
.
*.

.

Lo UCRL- 83702 :
PREPRINT .-

.- ——

THE S-1 PROJECT:
DEVELOPINGHIGH-PE~O~ANCE DIGITALCOMPUTERS

.,

I

L. Curtis Widdoes, Jr.
I
.

t

i,

1
This paper was prepared for submittal to I ~

IEEE Computer Society I
COMPCON Spring 1980 Meeting, I

San Francisco, Calif., February 1980. ~

I
December 11, 1979 I

i

..— —
~~ lW() WEEtiS

_____..._- ..———.

‘>: c?RES Sl_OCK NO. 751 g-62633
..-

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

,
t.

.
.. -

DEVELOPING
THE S-1 PROJECT:

HIGH-PERFORMANCE DIGITAL COMPUTERS*

‘ L. Curtis Widdoes, Jr.

University of California, Lawrence Liver-more Laboratory, Livermore, CA 94550

Abstract

Under the auspices of the U.S. Navy, we are designing
and implementing a multiprocessor (the S-1) with at least
ten times the computational power of the Cray- 1. Our first
step is to develop a general-purpose uniprocessor with a
performance level comparable to the Cray- 1; the multi-
processor will then be made up of 16 of these uni-
processors, sharing a main memory. The uniprocessors can
be used together for large problems or separately for several
smaller problems. To reduce average memory-access time,
each uniprocessor has a private cache memory. We have
also developed a powerful design system (SCALD) that
supports extremely efficient structured design of digital
logic. Using advanced compiler and verification techniques,

. SCALD can complete the details of a computer design.- ...”.. starting from a high-level specification.. .

.
Introduction. .

Our S-1 Project has as its general goal the development
of advanced digital processing technology for potential ap-
plication throughout the U.S. Navy. This work involves the
design and implementation of extremely high-performance
general-purpose computers.

The basic goals of the S-1 Project may be divided into
development-oriented and research-oriented sets.

The primary development-oriented goal is to establish
methods for faster design and implementation of advanced
digital processors. Our approach to this goal includes the
development of a design system that supports structured
computer-aided logic design and the development of
automated implementation and debugging techniques.

A second development-oriented goal is to provide
prototype implementations of highly cost-effective digital

.. .. . processors against which the Navy may measure commer-
cial offerings. We approach this goal in three ways by
developing a durable and extensible uniprocessor
instruction-set architecture (the S- I Native Mode) that will
evolve in such a manner that the developing software base is
unaffected by changes in the underlying hardware, by,
designing a common underlying hardware structure for a

.’ class of cost-effective, high-performance S- I Uniproces-
sors, and by developing a multiprocessor architecture and

. implementation that allows the S-1 Uniprocessors to be
. used in a wide variety of applications, particularly those re-

1

I

!

— I

quiring very large computing rates or high operational]
reliabilities.

Our primary research-oriented goal is to invent and
evaluate in use the concepts and Ianguages necessary to sup- 1
port practical, high-level, general-purpose digitai logic i
design. A second goal is to provide a practical multi-
processor research environment, by implementing multi-
processor hardware with sufficient computing capability to
solve real problems of interest to real users. At the same
time, we intend to implement and evaluate a fundamental
new multiprocessor architecture consisting of a fully-
connected network of independent processors, each with a
private, hardware-managed cache memory. Finally, we
must invent and evaluate operating-system, language, and I
hardware constructs that will support the partitioning of ~
single large problems across multiple independent
processors.

The following sections divide discussion of the Proj- I
ect’s work toward these basic goals into three categories:
S-1 Multiprocessors, their constituent S-1 Uniprocessors,
and the S-i Design System that supports the design of these
S-i processors.

Multiprocessors I

A multiprocessor is a network of computers that con- ~
currently execute a number of independent. instruction \
streams on separate data streams while closely sharing main
memory. A multiprocessor design offers significant advan-
tages over a uniprocessor design that provides an equivalent
computation rate. The advantages result from the \
modularity inherent in a mukiprocessor architecture and ~
can be categorized as advantages of reliability, economy,
and size.

The advantage of reliability has been validated by the ~
very reliable commercial systems that handle, for example, ~
banking transactions and computer network communica- ~
tions. I In a well-designed multiprocessor system, failure of a ,
single module (for example, a component uniprocessor, a
crossbar switch, or a memory bank) does not entail failure
of the entire system. Indeed, the operating system for the
S-1 Multimocessor [called Amber) is intended to detect
such mod~le failures and automati&ily replace the function
from the available complement of reserve modules.

Advantages of economy occur during both the design!
and the construction phases. The design cost per processing
element is reduced asymptotically to zero as the processing’
element is replicated. The economy during construction is

I
*Thiswork was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Laboratory under contractNo. W-740S-

ENG-48.

1

-.

,..

1.

,
.. .

extremely important for semiconductors, since the unit ~
reification cost of very large scale integrated-circuit chips I
varies nearly inversely with the replication factor, except for \
a small additive base cost.

Another economy is the potential reduction in the time
between the design of the system and the delivery of the first:
operational unit. By replicating a relatively simple process-~
ing element many times and using a regular interconnection ~
network, this time lag can be made very small; it is virtually:
independent of the processing power of the total system. As
a result, the semiconductor technology used in a properly
designed multiprocessor can be much more up to date than
the technology used in a more complex processing struc-
ture. One additional economy results from the freedom of
the multiprocessor designer to choose the most cost-
effective uniprocessor element structure, regardless of the
processing rate of the element.

