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ANALYSIS OF W IRE ANTENNAS IN THE PRESENCE
OF A CONDUCTING HALF SPACE: PART III -

THE BURIED ANTENNA

Abstract

‘his report extends an earlier one dealing with the

approximation (RCA) for modeling objects located near an

electrically different half spaces. We now describe the

objects on opposite sides of the interface.

reflection coefficient

interface between

procedure to handle

The method, which we denote as the transmission coefficient approximation

(TCA), is based on a ray-optics formulation and an assumed reciprocity along a

given ray path. An integral-equation, moment-method technique for wires, when

combined with the RCA-TCA, permits nodeling the response of antennas above

ground to buried objects. Similar problems of geophysical interest, as well

as those of the nmre conventional antenna interface, may also be modeled.

We present sample results to illustrate how the technique may be applied.

A comparison of results is made between the RCA-TCA and those obtained from a

rigorous treatment based on the Sommerfeld integrals to demonstrate the

validity of the approximate approach. The approximate approach offers much

greater efficiency (-50 times faster) relative to the rigorous approach.

Introduction

.6
In a two-paper sequence, Miller et al.~” analyzed vertical and hori-

zontal wire antennas located over a homogeneous, finitely conducting half

space.

tively.

theory,

for the

derived

In this report, we will refer to these papers as I and II, respec-

The authors formulated the problem using both rigorous Sommerfeld

and a plane-wave reflection-coefficient approximation (RCA) to account

interface-reflected field. In both cases, an integral equation was

and numerically solved using a nmment-method technique. The RCA

produced input impedance values within 10% of those obtained from the rigorous

theory for antennaa whose centers are at least 0.1 A above the interface.

~is finding indicated that the approximation could be exploited for many

practical applications where the accuracy of the rigorous approach is not

required.

Subsequent

The resulting computer

efforts to improve the

time savings would be in a factor ZIOO.

efficiency of the rigorous calculation have
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not been especially successful, so the ratio of the running times of the two

approaches remains -100 (Lytle and Lager).
3

This being so, and because there is growing use of buried antennas and

antennas in geophysical applications to detect subsurface objects, it seems

worthwhile to extend the RCA to the latter areas. Since at its simplest this

would involve approximating the fields transmitted across the interface in

terms of a plane-wave transmission coefficient, we will call this the

transmission-coefficient approximation (TcA). The purpose of this report is

to develop the TCA and to demonstrate its application with numerical examples.

In the first section we formulate the problem in terms of the rigorous

Sommerfeld theory and the combined RCA-TCA. The numerical treatment used to

solve the integral equations thus obtained is described in the next section.

Finally, representative numerical results are presented.

Theoretical Formulation

It was convenient in the earlier papers I and II to begin the integral-

equation development by considering first the case of an antenna located in

free space. The analysis was then extended to the case of a perfectly

conducting ground, and concluded with the 10SSY ground, using for the latter

the rigorous Sommerfeld theory and the RCA. For simplicity, only the vertical

antenna was dealt with in I and only the horizontal antenna in 11, although

the formulation for an arbitrary geometry, arbitrarily oriented antenna was

also outlined in the appendix of II.

Here we want to formulate the problem of arbitrary geometry antennas

located on opposite sides of the interface between free space and a 10SSY

ground. While we might use an approach similar to that of I and 11, first

analyzing pairs of vertical, then horizontal, etc. antennas, the generality of

the problem indicates that an alternate, more direct development would be

better suited. Therefore, we will consider first the integral equation for

two arbitrary-geometry wire antennas located in free space, and briefly out-

line the numerical treatment for its solution. Proceeding in the context of

the integral-equation format, we next examine the modifications required to

rigorously extend the integral equation for the same two antennas to the case

where they are separated by the ground-free space interface. Next, the

development of the TCA is presented and incorporated into the integral-equation

-2-



treatment. We continue by considering some special problems that arise in

connection with antennas which terminate at, or penetrate, the interface.

Finally, we conclude by generalizing the development to include an arbitrary

number of antennas located on either side of, or penetrating, the interface.

FREE SPACE

Integral equationa have become widely employed in electromagnetic in

recent years as digital computers have increased in availability and capability.

The use of integral equations to model wire-type structures numerically (where

the maximum transverae dimension is small compared with the wire length and

wavelength) has become quite commonplace. Numerous integral-equation types

and numerical treatments have been developed for the wire problem. The one we

choose to employ here is based upon a thin-wire approximation to the electric-

field integral equation (Poggio and Miller).4

h integral equation in electromagnetic is a mathematical statement of

boundary conditions of electric andjor magnetic fields in terms of integrals

over unknown sources and a specified exciting field. For two perfectly

conducting thin wires, it may be simply expressed as

-A -
E (r) = 9(;) “ EA(;) = -E1(;) = 4(;) “ ii(;); ; E c(;), (la)

Tangential Tangential

where ~A and ~* are the applied or exciting field, and induced field, respec-

tively, & is a unit tangent vector at ~, and C(i) = Cl(;) + C2(=) is the

contour of the two antennas. The induced field for the free-space case

consists of two contributions, a self term Es due to currents on that part of

c(z) on which ~ is located, and a mutual term EM due to the remainder of C(=).

