/T 3 χs/T

2

8 2.0375 0.003 26.6(1) 7.2(8) 0.037 45.5(1) 4.3(5)

16 10.8(1) 12.4(1) 31.1(1) 4.4(5)

24 8.6(1) 17.8(2) 29.4(1) 4.6(6)

48 7.8(2) 33.2(5) 28.5(1) 5.0(8)

64 2.0125 0.003 11.2(2) 32.3(3) 0.037 31.0(1) 6.5(6)

2.025 9.7(1) 32.6(4) 29.7(1) 5.1(8)

2.0375 8.0(2) 46.2(8) 28.4(1) 4.9(7)

2.05 5.9(2) 39.0(4) 27.1(1) 5.3(7)

96 2.00 0.0078 17.0(4) 13.6(36) 0.0418 36.4(2) 1.9(11)

2.0375 0.0063 9.8(1) 24.8(26) 0.0403 30.4(1) 4.9(6)

2.05 0.0070 8.4(1) 20.2(23) 0.0410 29.4(1) 4.1(6)

TABLE IX: Results for 〈ψqψq〉 and the corresponding disconnected susceptibility in which some of

the values for Ls and ml, assigned to the quark loop present in the ψqψq observable, differ from

those that appear in the quark determinant.

From Fig. 2, we see that increasing Ls from 32 to 64 while keeping the input quark masses

fixed does not have much effect on the chiral condensate for each β at which we measure. On

the other hand, using Ls = 96 and larger input quark masses causes a noticeable increase

in the chiral condensate. A closely related phenomenon can be found in Fig. 11 which

shows the dependence of 〈ψqψq〉 on Ls at the single value of β = 2.0375. For small values

of Ls, there is a strong Ls dependence, but the chiral condensate quickly plateaus to an

approximately constant value for Ls > 32, even though mres and thus the total light quark

mass is still changing significantly as Ls increases above 32.

This contrast between the Ls dependence of 〈ψqψq〉 and mres can be made more precise if

we attempt to fit the Ls dependence of 〈ψqψq〉 by a single exponential, omitting the power

law piece that is important in mres(Ls):

〈ψqψq〉(Ls) =
a

Ls

exp(−bLs) + c. (17)

This fit describes the data very well, giving χ2/dof = 0.4, in strong contrast tomres(Ls) where

the c2/Ls term in Eq. 16 is required to fit the data. Thus, it appears that the contribution
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of the localized modes, responsible for the c2/Ls term in Eq. 16, is much less important for

the chiral condensate than for the residual mass.

In fact, this is to be expected. The localized states are rather special. They are associated

with the near zero modes of the 4-D Wilson Dirac operator evaluated at a mass equal to the

domain wall height, −M5. They are non-perturbative and appear when topology changes.

They are thus related to continuum physics and are limited in number. In contrast, the

extended states which give the exponential term exp(−λcLs)/Ls can be seen in perturbation

theory, correspond to large, O(1/a) eigenvalues of D4D
W (−M5) and are far more numerous

with a density given by four-dimensional free-field phase space at the λ ∼ 1/a scale. Since the

perturbative contribution to the dimension-one residual mass behaves as 1/a while that to

the dimension-three chiral condensate as 1/a3, it is to be expected that the non-perturbative,

localized states will play a much larger role in the former.

If we accept that the Ls behavior of the chiral condensate differs in this way from that of

the residual mass, then the behavior of the chiral condensate shown in Fig. 2 becomes easy

to understand. In contrast to the total quark mass mf + mres which depends significantly

on both the input bare mass mf and on Ls through mres, the chiral condensate is expected

to depend only on the input bare mass mf . In fact this dependence is quite strong with the

familiar form mf/a
2. Thus, when we keep mf fixed and simply increase Ls from 32 to 64

we should expect little change in 〈ψqψq〉 as is shown in Fig. 2. However, for the second set

of points where Ls is increased to 96 and mf is also increased to keep mf = mres fixed, the

increase in the bare input quark mass mf produces a significant increase in 〈ψqψq〉.
As will become clear below, the above discussion of the chiral condensate is approximate,

focusing on the dominant explicit chiral symmetry breaking term mf/a
2 coming from the

input quark mass and a residual chiral symmetry breaking piece expected to behave as

exp(−λcLs)/a
3. The more interesting, physical contribution to the chiral condensate which

arises from vacuum symmetry breaking and is described, for example, by the Banks-Casher

formula, will depend on the physical quark mass, mf + mres. Such dependence on mres

will necessarily introduce a 1/Ls dependence on Ls, not seen in the results described in the

paragraph above. This is to be expected because the much larger mf/a
2 and exp(−λcLs)/a