Independent of these economic advantages is the ad-
vantage of size. Regardless of whether it is economical to.

.

.. ,-...
,.

.

.

build arbitrarily powerful uniprocessors, at some point it
becomes physically impossible (with state-of-the-art ‘
technology). Multiprooxsors, however, because of their
modularity, can have larger processing rates. This advan-
tage of multiprocessor structures is important bwause max-
imal computing rates will be necessary for certain applica-
tions (numerical weather prediction with its real-time con-’
straints, for example) into the foreseeable future.

S-1 M uftinrocessors

We are developing a multiprocessor that computes at
an unprecedented aggregate rate on a wide variety of
problems. Figure 1 is an artist’s conception of the system.
The S-1 Mark 11A Multiprocessor, to be implemented with
second-generation S-1 Uniprocessors, each about as power-
ful as a Cray- 1 computer, will have a computation rate

Fig. 1. The S-1 Mark 11A Multiprocessor system as it might be assembled in a computer
center. The system includes 16 S-1 Mark 11A Uniprocessors (the beige and blue booklike
devices arranged in two rows of 8 each along the sides of the room), 16 main memory banks
(housed 4 each in the 2 blue cabinets on each side of the room near the middle of the rows of
Uniprocessors), 2 Crossbar Switches (the X-shaped devices in the middle of the room) for
transferring data between the Uniprocessors and the main memory, and peripheral equip-
ment at the far end of the room, includlng disk drives, tape drives, printers, and a control
console. The main memory shown consists of 128 million bytes but is expandable up to 16
bi Ilion bytes. The compact arrangement shown is not essential; the Uniprocessors and the
memory banks may be hundreds of feet apart.

. /

.“

/

.,

., ...

roughly ten times that of the Cray- 1.* The Cray- 1, in turn,
has a performance two to four times greater than that of the
CDC 7600 and outperforms all other existing computers in
general numerical computation work.

Logical Structure I

A typical S-1 Multiprocessor consists of 16 indepen-
dent, identical S-1 Uniprocessors. Figure 2 shows the
logical structure of the Mark 11A Multiprocessor. All 16
uniprocessors are connected to main memory through the
S-1 Crossbar Switch. Each of the 16 memory banks can
contain up to I billion bytes of semiconductor memory. In-
put and output are handled by peripheral processors (for
example, LSI- 11s); as many as eight can be attached to each
S-1 Mark 11A Uniprocessor. The Synchronization Box is a
shared bus connected to each member uniprocessor; one of
its major functions is to transmit interrupts and small data
packets from one uniprocessor to any subset of other uni-
processors in order to coordinate processing streams. Each
module in an S-1 Multiprocessor is connected to a
diagnostics-and-maintenance processor (an LSI-11) that
allows convenient remote display-oriented maintenance and
control of the multiprocessor.

All 16 S-l Uniprocessors can execute independent in-
struction streams on independent data streams. Thus, all 16
uniprocessors can cooperate in the solution of a single large
problem (for example, by means of a Monte Carl&based
algorithm, an increasingly popular and easily partitioned
approach to physical simulation). The high-bandwidth,
low-latency interprocessor communications provided by the
Crossbar Switch facilitate the partitioning of physical
simulation problems with little efficiency loss, but the 16
uniurocessors can also urocess comuletelv inde~endent
tasks, so that each S-1 Uniprocessor “migh~ servi~e a dif-
ferent set of users. Memory requests from the member uni-
processors are serviced by 16 memory banks with a
a~regate maximum capacity of 16 billion nine-bit bytes.
Any processor can uniformly access all of main memory
through the S-1 Crossbar Switch. The programmer thus
sees a huge, uniform address space, because each memory
request from each uniprocessor is decoded by hardware in
the Crossbar Switch and sent to the appropriate memory
bank. The Crossbar Switch has a maximum peak
bandwidth of more than 10 billion bits per second when all
its 16 channels are transferring data simultaneously.

Cache Memory

The design of the S-1 Multiprocessor allows compo-
nent uniprocessors and memory banks to be physically dis-
tributed over distances that are limited only by average
bandwidth requirements (which degrade linearly with in-
creasing cable length). To reduce the delays in accessing
main memory that result from long cables, Crossbar-Switch
transaction time, and relatively slow (but highly cost-
effective) memory chips, each member uniprocessor con-
tains private cache memories, These caches automatically

*Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the
U.S. Department of Energy to the exclusion of others that may be
suitable.

P-l------’l’------RYl

Peripheral’equipment Peripheral equipment i

1+
Synchronization box

Fig. 2. The logical structure of the S-1 Mark 11A Multi
processor, greatly simplified. Only the first and last of the
16 Uniprocessors, one of the two high-bandwidth Crossbar
Switches, and the first and last of the 16 main memory
banks are shown. As indicated, each of the Uniprocessors
communicates with any part of the main memory through
the Crossbar Switch. In the access pattern shown (dots at
intersections of the Crossbar-Switch grid), each of the Uni-
processors is connected to a different memory bank. When
two or more Uniprocessors request the same memory bank
the Crossbar Switch enforces queuing rules that guarantee
each contender one turn in the contested memory bank
before any other Uniprocessor has two. Private ca ch es with
very fast but expensive memory components within the
member Uniprocessors effectively hide the combined
latency of the switch and memory system.