It can thus be written

E1(a =“is(a + EM(=);F E cm, (lb)

where for free space

ES(;)= EsD(;)

-M -
E (r) = ~~(~),
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with #D and ~~ the direct self and mutual fields, respectively, to differen-

tiate them from reflected or transmitted field contributions, which are

considered later.

In general, the field of a current I on a given contour C(i) can be

expressed as

imp
E(;) .--/!

/
I(w’) ‘6(;,W’) dw’,

c (;)
(lC)

with

[
C(;,w’) = w’ +

3’$ 1
g = E“(;,w’w’) = i+f(;,w’),

g.g
D

= exp (-ikR)/R

(2)

where k = m Y= is the wave number for free space, a(~)

at r, and the exp (iut) time variation has been suppressed.

Green’s function for the self and mutual fields is the same

is the wire radius

Note that the

for free space.

thus indicates theBy definition then, if ~i E Ci(~), where

wire on which ~ is located, the self field is

the subscript

written

iw
EsD(;i)=* I -SD

I(w’) ~D(;i,W’) dw’ = Eii .
Ci(;)

(3a)

The mutual field becomes

J -MD
I(w’) ~“ (;i,W’) dw’ = Eij ,

Cj(;)

ilJ1l.I
?%i) = --# (3b)

where i,j = 1,2 i # j, the first subscript indicates the observation wire and

the second denotes the source wire. Here and further on, we use a

signify a source-related quantity, while observation variables are

without primes.

The numerical solution of Eq. (1) for the unknown currents is

prime to

those

achieved

using the moment method that results in replacing the integral equation by a

linear system, which can then be handled using standard matrix techniques.

-4-



This procedure involves representing a given wire contour with a piece-wise

linear approximation. on each piece or segment used to model C(;), a three-

term (constant, sine, and cosine) basis function is used for the current. k

extrapolation procedure reduces the number of unknowns associated with the

current basis to one per segment. By further employing delta-function weights

to point match the integral equation, a linear system is obtained whose order

equals the number of segments used to model the total wire contour. The method

used is known as subsectional collocation. The applied field in Eq. (1) could

be due to an incident-plane

In the latter case, the one

wave, a nearby point source, or a local generator.

of interest here, we have

where A is the length of the segment to which the generator is connected, and

@is the generator voltage. Alternate source models may also be used (Miller
5

and Deadrick).

LOSSY GROUND – SOMMERFELD APPROACH

The integral equation in Eq. (1) providea the framework to extend the

treatment to the problem where the two antennas are located on opposite sides

of an interface. Let the interface be defined by the Z = O plane in a

Cartesian coordinate system. Although we are most interested in a free-space

upper medium, for generality denote where necessary with +, and - subscripts

those quantities that are medium dependent. We can still use Eq. (l), but now

the self and mutual terms become

and

zl;i) = EMT(;i) = E:; i,j = 1,2; 1 # j

(4a)

(4b)

where ~sD and ~sR
-MT

are the direct and interface-reflected self fields, and E

is the mutual field transmitted across the interface.

-5-



Both the reflected and transmitted fields involve the Sommerfeld integrals

when written in rigorous form. Note also that a separate Green’s function can

be associated with each field term included in Eq. (4), as shown further on,

where the reflected and transmitted fields are considered in turn. The direct

self field is of course that just given for free space.

Reflected Field

The general form of the Green’s function for the field reflected from the

interface has already been indicated in II. It is convenient to write it as a

sum of the field reflected from a perfectly conducting ground (the image) and

a correction term that accounts for the finite conductivity of the ground. The

reflected self term Green’s function then becomes

C(;,w’) = ESR(;,W’) = E1(;*,W*) + &’O(;,w’),

where

-I _* * (G(r,w)= f)*++7 --+)gi,
k’ aw

gi = ‘w (+’O‘f,

(5)

41
z

R* = ; - ;*(w*)I + a2(;*),

-*
r (x’, y’, z’) =;’(x’, y’, -z’), (6)

with the source medium parameters denoted by primes, and where $* is a unit

vector in the direction of the image current. Also

~’so - [((r,w’) = 2+ )+$ (sin B’ .gsHz
k’

- Cos ~’ gsvz) + @ +$ V&)sin6q gsHs],
(

(7a)

with the superscript SO denoting the Sommerfeld correction, and where
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J
.g .2 ~ ~ ~ Jo(AP’) e-v’ Iz’+z I dl,SHS

o++

and

/

.

g = 2E’ u Jo(kP’) e+.1’[z+z’] + d~
Svz e+!d + l.l+E_

o- IJ

(7b)

(7C)

(7d)

are the Sommerfeld integrals, with the H and V subscripts indicating hori-

zontal or vertical components of the incremental current mment Idw’, and the

s and z the corresponding

h’fs a unit

function of

we have

vector on the

hertz vector component. In addition,

interface in the ~ direction,

order zero, and a’ and j3’are the direction

Jo is a Bessel

Cosfnes of Q,
. Thus ,

$
= 2 coa ~ A‘ + sin ~’(~ cos a’ +y sin a’),

and

+’ =tan-l[(y-y’)/(x-x’)], p’ = (X-X1)2+ (y-yl)z ,

where primed coordinates are source points , and unprimed coordinates are obser-

vation points. The parameters of the upper and lower media are indicated by +

and - subscripts, respectively, while those associated with the source medium

are primed, and those associated with the observation medium are unprimed.