3

terms do not show this behavior.

In contrast to the chiral condensate, the disconnected part of the chiral susceptibility is

more physical and grows with decreasing quark mass. It is dominated by the large fluc-
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tuations present in the long-distance modes. The large mf/a
2 and exp(−λcLs)/a

3 which

dominate the averaged 〈ψqψq〉 fluctuate less because of the large number of short distance

modes and hence contribute relatively little to the fluctuations in the quantity ψqψq. This

behavior should be contrasted to that of the connected chiral susceptibility which is again

dominated by short-distance modes and hence of less interest and not considered here.

Thus, for small quark mass and β ≈ βc we expect that the disconnected chiral suscep-

tibility will depend on the total effective quark mass, mq = ml + mres, that enters into

the low energy QCD Lagrangian. Figure 12 shows the disconnected chiral susceptibility at

β = 2.0375 as a function of the valence Ls. The chiral susceptibility does not plateau as

Ls grows. Rather, it increases as the total quark mass mq = ml + mres is decreased as we

move to larger Ls. The fact that the chiral susceptibility depends only on the total quark

mass can also be seen in the measurements at Ls = 96, where the input quark masses are

adjusted to keep the total quark mass fixed. As we can see in Fig. 3, the chiral susceptibility

at Ls = 96 is roughly the same as at Ls = 32, even though the relative sizes of the input

quark masses and the residual mass has changed dramatically. This behavior provides a

reassuring consistency check on the DWF approach: even at finite temperature the light

fermion modes carry the expected quark mass, mq = ml +mres.

VI. LOCATING Tc

We will now attempt to combine our finite and zero temperature results to determine

the pseudo-critical temperature, Tc. As discussed in Section III and shown in Fig. 3, the

chiral susceptibility shows a clear peak whose location gives a value for βc. The result for

βc is consistent with the region of rapid increase in the Polyakov loop and quark number

susceptibilities seen in Figs. 6 and 9. Even though βc is fairly well resolved, there are still

significant uncertainties in extracting a physical value of Tc from our calculation. The most

important issues are:

• The distortion in the dependence of the chiral susceptibility on β induced by the

variation of mres with β.

• The uncertainty in determining the lattice scale at the peak location near βc = 2.0375

from our calculation of r0/a at β = 2.025, performed with light quarks considerably
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more massive than that those found in nature.

• The absence of chiral and continuum extrapolations.

We address each of these sources of uncertainty in turn.

A. Correcting for mres(β)

In Section III, we observed that the chiral susceptibility has a peak near β = 2.0375,

which we can identify as the center of the transition region. However, the total light quark

mass mq = ml +mres is different for each value of β because of the changing residual mass

mres(β). This changing quark mass distorts the shape of the chiral susceptibility curve,

shifting the location of its peak from what would be seen were we to have held the quark

mass mq = ml +mres fixed as β was varied.

Gaussian Lorentz

α βc χ2/dof βc χ2/dof

0 2.041(2) 1.7 2.041(2) 2.3

1/2 2.036(3) 1.7 2.035(3) 1.7

1 2.030(3) 1.7 2.030(3) 1.8

3/2 2.024(5) 1.8 2.026(3) 2.0

TABLE X: The corrected peak location (βc) in the light chiral susceptibility determined from fits

to Lorentzian and Gaussian peak shapes resulting from different assumptions for the light quark

mass dependence of χl: χl/T
2 ∼ 1/(ml + mres)

α). All fits include the 7 data points nearest the

peak location, i.e. β ∈ [2.00, 2.08].