(that is, without guidance from the programmer) retain
recently referenced data and instructions in a relatively
small amount of ultrahigh-performance memory, in the ex-
pectation that those d~ta ‘will be referenced again soon.
Whenever a reference to such a retained datum or irtstruc-
tion is made, the information is immediately delivered
directly from the cache, thus eliminating the need for a
main-memory transaction. Although a similar efficiencyI

..

. . .

. . ..
e

. ..r

.-

can be realized if main memory contains a special high-
speed area, such a design places on every programmer the
burden of managing a variety of memory systems in order
to maximize the efficiency of program execution.

The presence of caches in a multiprocessor necessarily
introduces problems of cache coherence; that is, each uni-
processor must be able to read or write data in the other
caches without any observable inconsistencies. z Without a
guarantee of cache coherence, programming of certain
problems in a cache-based multiprocessor would be incon-
ceivably difficult.

The caches of the member uniprocessors of S- 1 Multi-
processors are private in the sense that there are no special
communication paths connecting the caches of one uni-
processor with the caches of any other uniprocessoq the
cache coherence problem is therefore especially challenging.
To solve it, the S-1 Multiprocessor includes a design closely
related to one independently proposed in Ref. 2. A small
tag is associated with each 16-word line in physical memory.
This tag identifies the only member uniprocessor (if any)
that has been granted permission to retain (that is, owns)
the line with write access and all the processors that own the
line with read access. The memory controller allows multi-
ple processors to own a line with read access but responds
wit h a specia 1error flag when a request is received to grant
read or write access for any line that is already owned with
write access or to grant write access for any line that is
already owned with read access. Any uniprocessor receiving
such an access-denial response is responsible for requesting
(through a simple interrupt mechanism) that other uni-
processors flush the contested line from their private caches,
This procedure maintains cache coherence dynamically,
and hence extremely efficiently, without requiring any effort
by the programmer.

Error Detection and Correction

I

I

I

I

I

I

For reliability, all single-bit errors that occur in ~
memory transactions are automatically corrected, and all
double-bit errors are detected, regardless of whether the ‘
errors occur in the switch or in the memory system. For !
protection against single-point failures, the S-1 Multi- ~
processor allows permanent connection of multiple ~
Crossbar Switches that can be selected electronically the
S- I Multiprocessor can thus continue operating in the event
of a single-switch failure. Furthermore, the Crossbar Switch
can be configured electronically to keep a backup copy of
every datum in memory, so that failure of any memory ~
bank will not entail loss of crucial data. Each input-output
peripheral processor may be connec~ed to input-output
ports on at least two uniprocessors, so failure of a single
uniprocessor does not isolate any input-output device from
the multiprocessor system. To make maintenance easier, !
each member uniprocessor, each crossbar switch, and each
memory bank is connected to a diagnostic computer that
can probe, report, and change the internal state of all
modules that it monitor$ with very high time and logic
resolution.

S-1 Uniprocessors

We are developing a line of S- 1 Uniprocessors to serve ~
as the computational nodes in the S-1 Multiprocessor. The
first-generation S-1 Uniprocessor (Mark I) has been im-
plemented and evaluated in use, J the second-generation

4

(Mark HA) machine is under way, and future generations
(Mark III, Mark IV, and Mark V) have been planned in
varying amounts of detail. These generations of S-1 Uni-
processors vary greatly in performance because of
generation-to-generation advances in microcode, hardware
structure, and implementation technology. However, all of
them can conform to an identical instruction-set architec-
ture, thereby making software transportable from uni-
processors of any earlier generation to those of any later
one.

Instruction-set Architecture

The instruction-set architecture of a computer consists
of those principles of its operation that a programmer
without a stopwatch-is capable of observing; that is, it in-
cludes no timing information. The complete hardware and
microcode structure that executes an instruction-set
architecture is called the implementation. The implementa-
tion of the S- 1 Mark 11A Uniprocessor has been designed to
allow high-speed emulation of several existing instruction-
set architectures, including the DEC-10 and Univac AN/
UYK-7, in addition to the S-1 instruction-set architecture
(S-1’ Native Mode).

It was apparent early in the S-1 Multiprocessor design
that no existing instruction-set architecture was suitable to
serve as the S-1 Native Mode. Because then-existing
instruction-set architectures had been designed under very
different technology constraints than those expected to ap-
ply to S-1 systems, they variously suffered from addxess-
space inadequacy, insufficient operations-code space, insuf-
ficient multiprocessing-oriented features, or adverse im-
plications for high-performance implementations.

In response to this situation, we developed the S-1
Native Mode, which is probably the most widely reviewed
high-performance computer architecture ever developed.
Unlike the instruction-set architectures of previous high-
performance computers (for example, the CDC STAR-100
or the Cray-1), which were developed by a few designers
working behind corporate proprietary screens and were
then frozen, the S-1 Native Mode has been analyzed,
criticized, and revised by scores of computer scientists,
engineers, and application specialists in industry, academia,
and Government throughout the country. It has evolved
over a period of three years, during design, implementation,
and operational evaluation of the S-l Mark I Uniprocessor
prototype and during design of the S-1 Mark 11A Uni-
processor.