Furthermore, note that in general

-7-



Transmitted Field

The transmitted field Green’s function contains no direct or reflected

components, and in a rigorous formulation then involvea only Sommerfeld

integrals. These are very similar to those already given for the reflected

field Sommerfeld correction terms , and take the following form:

and

where the superscript

+

[

s~+~ 1V$ sin ~’ gT
k’2 }

SHS ‘

T denotes the transmitted field component and

J (Ap’)e-@!z’l-VIZl dk
o

(8a)

(8b)

(8c)

(8d)

LOSSY GROUND – RCA AND TCA APPROACH

We again write the integral equation as given in the foregoing Sommerfeld

approach, but to explicitly indicate use of the RCA and TCA we use a circum-

flex on each field term affected by the approximation. Equation (4) is thus

written

(4a)

(4b)
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As before, we find it convenient to treat the reflected and transmitted

fields separately. Also, the direct self term remains that for free space.

Reflected Field

The Green’s function for the reflected self term can be written

where ??R is now responsible for the entire interface-reflected field. It may

be derived by noting that the RCA involves using

(9a)

where ~1 is the image field for a perfectly reflecting interface, and ~ is a

reflection coefficient matrix of the form

(9b)

The Fresnel plane-wave reflection coefficients for transverse electric

(TE) and transverse magnetic (TM) polarizations are given by ~ and ~evalu-

ated at the specular reflection point for a reflected ray connecting the

source and observation points. They have the form

‘*’-%- ‘A
% = &+u_ + E_u+

where

% = k+Cos%’

with e the angle with respect to the surface normal of the incident ray.

The unit vectors $,$ and $ are referred to the vertical (incidence) plane

containing the ray path. Now ~1 has the image Green’s function as just given:

-9-



-I -* *

[

G(r,w )=$*+

1

+V+ gi,
k’ %

which completes the

The TCA to the

Green’s function and

Em(=i) =

RCA treatment of the reflected

Transmitted Field
=MT

transmitted field E can also

field.

be forinulated
.

a transmission coefficient matrix T as

=MT -
E (ri) = ? ● ~D(~i),

and

q;,w’) = Gm(;,w’) = PG,W’),

where

qqT-
G (r,w’) = ? ● ~D(z,w’).

in terms of a

(lo)

Here ~D provides the field at some convenient point in a infinite medium having

the source-medium parameters, and ? transforms it into the transmitted field

in the observation medium at the point of interest.

The matrix ? must then account for: 1) the reflection loss of the field

across the interface; 2) the refraction of the transmitted field, which causea

an apparent shift in the source position and a consequent change in the geom-

etric spreading of a ray tube; and 3) the different wave numbers of the source

and observation medium. An approach based upon field terms varying only as

l/R and restricted for the moment to lossless media will be described.

The Lossless Medium

Consider a point source s located at (O,O,-zt) in a Cartesian coordinate

system in which the interface is the z = O plane, and a ray emitted by the

-1o-



source that intercepts the interface at an angle 13 and is transmitted through

the interface at an angle 0+, with respect to the z axis as shown in Fig. l(a).

From Snell’a Law we have

k sin O = k+ som 0+,

so that e+ can be readily obtained from the medium parameters. Furthermore,

note that

de k+ cOse+
—.
de+ k_ COSO_ ‘

a result subsequently needed.
MT

We wish now to approximate the field E+ in the direction 0+

medium, for a lower medium source in terms of the infinite medium

in the upper

field ED in

the direction O_, the interface transmission coefficients, and the ray-tube

divergence discontinuity due to refraction at the interface. The latter two

effects may be conveniently accounted for by equating ray-optics expressions

for the upper and lower medium fields at the ray intersection point with the

interface. If the field amplitude is inversely proportional to distance, and

undergoes a phase change proportional to distance measured in wavelengtha in

the medium through which it is propagating, then

LA-(R-) -ik_(R~-R-)
ED(R’) = C--- A_(R’) e

and

J A+(r_)
E;(Rj) = C+

A+(r- + R$)

(ha)

(llb)

E: and E! to their corresponding inter-

A+(r-) their respective ray-tube areas.

where for convenience we have referred

face values C+ and C-, with A-(R_) and

R; is measured from the source point and R: from the point of refraction at

the interface along the lines ~ and ~+, respectively, and represent

observation points of arbitrary location.