In order to correct for this effect, we must account for the quark mass dependence of

the chiral susceptibility. Our valence measurements at Ls = 64 and Ls = 96 indicate that

the chiral susceptibility is inversely related to the quark mass and depends only on the

combination mq = ml + mres. Figure 13 shows the resulting chiral susceptibility, when one

corrects for the known β dependence of mres(β) by assuming a power-law dependence of

χl ∝ 1/mα
q on the quark mass for various choices of the power α ranging between α = 0 and

α = 3/2.
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While for T ≤ Tc and in the limit of small quark mass the chiral susceptibility is expected

to behave as ∝ 1/
√
mq [32–36] corresponding to α = 1/2, our data from the Ls = 64

valence measurements suggest α ∼ 1.2 − 1.8, albeit with rather large uncertainty. While

α > 0.5 is inconsistent with the expected chiral behavior, we conservatively include such

larger exponents as a possible behavior over our limited range of non-zero quark mass.

Adjusting the chiral susceptibility curve in this manner enhances the chiral susceptibility at

stronger coupling, as mres(β) is larger on the coarser lattices. This causes a systematic shift

in the peak location to stronger coupling when this correction is made.

While a cursory examination of Fig. 13 suggests that this correction does not change the

peak structure, more careful study reveals that for the extreme α = 1.5 case the peak may

have disappeared if the two lowest β values with large errors are taken seriously. We view

this possibility as unlikely but not absolutely ruled out.

Table X gives the results of fitting the peak region to Lorentzian and Gaussian peak shapes

for various α. If we make no adjustment to the raw data (α = 0), we obtain βc = 2.041(2).

However, with α = 3/2, we have βc = 2.024(5) with the Gaussian fit. While α = 3/2 seems

to be favored by our valence measurements, we would like to emphasize that the quark

mass dependence of the chiral susceptibility has large uncertainties. In particular, since we

performed valence measurements at only three values of β, it is unclear if this α ≈ 3/2

behavior holds over a broader range in β. Also, we do not know whether the same mass

dependence will persist if both the valence and dynamical quark masses are varied.

It should be recognized that if χl ∝ 1/mα
q behavior for T ≤ Tc persists in the limit of

vanishing mq the peak structure suggested by Fig. 13 may take on the appearance of a

shoulder as the χl grows for T < Tc. Such a singular behavior at small quark mass, for

example the α = 1/2 case suggested by chiral symmetry, would make χl a poor observable

to locate the finite temperature transition [37]. Although our data shows an easily identified

peak, unclouded by a large 1/
√
mq term for T ≤ Tc, it is possible that such behavior may

substantially distort the chiral susceptibility as the light quark mass is decreased from that

studied here to its physical value.

With these caveats in mind, we estimate the pseudo-critical coupling to be βc = 2.03(1).

The central value corresponds to the peak location if we assume a quark mass dependence

of χl ∼ 1/(mq +mres). The quoted error reflects the uncertainty in the mass dependence of

χl, and is chosen to encompass the range of values for βc shown in Table X.

22



B. Extracting the lattice scale at βc

This value of βc differs from that of our zero-temperature ensemble (β = 2.025) where

we have measured the Sommer parameter, r0/a. Thus, in order to determine the lattice

scale at βc, we need to know the dependence of r0/a on β. Fortunately, in addition to our

measurements at β = 2.025, r0/a has been extensively measured at β = 2.13 [27].

At β = 2.13, the value of r0/a at the quark mass corresponding most closely to the current

calculation is r0/a = 3.997(22). Extrapolation to the chiral limit gives r0/a = 4.113(31) for

β = 2.13, an approximately 3% increase. A study of finite volume effects in Ref. [27] suggests

that, in addition, the value computed on a 163×32 lattice is too low by approximately 1−2%.

To obtain r0/a at βc, we use an exponential interpolation in β, giving r0/a = 3.12(13),

which includes the statistical errors for r0/a and the uncertainty in βc = 2.03(1). To account

for chiral extrapolation and finite volume effects, we add 4% to this central value and also add

a 4% error in quadrature, resulting in r0/a = 3.25(18). This corresponds to Tcr0 = 0.406(23).