As a consequence of this unprecedentedly extensive
peer review, the S-1 Native Mode is well developed—it con-
tains a Iarge, consistent set of features; it is high[y exten-
sible—it can easily include new feature$ it is general pur-
pose-it contains features for compiler and operating
system efficiency as well as for arithmetic-intensive and
real-time applications; and it is carefully tuned—it
facilitates high-performance implementations of S-1 Uni-
processors and S-1 Multiprocessors.

The S-1 Native Mode allows the programmer to ad-
dress uniformly, without using base registers, 2 billion nine-
bit bytes of main memory, 288 times more memory than the
Cray-1 (although relatively low-performance machines with
large address spaces have recently appeared on the market).
Indeed, it was primarily to provide for adequate address
space that a 36-bit word length was adopted for the S-1
Native Mode.

.,

Huge memories are crucial for efficient solution of
large problems, such as three-dimensional physical simula-
tions and Monte Carlo-intensive studies, which are of great
current interest in a wide variety of applications that range
from imcomprcssible fluid flow studies to acoustic ray
tracing in highly stratified media. The large. memory ad-
dressability of the S-1 Native Mode essentially eliminates
the programming costs associated with managing multiple
types of computer system storage (for example, the SCM,
LCM, drum, and disk memory hierarchy of the CDC 7600,
to whose effkient management major portions of the
careers of some programmers have been addressed).
Memory technology has advanced so far since the develop-
ment of small-address-space architectures such as the CDC
7600, the DEC PDP- 10, and the IBM/360 that the current
production cost to the S-1 Project of a 2-billion-byte main
memory using 16K-bit memory chips is less than $10
million; its long-term rate of advance is so rapid that this
cost can confidently be expected to decline by almost a fac-
tor of 2 each year for the next several years.

Most software produced for S-1 systems will be”written
in high-level compiled languages such as the developing
DOD standard language, Ada. For ease of compiler writing
and for rapid, efficient execution of the compiled code,
these languages require certain features in the underlying
instruction-set architecture. S-1 Native Mode is compiler-
oriented: it is designed to support high-level languages in
general, not one high-level language in particular, and it in-
cludes the full set of operators and addressing modes
necessary for a simple compiler to produce efficient code.. .
For example, S-1 Native Mode supports expression evalua-
tion with a unique type of 2.5-operand instruction that

. allows the compilation of almost all forms of arithmetic ex-
. . pressions without using any move instructions (instructions

which simply move data from one location to another
without performing logical or arithmetic operations on
them).

The extent of the compiler-orientation of an
instruction-set architecture can be roughly measured by
counting the number of instructions necessary to represent
typical high-level language programs. We have observed
that the CDC 7600 requires between two and three times as
manv instructions to rerwesent FORTRAN mozrams as

..

does’the S- 1 Native Mod;; the bulk of addition~l CWDC7600
instructions are used in addressing computations. An ex-
periment involving seven graduate-student programmers in
the Computer Science Department at the University of
California, Berkeley, showed that careful hand-coding of
the PDP- 11 requires an average of 1.5 times as many in-
structions to represent a variety of high-level language
programs as does the S-1 Native Mode. These and related
considerations lead us to assert that no high-performance
machine available today has a more compiler-oriented
instruction-set architecture than the S-1 Native Mode.

The S-1 Native Mode contains unprecedentedly com-
prehensive floating-point semantics. Floating-point num-
bers can be 18, 36, or 72 bits long, using 5, 9, and 15 bits,
respectively, to represent the exponent of 2, and 13, 27, and
57 bits, respectively, to represent the signed fraction. The
largest format is upwards compatible with the floating-
point format of the C ray- 1. The 36-bit format was designed
to be the workhorse for virtually all numerical applications.
The 18-bit floating-point format was specially designed to
support real-time signal processing at many hundred

milfion floating-point operations per second, but it can be
highly useful in any relatively low-precision application
where processing speed is at a premium (as, for example, in
Monte Carlo Procedures). ,

Compare2 to conventional floating-point representa- \
tions, S-1 floating-point formats offer one extra bit of preci- 1
sion because the high-order bit of the fraction is determined
from the sign and is not explicitly represented. The S-1 ,
Native Mode also allows floating-point operations to be ~
correctly rounded in any of several different rounding
modes. For example, stable rounding minimizes expected
error, and diminished-magnitude, augmented-magnitude,
floor, and ceiling roundings can be used to measure the ac- ~
tual error developed. The S-1 Native Mode includes special
floating-point symbols (not-a-number, infinities, and ep-
silons) which al[ow ‘programs to be created and exercised
that will not malfunction because of transient generation of
quantities so large or small that they cannot be represented
as ordinary numbers in the computer. A computer arith-
metic system containing such symbols is essential for ef-
ficient use of human resources in developing and using
robust computer programs. q

Pipelining of Instructions

Pipelining is exemplified by an automobile production ‘
line, in which a number of automobiles are in production
simultaneously, each in a different stage of completion; the
time between completion of construction of one automobile
and the next is roughly the delay of a stage in the assembly
line, rather than the time required for a single car to pass
through the entire line. A stream of instructions in a
pipelined computer implementation is processed in a very
similar fashion.

The S-1 Native Mode was designed especially to
facilitate pipelined parallelism in the fetching and decoding
of instructions, the associated fetching of instruction
operands, and the eventual execution of instructions.
Pipelined parallelism is a conceptually simple type of
parallelism that can result in extremely high computer per-
formance levels. In general, designers of advanced
instruction-set architectures for commercial computers
have given little consideration to the implications of exten-
sive pipelining, because they have developed those architec-
tures with medium- or low-performance implementations in
mind. Furthermore, pipelining has thus far been used in
modern computers primarily in the execution of instruc-
tions, where it appears in the streaming of vectors of
operands through pipelined arithmetic or logical operation
functional units.