Note then that the geometric attenuation of the field, due to the ray-tube

spreading, is accounted for by the square-root terms in Eq. (11). The phase

change is similarly accounted for by the exponential factors. These amplitude

-11-



and phase corrections

and are written for a

previously mentioned,

Since we have

c+= T+c-

are normalized with

propagating wave in

aPPIY to other than

,

where T
i-

is the transmission coefficient

respect to the interface field value,

an infinite medium. They do not, as

l/R terms.

for the upward direction, we obtain

‘~(’~)‘JA+2(%k%;[-ik<R:-RJ+ik+R”+]● ‘+-’:(’:) ’12)

The ray-tube area for the source medium field has the form

‘in ‘-A+-) = ‘e-*d- ‘

while that for the upper

A+(r_ + R;) =

.

medium field is given by

[(R~+r_)AEl+] [(R- ain e- i-R~sin t3+)A++]

A
e+ ‘o+ ‘

where Oe+, A@+ are the angular

that the refracted ray lies in

interface as the incident ray,

@- = A$+= A$.

intervals subtended by the two tubes. Note

the same vertical plane with respect to the

so that

The ray-tube area ratios

A+(r_)

A+(r_ + R;) =

and

A- (’~)
— .
A-(’-)

can now be written as

rR- _ sin e

(R: + r_)(R_ sin e- + R; sin 0+)’
(13a)

(13b)

-12-



I 11

At the interface where R_ = R- and R+ = O, the two ray-tube projections on the

interface must be equal because of continuity of power flow. Upon expressing

the length X in Fig. 1 in terms of R- and r_, we find

R_A6 r_AO+
— .
Cose 3’

+

2
COS@+ de COS e+ k+

Cosu au
+ Cosze ‘-

Consequently,

where

M.

-i[k+R~-k-(R~-R_ )]
R*T
-+e

ED(R’) ,--

~(R-+R~ain 13+/sin6_)(R- +R~M)

COS2 O_ sinf3+

. .

Cos’e+ sine

Equation (14) then approximates the field in

trary distance R; from the point of refraction at

direction 8+ along the ray in terms of the source

(14)

the (+) medium at an arbi-

the interface in the

field in the (-) medium

evaluated at an arbitrary distance R: in the direction e_. The R: term in the

numerator normalizes E-(R’) to its value at RI, the denominator accounts for

the modified ray-tube divergence in the (+) medium, and the exponential term

corrects for the difference in phase shift in the two media.

To complete the TCA development, we require the polarization-dependent

components of T+. These are given6 by

2EU
Tv _-

Mi- ‘ c_u+ + E+u_
(15a)

(15b)

u
T 2-
E-l-= U++U_’

(15C)
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where

% = k* COS6*
=-.,

and where the E and M subscripts denote the TE and TM polarization, and the H

and V superscripts indicate the horizontal and vertical components of electric

field relative to the interface.

Upon letting

fd = [(R_ + R; sine+/ainEJ-)(R_ + R~M)]-1/2,

and

(16)

“$ { }‘exp-i [k+R$-k (R’ -R)] .---

we can write the TE(E~+), and TM(EM~’H, and ~m+’v) components of the field

transmitted to the upper medium as

The foregoing treatment has dealt with a (-) medium source and (+)

observation point. Their interchange [ace Fig. l(b)] leads to exactly

analogous equations with the result that in general

where

(17a)

(17b)

(17C)

medium

(18a)

(18b)



TV
‘+’%

T2
M&F = *7 E-u+ + E+U_ ‘

~H
‘*U*

M*T = ‘*T
2

E_u+ + E+u_ ‘

with

(18c)

(18d)

(18e)

(18f)

(18g)

(18h)
L 2

and where +- indicates upward propagation while -+ indicates downward propaga-

tion, and R; denotes a distance in the source medium relative to the source,

while R: similarly

the interface.

The preceding

denotes

results

a distance in the observation medium relative to

provide the basis for the TCA. Its relative

validity is difficult to establish and, in general, can be expected to require

numerical computations using the rigorous Sommerfeld theory as a check. There

are, however, certain relationships that can be examined analytically. One

such check is provided by comparing the foregoing findings with the asymptotic
7 8

resulta of Ban5s. It waa previously shown (Miller and Burke) that the large

argument forms of the TCA do agree with Ban6s’ asymptotic expressions. Another

‘check that can be tide is due to the reciprocity that must obtain when source

and observation points are interchanged. This requires

I ~MT
. ?+dw+ =

/

EMT
i-

“ ~ dw_ ,
-+ -

L+ L-

which for infinitesimal current momenta of unit amplitude becomes

-15-



-MT -MT A
“2=EE+-+ -+” w-” (19a)

Upon using Eq. (18) in Eq. (19) we obtain

TD D,V
E+-EE-w+@ + ~L+%- W+z + -Fw#:Hwti

D
= ‘E-+DE+W-$ + $L+ew-z + ‘#_+~w-p ,

where

(19b)

-D
iwllo

E*=7 [
exp (-ik*R~)/R;

1[
● - (O* ● Qgfi;]o (20)

is the far-field component of ED A
, and R; is a unit vector in the direction ~~.

Let ua consider in turn the three sets of currents specified by

AA
W*=P

AA

W*=Z

for which ~~ can be written, respectively,

ED
il.q.lo

E&
. — exp (-ik*R~) ,

4nR~

From (19b) we then require

YE+ exp (-ik R’)/R~ = ?E-+ exp (-ik+R$)/R~-- +

-16-

(21a)



-v TV
‘M+-sin2(3-exp (-ik_R~)/R~ = ~-+

~+ cos213_exp (-ik_R~)/R~ =~~+cos2e+exp

sin2e+ exp (-ik+R~)/R~ (21b)

(-ik+R~)/R~ . (21C)

RecaLl that in Eq. (18f) R~ is measured from the interface to the obser-

vation point, while R; is measured from the source. If R~and ~are equated

to the actual ray path distances involved, then

the

R; + R+

R:+R+R
+“

With this substitution, we find

TCA fields for the lossless case

that Eq, (21) is satisfied, showing

are indeed reciprocal as required.

that

We

next consider modifications to the preceding when the lower half space is

lossy.