C. Chiral and Continuum Extrapolations

In the end, we wish to obtain a value for the pseudo-critical temperature Tc correspond-

ing to physical quark masses and in the continuum (a → 0) limit. However, our current

calculation is performed with a single value for the light quark masses, (ml/ms ≈ 0.25), and

a single value for the temporal extent (Nt = 8). Thus, we are not at present able to perform

a direct chiral or continuum extrapolation.

We can make an estimate of the shift in Tc that might be expected when the light quark

mass is reduced to its physical value by examining the dependence of Tc on the light quark

mass found in the Nt = 6, staggered fermion calculations in Ref. [2]. The quark mass

dependence of Tc found in Table IV of that paper, suggests a 3% decrease in Tc when one

goes to the limit of physical quark masses.

The effects of finite lattice spacing on our result can be estimated from the scaling errors

that have been found in recent zero temperature DWF calculations [38, 39]. Here hadronic

masses and decay constants were studied on a physical volume of side roughly 3 fm using

two different lattice spacings: 1/a = 1.73 and 2.32 GeV. The approximate 1-2% differences

seen between physically equivalent ratios in this work suggests fractional lattice spacing
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errors given by (aΛ)2 where Λ ≈ 260 − 370 MeV. If this description applies as well for the

a−1 ≈ 1.3 GeV lattice spacing being used here, we expect deviations from the continuum

limit of 4-7%.

Thus,to account for the systematic uncertainty in failing to perform chiral and continuum

extrapolations, we add a 10% systematic uncertainty to our final value for the pseudo-critical

temperature, giving Tcr0 = 0.406(23)(41). Using r0/a = 0.469(7) fm, this corresponds to

Tc = 171(10)(17) MeV. Here the first error represents the combined statistical and systematic

error in determining Tcr0 for our a−1 ≈ 1.3 GeV lattice spacing and light quark mass of

≈ 0.22 times the strange mass. The second error is an estimate of the systematic error

associated with this finite lattice spacing and unphysically large light quark mass.

VII. CONCLUSION AND OUTLOOK

We have carried out a first study of the QCD phase transition using chiral, domain wall

quarks on a finite temperature lattice with temporal extent Nt = 8. This work represents a

advance over earlier domain wall calculations [5, 40] with Nt = 4 and 6, having significantly

smaller residual chiral symmetry breaking and including important tests of the physical

interpretation of the resulting residual mass. Most significant is the comparison of the

residual mass computed at fixed β = 2.025 for both zero and finite temperature yielding

mres = 0.0069(5) and 0.006647(84) respectively. The equality of these two results suggests

that mres can indeed be interpreted as a short-distance effect which acts as a small additive

mass shift over the range of temperatures which we study.

As can be seen in Fig. 3 the chiral susceptibility shows a clear peak around βc = 2.03(1)

and suggests a critical region between 155 and 185 MeV. The peak location can be used to

estimate a pseudo-critical temperature Tcr0 = 0.406(23)(41) or Tc = 171(10)(17) MeV. The

first error represents the statistical and systematic uncertainties in determining βc and the

corresponding physical scale at our larger than physical quark mass (mπ = 308 MeV) and

non-zero lattice spacing, a−1 ≈ 1.3 GeV. The second error is our estimate of the shift that

might be expected in Tc as the quark mass is lowered to its physical value and the continuum

limit is taken.

The transition region identified from the peak in the chiral susceptibility χl shown in

Fig. 3 agrees nicely with the region of rapid rise of the Polyakov line L shown in Fig. 6 and
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the charge and isospin susceptibilities, cQ2 and cI2, shown in Fig. 9. This coincidence of the

transition region indicated by observables related to vacuum chiral symmetry breaking (χl)

and those sensitive to the effects of deconfinement (L, cQ2 and cI2) suggests that these two

phenomena are the result of a single crossover transition.