S-1 Uniprocessors pipeline ~he preparation and execu-
tion of instructions that specify both scalar and vector
operations. Every instruction proceeds through multiple
pipeline stages, including instruction preparation, operand
preparation, and execution. Some stages of the pipeline,
particularly those dealing with operand address arithmetic
and instruction execution, necessarily have a wide variety of
functions, since the pipeline must process a wide range of
instructions. This variability in operation is effected
through the extensive use of microcode, an architecture-
detining, very low-level program that precisely specifies the
operation of every pipeline stage. The variability built into
the microcode-controlled pipeline facilitates high-
performance emulation of other computers (for example,

5

..

.. . .

...
. .

.
. .

,.

.

.’

.

the Navy’s Univac AN/UYK-7). The S-1 Mark I and
Mark 11A Uniprocessors are the first high-performance ~
machines to incorporate instruction-preparation pipelines
fully controlled by writable microcode. I

Structure and Performance 1;,
/ Figure 3 shows the internal logical structure of the S-1

Mark 11A Uniprocessor. The machine consists of five
microengines (extremely fast, relatively special-purpose
programmable controllers) operating in parallel to provide
high performance. Four of the microengines form the in-
struction pipeline, consisting of the instruction-fetch,
instruction-decode, operand-preparation, and arithmetic
segments. Some segments are internally pipelined (a level of
detail not shown in Fig. 3). A single microengine handles
memory traffic in parallel with the operation of the instruc-
tion pipeline. A one-processor system can be configured by
connecting an S-1 Mark 11A Uniprocessor directly to a
memory controller; this requires neither hardware nor
microcode changes.

During the design of the S-1 Mark I and Mark 11A
pipelines, we made significant advances in computer

technology. The Mark I introduced a new, simple branch-
prediction strategy to predict the outcome of each test-and-
branch operation in an instruction stream before its execu-
tion, thereby allowing subsequent instructions to be
prepared without disruption. The Mark I also refined the
use of dual cache memories (one for instructions, one for
data) to increase total cache bandwidth. The Mark 11A
allows advance computation of simple operations in early
pipeline stages; this technique minimizes idling of pipeline

I

I

I

I

I

I

I

i_

stages because a computation (particularly, an operand-
address computation) depends on some previous result. The
Mark 11A includes refined control mechanisms to coor-
dinate the operation of multiple pipeline stages controlled
by the independent programmable microengines.

The S-1 Mark 11A also employs vector operations to
achieve high performance. Vector operations use multiple
functional units in the pipelined arithmetic module, to
achieve a peak computation rate on the S- I Mark 11A Uni-
processor of 400 million floating-point operations per
second. Any fatal error encountered during a vector opera-
tion results in a precise interrupt, so the exact location of
the error can be determined by the error-handling routine;
this feature is regrettably rare on existing high-performance
vector processors.

Status and Plans \
I

The S-1 Mark I was developed to be a prototype for
evaluating the S-1 Native Mode and its advanced hardware
and to provide the necessary computational resources for
the development of the S-1 Mark 11A hardware and
software. Only one S- I Mark I has been produced; it began
operating late in 1977. Constituted of 5350 EC L- 10K in-
tegrated circuits, it was designed to execute floating-point
arithmetic only in microcode emulation and also contained
a severely reduced instruction-preparation pipeline. On a
small set of floating-point-intensive scientific benchmark
codes written in Pascal, the S-1 Mark I has been observed to
compute between 0.3 and 0.5 times as fast as the CDC 7600,
although the judicious use of hand-coded routines in crucial

I unit I
I (M-Sequencar) I

Writable control
store

I
r I

I I User registers I

m-cl1/0 1-6 110
pry - proc.

7

I I
+ + t

Instruction
1/0 1-6 I10

Decode RAM + Data cache data +-* data
cache store O store 7

Instruction-fetch Instruction-decode Operand- Pipelined arithmetic

unit — unit 4 preparation unit — unit

(F-%quencer) (P-Sequencer) (I.-Sequencer) (A-Module)

Writable control Writable control Writable control Writable control

store store store store

4 b

1 I

Fig. 3. The internal logical structure of the S-1 Mark 11A Uniprocessor. It consists of five
disti net microengines that operate in parallel. Four of the microengines control the instruc-
tion pipeline, consisting of instruction-fetch, instruction-decode, operand-preparation, and
arithmetic segments, each of which in turn is pipelined. One microengine controls memory
transactions. All five microengines are controlled with writable microcode. The Un-
iprocessor also contains private cache memory.

6

#

.

.
.?. -.4-..

,

...

inner loops on the CDC 7600 was found to increase that
machine’s overall perforrriance relative to the Pascal-
programmed Mark I to a speed advantage of fivefold, for
our 16 000-line physical simulation code. Conversely, the
maximum execution rate of the Mark I (1 O million instruc-
tions per second), when combined with the powerful ad-
dressing modes and field-manipulating features of the S-1
Native Mode instruction-set architecture, permits it to ex-
ecute a variety of non-floating-point-intensive codes
significantly more rapidly than does the CDC 7600.