The Lossy Medium

We have thus far dealt with lossless media from the TCA viewpoint. The

principal effect of a 10SSY medium upon the ray-optics type of approach

adopted here is the possibility for complex ray paths. Since the transmitted

field derivation intimately involves the ray path geometry and the angles of

incidence and refraction, it is clear that care must be exercised in applying

the approximation to the 10SSY case (if indeed it can be) in an unambiguous

and physically realistic way. Bertoni et al. 9
point.out an indeterminacy in

the ray paths that results from refraction at interfaces of 10SSY media, i.e.,

various paths appear to be equally valid for describing the transmitted fields.

Consider first the case of plane-wave incidence from an upper lossless

medium, and refraction into a lower medium. The problem is discussed from the

classical viewpoint in some detail by Stratton6
9as well as by Bertoni et al. ,

the latter by employing a sampling window having a Gaussian profile of trans-

mittance. The angle of incidence 6+ is then of course real, but O_ must now

be re-defined to be

-1 ()k+ sine+
e = tan

Re(u_) ‘

-17-
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where

and is the direction with respect to the interface normal of a line orthogonal

to planes of constant phase in the lower medium. The constant amplitude

planes, on the other hand , are parallel to the interface, since the lower

medium wave number parallel to the interface is real but complex in the normal

direction.

Suppose now that the (+) medium source is close enough to the interface

that the wavefront curvature is no longer negligible. If the plane-wave trans-

mission angle [Eq. (22)] is then used in the derivation of the ray-tube diver-

gence factor fd [which appeara in the modified transmission coefficients

Eq. (18)1, fd can now be shown to become for downward propagation

fd + f’
d-+

= [(R++R~ sin O_/sin e+)(R++R~ f/M]-1/2 ,

where

[

sin20
f= 1

1
-—(1-cosy) ,

2

k:r - k:, - k: sin2e+
Cos y = P

J(
kfr - k~i - k: sin2e+ )2 + 4k~rk~i

and k = k_r - ik-i.

For upward propagation the

‘d+- = [(R_ + R$ sin

corresponding

8+/sin f3_)(R-

so that the fdk~ in Eq. (18g) is modified for

‘diF + f~+T= [(RT+R~ sin e+/sin

result for fd is

+

a

MR~/f)]-1’2 ,

lossy medium to

(23a)

(23b)

(23c)

*1 +1 -1/2
(RT+R~M f )1 . (18g’)

-18-



less

We need, in addition, the phase correction factor f$, which

medium i.s defined by Eq. (18h) and with ~ + R+ and R; * R_

‘4*T= exp [-iR+(k& - k+)] .

for the loss-

becomes

(24)

Recall that Eq.

length, which is the

the asaumed ray trajectory and is in agreement with plane-wave theory for the

(24) is based simply upon deriving an overall phase

sum of the electrical path lengths in the two media for

lossleas case. Its extension to accommodate a lossy medium might be most

directly attempted by allowing k- to be complex. This would lead to possible

attenuation along the interface, however, which differs from the plane-wave

result where, for example, attenuation occurs only in a direction perpendicular

to the interface for (+) medium incidence.

As an alternative to Eq. (24) for the lossy case we might therefore

consider using the analogous plane-wave result, which is given by

P-

‘$*T {1= exp i Tk+R++ k-(R-* R* - k+R_ sin 13+sin 6-

R
-J(

k: - k: sin2e +) cos e-]}, (25)

making the net phaae shift along ~+ + ~- the

Eq. (25) is multiplied by the source-medium

Note that only the lower medium is allowed to be

where reciprocity is invoked,

same in either direction when

field at a distance R+ + R-.

lossy . When k_ is real, Eq. (25) reduces to Eq. (24) as required.

Equation (25) is therefore the phase correction term we employ in the TCA,

although from a numerical viewpoint, evaluation of Eq. (24) with a complex k-

is only slightly different

interest, lk-12 >> k~with

from Eq. (25) since for most ground problems of

the result that

“k = exp [-iR+(k+ - k+)].

fields for the lossy case satisfy reciprocity,

Eq. (18g’) prevents it. But

If we now ask whether the
+1

we find that the f factor in

reciprocity, the utility of the TCA must be questioned. To

fields are reciprocal, we can draw from a similar situation

approximating the surface wave fields that propagate across

-19-
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(Millington) .10 The approach was to guarantee reciprocity by expressing the

field propagation in either direction in terms of the geometric mean of the

separate direction which produced theoretical results in good agreement with

mean of the individual experiment. We employ this approach here. It does not

ensure that correct results will be obtained using the TCA, but at least it

will provide the reciprocal description of the transmitted fields required of

a physically realistic representation. The divergence factor for the lossy

case is then defined as

1/2
‘d = ‘fi+-fi-+]

(26)

for both upward and downward propagation.