It is of considerable interest to compare this result with those obtained in two recent

large-scale studies using staggered fermions [2, 41]. Unfortunately, because of our large

uncertainties, our result is consistent with both of these conflicting determinations of Tc.

However, there are now substantial opportunities to improve on the calculation presented

here. Most important the size of residual chiral symmetry breaking must be substantially

reduced. This could be achieved directly for the calculation described here by simply in-

creasing the size of the fifth dimension. Of course, such an increase in Ls incurs significant

computational cost. Never-the-less, a study similar to that reported here is presently being

carried out by the HotQCD collaboration using Ls = 96. This will provide an improved re-

sult for the chiral susceptibility as a function of temperature, giving a new version of Fig. 3

in which the total quark mass, mf +mres, remains constant across the transition region.

More promising for large-volume domain wall fermion calculations is the use of a modi-

fied gauge action, carefully constructed to partially suppress the topological tunneling which

induces the dominant 1/Ls term in Eq. 16 [42–45]. This is accomplished by adding the ratio

of 4-dimension Wilson determinants for irrelevant, negative mass fermion degrees of free-

dom to the action. Preliminary results [45] indicate that without increasing Ls beyond 32,

this improved gauge action can reduce the residual mass in the Nt = 8 critical region by

perhaps a factor of 5 below its current value while maintaining an adequate rate of topolog-

ical tunneling. This improvement, when combined with the next generation of computers

should permit a thorough study of the QCD phase transition at a variety of quark masses,

approaching the physical value and on larger physical spatial volumes.

It is hoped that such a study of the QCD chiral transition with a fermion formulation

that respects chiral symmetry at finite lattice spacing will yield an increasingly accurate

quantitative description of and greater insight into the behavior of QCD at finite tempera-
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ture.
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FIG. 1: The time history of ∆H for selected values of β. There is a vertical offset of 4 units

between successive data sets with the lowest data set unshifted.
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FIG. 2: Unitary values for 〈ψlψl〉 and 〈ψsψs〉 (the circles and squares respectively) for Ls = 32, as

well as additional measurements with Ls = 64 and Ls = 96 for the valence quarks. For the Ls = 96

measurements, ml and ms are adjusted so that values for the sum mq + mres are approximately

the same as those for Ls = 32.
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FIG. 3: Unitary values for the disconnected chiral susceptibility as well as the results of additional

measurements with Ls = 64 and Ls = 96 for the valence quarks.
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FIG. 4: The time history of ψlψl for the light quarks. There is a vertical offset of approximately

12 units between successive data sets with the lowest set unshifted.
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FIG. 5: The subtracted light-quark chiral condensate, ∆l,s = 〈ψlψl〉−ml/ms〈ψsψs〉 as a function of

β. This subtraction removes the uninteresting ml/a
2 contribution from 〈ψlψl〉, leaving a quantity

which more accurately describes vacuum chiral symmetry breaking. This improvement is easily

seen for the larger values of β, above the transition region, where this subtracted quantity vanishes,

in contrast to the non-zero behavior seen for 〈ψlψl〉 in Fig. 2.
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FIG. 7: The Polyakov loop susceptibility plotted as a function of β.
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FIG. 8: The light and strange quark number susceptibilities cu2 and cs2 plotted as a function of β.
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FIG. 9: The susceptibilities cQ2 and cI2 plotted versus β. The lines show fits based on the hyperbolic
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of the inflection point, β0.
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FIG. 10: The residual mass mres is plotted versus Ls for β = 2.00, 163 × 8. The fit to Eq. 16 is

also shown.
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FIG. 11: Chiral condensate versus the valence Ls for β = 2.0375, on a 163 × 8 lattice volume. The

fit to Eq. 17 for ψlψl/T
3 is also shown.
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FIG. 12: Disconnected chiral susceptibility versus Ls for β = 2.0375, 163 × 8, with input quark

masses fixed to ml = 0.003 and ms = 0.037.
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FIG. 13: Light quark chiral susceptibility, where different assumptions for mass dependence are

used to adjust the data to a constant bare light quark mass (ml +mres)a = 0.0097, corresponding

to the value at β = 2.025, Ls = 32 in our simulations.
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