The second generation S-1 Uniprocessor, the
Mark 11A, executes the same instruction set (the S-1 Native
Mode) as the Mark I, but it has extensive hardware
floating-point and vector operation capabilities. Its perfor-
mance is expected to be comparable to that of the Cray-1 on
scientific problems expressed in high-level languages such as
Ada, Pascal, and FORTRAN, for just those applications irt
which the single-word floating-point format of the S-1
architecture is as useful as the substantially higher precision
floating-point format of the Cray-1. The Cray-1 will
assuredly retain primacy in high-precision, vector-intensive
data processing relative to near-term S-1 Uniprocessors,
since this type of computing capability cannot be justified
for present or readily foreseen Navy applications, most of
which stress relatively low precision, very high throughput
data processing.

/ Table 1 shows the performance of the S-1 Mark 11A
Uniprocessor compared to the CDC 7600 and the Cray-1
on several important DOE benchmark miniprograms.
These mini programs are representative of the full set used at
LLL to compare the performance of advanced scientific
computers; they accurately and concisely characterize the
computation-intensive portions of extensive scientific code
at LLL. The S-1 Mark 11A Uniprocessor computes these
benchmarks at roughly the same speed as the Cray - 1 and
almost twice as fast as the CDC 7600. The CDC 7600 rate
was measured using an optimizing compiler first available
in 1974. The Cray- I rates are based on actual performance
measurements made in February, 1979, with a moderately
mature optimizing and vectorizing compiler supplied by
Cray Research, Inc. Although the Cray-1 executes more in-
structions per second than the Mark 11A, many Cray- 1 in-

1,
I

I

structions are expended in overhead computations. The S-1
results assume the use of 36-bit floating-point numbers,
since high-precision arithmetic is often not necessary in
LLL applications; however, neither the CDC 7600 nor the
Cray- 1 provides a low-precision floating-point format. For
applications requiring high precision, the Mark 11A sup-
ports operations on the 72-bit floating-point format at
roughly half the speed of operations on the 36-bit floating-
point format. For low-precision applications, the Mark 11A
supports operations on the 18-bit floating-point format at
approximately twice the speed of operations on the 36-bit
floating-point format.

The S-1 Mark 11A Uniprocessor is constituted of ECL-
100K MSI circuits in performance-critical areas and ECL-
10K circuits elsewhere. All Mark 11A circuits are standard,
commercially available products. The transistor population
of the Mark 11A’s arithmetic unit alone is greater than that
of the entire central processing unit of the Cray- 1; gate cir-
cuit densities within this arithmetic unit are about 20 times
greater than those in the Cray-1 central processing unit. The
Mark 11A is in development at the present timq it is being
packaged in the folded form shown in Fig. 4.

The S-1 Mark HI is in an early design phase. Like the
Mark I and Mark 11A Uniprocessors, the Mark HI ex-
ecutes the S-1 Native Mode, but it is to be implemented
completely in commercially available ECL- lOOK LSI cir-
cuits. While it will not achieve a large performance gain
over the Mark 11A, it will be physically more compact
because of its order-of-magnitude greater logic gate density.

We are moving as rapidly as possible toward using the
technology of very large scale integrated circuits. The first
generation presently planned to follow the Mark III will ex-
press the entire Mark HI architecture on several VLSI
chips, at a performance level at least as great as that of the
Mark 111.

S-1 Design System

The capabilities offered by semiconductor technology
for the implementation of advanced computer designs are
rapidly outpacing the capabilities deve[oped for articulating
the conception of those designs. To make best use of rapidly

Table L Comparison of the performances of the S-1 Mark 11A Uniprocessor, the Cray-1, and the CDC 7600.
Data on Cray-1 and CDC 7600 taken from Ref. 5.

Commrtatiosrrate, MFLOPS’

S-1 Mark 11A Cray-1
Mhi- Mirripmgram I
program function scald VectoF ScaIad VectoF CDC 7600

1 Hydro excerpt 9.1 59 9.3 71 5.3

2 UtrrOfledinner 11 74 8.8 47 6.6
product

3 lrrtserproduct 8.0 65 4.4 62 4.6

5 Tridiagonal 7.5 7.5 7.6 7.6 4.0
etim”nation

7 Equation-of-state 13 46 12.6 tto 7.3

excerpt

‘MF LOPS Ssnds for milliim of Ylmting-pobt operstiom per second.
‘Assumes !!0 U3C0f VdOr CB@iritY.

CAswna full vectorlmtiwr.
%btained by turning oYSrompiler vectorizstim.
●Obtshwd by turning on full mmpiter vectorizstiom

I

7 . ‘.,;.:.;.(.k’li-f.; -/J//

,>

. .

..,

,.

.

.-

,.

Fi& 4. The S-1 Mark HA Uniprocessor. Thepackage con.
sists of identical pages. The pages unfold to expose all wire-
wrap pins for rmai”tenance, Amb~e”t air blows up through
t be centers of the pages to cool the integrated circuits, which
are mounted on tbe inside. Commercially available power
supplies are mounted in the cabinet base,

improving semiconductor technology, wc have developed
tbe SCALD (Structural Computer-Aided Logic Design)
System.6

SCALD is a graphics-based system for designing
digital logic, It inputs a high-level description of a digital
system and outputs magnetic tapes that are used by com-
mercial automatic wire-wrap” machines to build the
hardware.