SPECIAL PROBLEM AREAS

The preceding discussion has focused primarily on the fields produced by

a filamentary current source located near an interface. As such, it was

concerned, implicitly at least, with the boundary conditions such fields must

satisfy both at the interface , which is reflected in the resulting Green’s

function, and on the antenna, which gives rise to the integral equation that

represents a formal solution to the problem. Before the formulation is

complete, however, consideration must also be given to what conditions peculiar

to the half-space problem must be satisfied by the antenna conduction current.

For wire antennas in free space, for example, we comnmnly assume that the

current will vanish at all open ends. However, the interface and the possi-

bility for a 10SSY medium generate circumstances where the current behavior may

not be so simply described. Several of these are considered.

Open-Ended Wire in a Lossy Medium

The conduction current at the open end of a wire located in

zero because the physical charge flow is confined to the antenna

Although some allowance may be made for the fact than an antenna

diameter end cap onto which charge can flow, so that the current

precisely zero at the physical end of the antenna’s longitudinal

effect is small

surrounding the

for a thin

antenna is

wire and can usually be neglected.

itself conductive, however, charge

-20-
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the medium and the antenna surface can occur. That which takes place along

the length of the antenna needs no explicit consideration in any current

boundary condition, but is implicitly included in the in-phase normal fields

at the antenna surface. On the other hand, a boundary condition on the current

at the antenna end is now required to provide for the charge exchange that can

occur and which thus results in a nonzero current. The need for a boundary

condition arises partially because we use a three-term current basis and

reduce the number of unknowns

junction, and end conditions.

explicitly require this.

to one per segment by using intersegment,

However, a pulse-type current basis would not

The end condition imposed on the current might be expressed in terms of

either the current or its derivative, or more generally as a relationship

between them. Consider a solid wire of radius (a) along which the total

surface current is ~(w) = I(w) $. The surface charge density Usurf is then

v ● Y(w)
o (w) = -

iu2ra “
surf

Let V . ?(w)/end be V ● ~(w) evaluated at the wire end, and let us further

assume that

o
surf ‘w)/end = ‘end,

where a end is the charge density on the flat end cap. If the flow of current

between the end cap and the medium is characterized by

3 u
end =

Enorm ,
medium

where

u
Enorm=(1~ end

>
madium

we obtain

T(w)/end = ITa2Zend

aa v “ T(w)/end
medium= -+

2iucmedium
.

-21-
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Equation (27)

condition for

medium. Note

as required.

is the condition we therefore employ as our generalized end

the current on an open-ended wire in an arbitrary, homogeneous

that Eq. (27) becomes zero when the medium conductivity vanishes,

Wire Terminated at the Interface

In this case, we must consider not only the possible effect of a 10SSY

ground on the end current, but also the influence of grounding

such as counterpoises, to which the antenna may be connected.

problem we might consider following the approach taken for the

medium, since it is based only on the parameters of the medium

structures,

For the former

homogeneous

in contact with

the antenna’s end. The behavior that would be predicted for the end current

seems plausible, since it is zero for the lossless medium, while in the limit

of perfect conductivity, Eq. (27) shows that

Lim V . ~(w)/end + O

u +m
medium

‘1’hiaresult is compatible with what is known about the current on an antenna

or scatterer connected to a perfectly conducting ground plane, for which image

theory shows the current to be an even function about the image plane.

The latter problem of the counterpoise is similar to that of the pene-

trating conductor to be discussed. The primary difference between the treat-

ments we employ is that we use an approximate approach for the counterpoise by

establishing a current end condition at the interface for the wire in the upper

medium, while ignoring current flow on the counterpoise and possible radiation

from it for the lower medium. This procedure works well for a Beverage antenna

where the counterpoise may be sfmply a metal stake implanted in the ground

against which the antenna is driven. In this instance, we have assumed that

v . T(w)/end is zero at the ground plane , and find good agreement between

calculation and measurement for moderately conducting grounds (o - 10‘3 mhos/m)

at 10 MHz), ‘his method can admittedly be highly approximate; it has been

used for expediency but with generally good results. It appears to be

applicable where the counterpoise is large enough to provide a suitable

grounding point against which an antenns can be driven, yet is also small

enough to contribute negligibly to the radiation field. In addition, results

-22-



computed for monopole antennas using this approach are actually quite

insensitive to the current end condition employed, and differ little from the

v. I(w)/ = O result for a wide range of ground parameters (Burke and

Selden).
lfnd

Wire Penetrating the Interface

‘rhisis essentially the counterpoise problem , with the added complexity

that we now attempt to more accurately relate the current behavior at the

interface to the ground parameters, and also explicitly include the fields of

the currents that flow on the buried elements of the antenna. The approach

employed is to establish a relationship between the current and charge on the

wire at the interface in a fashion analogous to Eq. (27). A rigorous solution

to this problem might be based upon the behavior of the current on an infinite

cylindrical antenna that penetrates the interface at an arbitrary angle. But

an infinite antenna acts as a single-wire transmission line that supports a

TEM field, thus suggesting that the behavior of the cylinder fields at the

interface may be similar to that of a plane wave at the same angle of

incidence. In particular then, we might be able to derive a relationship

between the current and charge at the interface from the plane-wave solution.