The main advantage of “sing SCALD is a drastic
reduction in the amount of time required to design a large
digital system. This reduction occurs because the designer
can express his design in the same general level in which he
thinks about it, freeing bim from the task of actually draw-
ing out all of the details of the logic and cmati”g a wire list
s~cifying its interconnection. Designs expressed in this
high-level notation become much more mmpmhemible for
all those who have to work with them—for computers, for
computer designers, and for maintenance engineers, By
reducing the amount of clerical work required of digital
logic designers, SCALD reduces the number of designers re-
quired to execute a design project and the communication
overhead per designer, thus increasing each desigmr,s
productivity and further reducing the total designer require.
ments of the project. Manpower mvingswell in C,X.LXSSof m
order of magnitude may be realized; such savings have ac-
tually been demonstrated in practiceduring botb the S-1
Mark I and Mark 11A design efforts,

I

I

1

8

SCALD allows designs to be recompiled rapidly when
new integrated circuits become availablq such circuits may
simply take the place of low-level modules. Tbus, a designer
can quite effectively use a previous design to reduce bis
design time on a new project, thereby taking maximum ad-
vantage of the exponential rates of advance in component
density and cost-effectiveness currently characterizing the
semiconductor industry, In practice, considerable work
may still be required to update a design to incorporate re-
cent technology advances, but the required effort is likely to
be much less than if the design were not expressed
hierarchically.

SCALD also facilitates desienine with verv high ac-
curacy, because SCALD perf~rms- design ~erifi~ ation
procedures that cannot be done by a human. Not only can
SCALD verify syntactic details of tbc design (for example,
that every gate input is connected to some output), but it
can also verify that transmission lines are effectively free
from signal reflections; it can certify that the logic networks
defined by the designer do not contain timing errors, and it
can demonstrate by simulation that the logical operation of
tbe design is correct.

Historically, logic design has lagged far behind
program design in terms of the ideals of structured design:
that arb!trary modules be specified, each in terms of a few
other modules, relatively independently, and that they com-
municate through well-defined interfaces. Logic is still
typically hand-drawn by draftsmen; the specification
language consists of drawings of the primitive logical ele-
ments available from integrated-circuit manufacturers and
the physical connections between those logical elements. On
tbe other hand, typical modern programming systems
readily support the design of arbitrary modules (that is,
routines), each in terms of a few other routines, and allow
the specification of tightly structured interfaces between
those routines. SCALD simply expresses these
performance-proven software-engineering concepts in the
world of hardware design.

SCALD consists of a set of computer programs. The
Graphics Editor7 enters drawings directly into a suitable
computer, the Macro Expander compiles them, and tbe
Router embeds them in a physical packaging system.

Tbe Graphics Editor allows the designer to edit draw-
ings at a graphics terminal and to print thcm out. The
designer may create a library of shapes (macro bodies) that
are generally abstractions of digital logic functions, though
some may represent physical parts available from manufac-
turers, Each macro body islinked by name to a setof draw-
ings,itsmacro definition.A macro isdefined only once b“t
may be used in the drawings any number of times. The
designed system is then made “p by cmmecting these macro
bodies by lines indicating information flow. A single line in
a drawing represents om or more signals (a signal vector)
and may be named, Macro bodies have parameters, in-
cluding parameter signal vectors. Names on signal vectors
include a timing notation that allows SCALD to verify
automatically (using real or estimated delays of wires and
integrated circuits) that stated timing constraints will ac.
tually be satisfied by the digital logic what implemented in
the specified physical package,

Figure 5 shows a sample midlevel drawing from tbe
Mark I IA design; it represents several thousands of in-
tegrated circuits. Tbe drawing shows the Mark 11A data
cache and register file, cprand queues, alignment network,

..*

..$.

.1__

.

“*

,.

*
..

:*
..

CR
Uutut
nn

(k RESU

;X
I T KI RE

DCRF B OP

— RESULT 16DW I IL I
PA D

PA D
OPERAND/

REEsy_:
PA END D

PA END D

- .YJ; TV I.+J Au-J
(iii I’ll‘suLT

OPERAND DATA PATH AND ABOX

Fig. 5. A~pical SCALD drawing from amiddle levelofthe S-l Mark IIAUniprocessor
design. This whole drawing defines a single block ina more general diagram at the next
higher level. Each of the blocks in the drawing shown here is defined by a more detailed
drawing at the next lower level. Thus a hierarchy is established that stretches from the most
general abstraction down to the individual components of the computer. Many of these
drawings can be used over and over again in the desig~ they are drawn once and then sim-
ply recalled by SCALD asneeded. SCALD also generates awriting list, chwks the design
for mistakes and timing errors, and produces taped instructions for automatic wiring
machines.

arithmetic module. and connections between those ele-
ments. This drawing represents the described portion of the
machine accurately, in that hardware is automatically built
using the drawings as a specification, but it is lacking in
detail and requires definitions of its submodulesforcom-
pleteness.

The Macro Expander expands the design to individual
integrated circuits by iteratively substituting the ap-
propriate macro definition for each macro body in the
drawings. The Macro Expander also verifies that designer-
specified timing constraints are satisfied. The Macro Ex-
pander is largely technology-independent and is coded in
transportable Pascal.

The Router reads an interconnection list produced by
the Macro Expander and produces magnetic tapes that per-
mit the design to be implemented by automatic and
semiautomatic commercial machines. Extensive main-
tenance and debugging documentation is produced by the
Router, which is also coded in transportable Pascal.

SCALD was used to design the S-1 Mark 1 and the S-1
Mark IIA. The Mark I design consisted of 211 high-level
drawings (drawings used only once inthedesign) and 144
low-level drawings (drawings used several times). Low-1evel
drawings form an investment in the particular technology
chosen for implementation, since they have a high
probability of being used again in subsequent designs. In
contrast, high-level drawings represent aninvestment in the
particular architecture being implemented and may be
reused to recompile that architecture periodically into
current, more cost-effective implementations. A total of two
man-years was expended inthe Mark I design work during
an elapsed period of one calendar year.

I

I

I

Structured Iogic design consists of extending to logic
design the essential power of the concepts and tools
developed for simplifying the programming task; the sav-
ings in human labor expended in designing digital systems
are potentially as great as those resulting from the use of
compilers. Our experience has shown that SCALD has
made the S-1 Mark I and Mark HA designs more un-
derstandable, thus reducing the design efforts, enhancing
design correctness, and facilitating generation of final
documentation. The designs themselves serve as major por-
tions of the final documentation because they are so readily
understood; thus, the need for expensive and usually inac-
curate post facto documentation has been greatly reduced.
Furthermore, SCALD has increased the mutability of these
designq since macros are inherently isolated, changes in one
macro definition usually require minimal changes in other
parts of the design. Finally, the imposition of structure on
the design and the use of computational resources in the
verification task has resulted in designs of an unprecedented
level of accuracy.

Summary

S- I Project effort related to the development of high-
performance computing machines is directed toward three
major areas: the S-1 Multiprocessor, the S-1 Uniprocessor,
and the S-1 Design System. S-i Multiprocessors are rapidly
extensible to very high powers and large memory capacities
at uniprocessor cost-effectiveness levels and feature ul-
trareliable system performance. The S-1 Uniprocessors are
general-purpose, emulation-oriented machines that are

9i

*.. .

D
..Z

●V

,,

-8

powerful and highly cost-effective and have advanced main-
tainability features. The S-1 Design System supports highly
automated, general-purpose digitaI systems design and
provides extensive construction and debug support of ad-
vanced computer systems.

gress have been crucial during the Project’s inception and ‘
vital to its progress.

I Notes and References !

Acknowledgments

This paper reports on work performed by the staff of
the S-1 Project of the Lawrence Livermore Laboratory and
the members of the software R&D team of the Computer
Science Department of Stanford University, which have
operated under sub-contract to the laboratory.

The S-1 Project has benefited in fundamental fashion
from the contributions of many people in academia, in-
dustry, and Government, and it is impossible to
acknowledge our debt to even significant fraction of them.
However, it must be noted that the S- 1 Multiprocessor con-
cept is directly descended from the C.mmp Reject of
Carnegie-Mellon University’s Computer Science Depart-
ment, and we are indebted to Gordon Bell in this and many
other respects. The hospitality and technical advice of
Forest Baskett, Jerry Friedman, and John McCarthy of
Stanford University during the project’s precarious early
days was extremely valuable.

The U.S. Navy, the Project’s sole sponsor, has
provided enlightened and highly effective supervision in the
persons of Norris Keeler, Tibor Horwath, and Joel Trim-
ble. Edward Teller’s research requirements midwifed the
modern scientific digital computing, and his continued keen
interest in the application of computers to physical
problems has profoundly impacted many related develop-
ments, during the subsequent third of a century, at our
Laboratory and elsewhere. His support and encouragement
and that of his like-minded colleagues in our Laboratory, in
the Departments of energy and Defense, and in the Con-

1

(

1.

2.

3.

4.

5.

6.

7.

10 :

Such multiprocessors are described in “Tandem Non-
Stop Systems,” Datapro Reports on Minicomputers,
Datapro Research Corporation, Delran, N.J. (1979),
and in S. M. Ornstein et al., “Pluribus-A Reliable
Multiprocessor,” Proc. AFIPS 1975 Nat. Comp. Conf,
Anaheim, 1975 (AFIPS Press, Montvale, N. J., 1975),
vol. 44, p. 551.
L. M. Censier and P. A. Feautrier, “A New Solution to
Coherence Problems in Multi cache Systems,” IEEE
Trans. Computers C-27 (12), 1112 (1978).
S-1 Project Staff, Advanced Digital Processor
Technology Base Development for Navy Applications:
The S-1 Project, Lawrence Livermore Laboratory,
Rept. UCID- 18038 (1978).
J. T. Coonen, SpeciJcations for a Proposed Standard for
Flouting Point A n“thmeric, University of California,
Berkeley, Electronics Research Laboratory Memoran-
dum UCB/ERL M78/72 (1978).
F. McMahon, Lawrence Livermore Laboratory,
private communication, October 1976.
SCALD is described in detail in “SCALD: Structured
Computer-Aided Logic Design” and “The SCALD
Physical Design Subsystem,” written by T. M.
McWilliams and L. C. Widdoes and published in Proc.
Ann. Design A utomafion ConJ, lSth, bs Vegas, 1978
(IEEE, ACM, New York, 1978), p.271.
D, Helliwell, The Stanford Uniwrsity Drawing Syslem,
Stanford Artificial Intelligence Laboratory, Palo Alto,
California (1972).