Consider a plane wave normally incident from the free-space (+) side of

the interface for which the incident, reflected, and transmitted magnetic

fields are

~INC
= H~e+ik+z/n+

HR
= H~Re-ik+z/q+

+ik- Z

HT = H~Te /n_ ,

where

‘+-- ‘- r-l-
R.

+~
,T=2

‘1+ - n+ + rl_

With

-23-



and of course JlNc+HR=HTatz=O.

The derivative with respect to z of the total (+) and (-) medium magnetic

fields can alao be written

$ (HINC + HR) + = H’(z = 0+) = H~ik+(l - R)/n+
Z=o

$ HT = H’(z = 0-) = H~ik T/rl = H~(ik /q )-- --
z=o-

Observe that the magnetic

derivative is not.

Since the current on

2n_
x ,— = H:+ .

‘+ ‘_ ‘-

field ia continuous across the interface, but

a wire can be expected in the general caae to

its

have

components traveling in opposite directions, we must also consider a wave

incident

The

tives on

from the (-) medium. Following the preceding we find

2rl+
H~ = H!(2 = 0+) = -HINc(ik /n )

++ ll++rl

H’ =H’(z= O-) =-H lNc(ik-/n_) ~ 2:n “
--

+-

foregoing results establish the rations of the

the two sides of the interface as

From this development we infer that an appropriate

current behavior of z = O is

1+= 1-; i.e., current continuity

-24-
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I; = [(s+/s )1 ‘; i.e., charge discontinuity..- (28b)

This result can also be derived by employing the continuity of the tangential

electric field at the interface and the relationship at the wire surface that

E
normal

= Q/z = -iuI’/s, where Q is the linear charge density. Also, the

preceding charge condition is an obvious approximation, since its use leads to

a nonzero electric field tangent to the wire at the interface.

If, on the other hand, we used the condition of charge and current conti-

nuity at the z = O interface, fields tangential to the interface would be

discontinuous, A self-consistent solution could only be obtained by using the

rigorous Sommerfeld theory, or its equivalent, to account for the field

behavior along the interface in terms of a spectrum of radial waves and a

similar expansion of z-direction waves along the wire. The charge condition

suggested here is an attempt to include interface effects upon the charge

distribution in a manner consistent with the RCA and TCA.

Equation (28) is thus the current condition we employ for a wire that

penetrates the interface at a right angle. The same approach might be

considered for a wire that intersects the interface at an oblique angle, or is

bent at the interface.

GENERALIZATION

In the preceding discussion, for conceptual simplicity we have limited

our consideration to only two antennas, so that C(=) = Cl(;) + C2(=) is the

total wire contour. A formal extension of the general procedure to more than

two antennas is readily achieved. Let us number the antennas in the (+) medium

from i=l, ....W+. and those in the (-) medium from i = W+ + 1, ....

W+ i-W-, where a wire that penetrates the interface is by convention considered

as two separate antennas. Then Eq. (4b) is more generally

-25



‘+ W++w

‘+ w++w-

+ (1 - Ui)
z

~MT+u

I
EMT

ij i ij
j=l j=W+~l

i-l, .... W++ W-. i+j (4b)

where

‘i
=l; lsisw+

o;w+<isw++ w_,

and Eq. (4a) is the same. It is thus possible to treat a collection of wire

antennaa arbitrarily positioned relative to the interface or, by the use of

wire-grid modeling, to evaluate the interaction of surface-like structures

with the interface and other structures as well.

Numerical Treatment

The general details of the numerical procedure have already been summa-

rized in the preceding sections of this report. We limit our comments here to

those aspects of the treatment associated with the special

TCA. They involve essentially two types of calculation:

the ray path, and subsequent evaluation of the transmitted

considered in turn.

requirements of the

determination of

field. Each is

RAY PATH DETERMINATION

Zhe TCA requires that the ray which joins two points located on opposite

sides of the interface be found so that the

computing the transmission coefficients and

-26-
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location relative to the source segment can be evaluated. Now consider upper

and lower media locations given by ~+ and ~- , respectively, and the vertical

plane that contains them (the incidence plane), as shown in Fig. l(a). Since

we assume ray path reciprocity, then the source position vector ~’ could be

either r+ or r .

Then let
2

P = [(x+- x_)
2 1/2

+ (Y+ - Y-) 1 ,

which also equals

p=~ _tan9+z+tan 9+.

But from Eq. (22)

k+ sin e+
p=~

Re(u_)

for 8 we obtain

sin e
+

+z+~
+

= sin 0+

{ }‘e\ti++& “

Equation (29) provides a transcendental relationship between the unknown

angle 9+, the

through which

medium parameters, and

the ray must pass. It

iteration procedure, following which

TRANSMITTED

the coordinates ~+ and ~ of the points

can be readily solved for El+using an

e- is obtained from Eq, (22).

FIELD EVALUATION

Proceeding as outlined in the section on lossy ground – RCA and TCA

approach, we compute the field ~’ (~a) at the apparent observation point ~a in

an infinite medium having the source parameters where,

(30a)

CO.S t3+* sin @+(4 cos $ + y sin $)$ (30b)

_l Y+ - Y_
$=tan- ,

‘+ - ‘-
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Fig. 1. (a) Ray-path geometry
for points located at

oPPoaite sides of the inter-
face. The source ia located
in the lower media, the
observation point in the
upper medium. (b) Ray-path
geometry for a source in the

uPper medium and an observa-
tion point in the lower
medium.

point

,-1 ob~~rvation point

>: ~

(b)
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;’ denotes the source location , and the upper sign in Eq. (30) applies to a

(+) medium source and the lower to a (-) medium source.

The factor M in ~a accounts for the apparent displacement of the source

point with respect to the observation point. Note that

l~a-~’l < R++R_

for a source medium optically denser than the observation medium, and

conversely. This meana that a source in the denser medium appears closer to

the observer, which is consistent with our experience in viewing objects in a

water half space.

The field ~’(~a) in the source medium is

TM ~omponents relative to the incidence plane

E;(;a) = Q*[4L ● E’(;a)]

E;v(;a) = 4(2 ● E’(;a))

E;H(;a) = Q+(Q+ “ E’(za)) ,

next decomposed into ita TE and

aa

where

and

The observation medium field is now simply obtained as

from which the component tangent to the observation segment is given by
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TAN

The rotation of the electric field in the incidence plane, which results from

the change in direction of the ray upon refraction, is implicitly accounted for

by the TM transmission coefficients. Thus, the field computed at ~ has, within

the limitations of the TCA, the proper polarization and propagation direction

relative to the observation segment.

Numerical Results

The treatment described for approximating the interaction of wire objects

on opposite sides of the planar interface requires little more computing time

than for modeling the same objects in free space. Applying the rigorous

Sommerfeld theory is much more costly, so it is impractical to perform the

extensive comparisons we would prefer to establish the utility of the TCA.

The limited results presented here thus serve more to demonstrate the physical

plausibility of the approach than to thoroughly validate it. Aa further

rigorous computations andlor measurements become available, the TCA can be

more completely tested.

An example of using an antenna above ground to detect the presence of a

buried wire is provided by the results of Fig. 2(a). Here we plot the change

in the input impedance of the elevated dipole antenna as it is moved over the

ground at a constant height in terms of its distance from the buried wire.

Both the wires are parallel to the ground and to each other, and are located

with their centers in the same vertical plane. Significant impedance changes

(-10%) are observed and, as expected, the effect of increasing the ground

conductivity is to reduce the influence of the buried wire. For comparison,

we show in Fig. 2(b) the percentage change in input impedance for both the TCA

approach and the rigorous Sommerfeld theory.

When the centers of the wires lie on a common vertical line and one is

rotated in a horizontal plane with respect to the other, the impedance varies

as shown in Fig. 3. The impedance excursion is maximum when the wirea are

aligned, and zero when they are orthogonal. In the latter case they are

uncoupled due to symmetry.

The possibility that such an alignment might cause a buried object to go

undetected suggests the use of a two-element ~ orthogonal array as illustrated
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Fig. 2. (a) The change
in input impedance of
an elevated dipole can
be used to detect the
presence of a buried
wire. Shown here is
the change in input
impedance of a dipole
as it passes over a
buried dipole, i/4 m
deep. (b) Effect of
buried wire on input
impedance.
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in input impedance as upper antenna is rotated in

in Fig. 4. By exciting the two antennas with voltages of equal amplitude and

adjustable phase, the effect of a rotating dipole antenna can be simulated.

Upon recording the maximum impedance change occurring as this antenna is moved

over the interface to cover an area beneath which a wire is buried at an angle

canted with respect to the array elements, we obtain Fig. 4 results. The

influence of the buried wire is clearly evidsnt, although the maximum impedance

excursions are not clearly aligned along the direction of the wire.

For our concluding example, we present in Fig. 5 the above-ground radia-

tion pattern for a buried dipole antenna as it is rotated in the vertical plane

about an axis parallel to the interface. Observe the directivity change of the

radiation pattern as the antenna is tilted from the horizontal, and the

re-establishment of a symmetric pattern as it becomes vertical.
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Fig..4. Change in input impedance abserved as a crossed dipole pair passes

over a buried wire.

Conclusion

~ia rePort presents an integral-equation technique that permits the

approximate treatment of objects that interact electromagnetically across the

interface. Included in the integral-equation formulation is a development

denoted as the transmission coefficient approximation (TCA).
This is a logical
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rig. 5. Above-ground radia-
tion patterns for a buried
antenna as it rotates in a
vertical plane.
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extension of an earlier procedure for approximating the interaction of an

object with an interface, called the reflection coefficient approximation

(RcA). The TCA involves a ray-optics approach to obtain the fields transmitted

across the interface, and assumes reciprocity of phase and amplitude along the

path joining two points on opposite sides of the interface. By including the

RCA and TCA in field contributions in the integral-equation for a wire, we can

obtain the current distributions on antennas or scatterers that interact with,

or across the interface. Thus, it is possible to analyze buried antennas,

elevated antennas as affected by buried objects, etc.

Results obtained by using the T.CAare physically plausible. Limited

comparison with results derived from the rigorous Sommerfeld theory has further

demonstrated its numerical validity. The TCA can thus provide an approximate

method applicable to a wide variety of interface problems, including subsurface

probing, performance analysis of buried antennas, etc., at little increase in

computation time over a free-space medium, and with engineering accuracy.
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