CIRCULATION COPY

r— SUBJECT TO RECALL
- IN TWO WEEKS UCRL- 83791
) PREPRINT .
; N
. Verification of Timing Constraints
in Large Digital Systems
Thomas M. McHilliams
- This Paper Was Prepared For Submittal To

17th Design Automation Conference
Minneapolis, Minnesota
June, 1980

~January 4, 1980

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Verification of Timing Constraints in Large Digital Systems *

by
Thomas M. McWilliams

December 1979

Camputer Science Department
Stanford University
and
Lawrence Livermore Laboratary
University of California

P.O. Box 308, L2786

Livermare, Ca. 94550
4154220758

*Work performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore Laboratory under contract number W-7405-
ENG-48, with support from the Naval Electronics Systems Command and
the Office of Naval Research.

Abstract

A technique to automaticiily verify all the timing constraints in large digital systems, taking
into account the component timing properties, wire defays, and any designer-specified tming
constraints, is described. This systern has been used to verify the timing constraints in the S-1 Mark
OA processor, which consists of 10,000 ECL chips, and is comparabie in performance to the Cray 1
CruU.

1 Introduction

The SCALD Timing Verifier takes in the design of a digital system given in the SCALD
hardware description language, and analyzes of the crcuit, looking for timing errors. SCALD
(Structured Computer Aided Logic Design) is a compiete CAD systemn that inputs a graphics-based,
hierarchical description of a design, and generates a compiete set of low level documentation and
magnetic tapes to implement the design [234] The Timing Verifier does a complete verification
based an the minimum and maximum propagation delays of the drcuit components, their setup and
hoid times, minimum puise width constraints, and wire deiays.

Since the Verifler does not perform a full smulation of the design, it does not know the
values of most signals during the analyzis, but anly knows whether they are stable or changing. In
case the design is incompletely specified, or the Verifier is unabie to determine the value of a signal,
the designer can specify signal timing assertions in the design. This information not only allows the
Verifier to analyze the timing without resorting to full simulation, but becomes an integral part of
the design specification, and increases the understandability of the design. The ability o specify
timing infarmation in the design also allows the designer to state explicitly what timing assumptions
he is making as he proceeds. These spectfications are then automatically checked by the Timing
Verifier when the design is compieted.

One of the main features of the SCALD Timing Verifier is the ability to verify designs by
modules. This not only permits the use of computers with limited memory size, but also allows
timing constraints o be checked as a design progresses, on a day-by-day basis. This is partcuiarty
important in that it aflows timing errors to be corrected before they have a chance to propagate their

effects throughout the design, or to induce major design changes late in the design. It also supports
an accurate estimate of the cycle time of 2 machine before the design is completed.

The Timing Verifier can find tming errors in any type of logic, although it works best for
clocked systems. In non-clocked systems, it can check defays through specific logic paths, but there is
no way of checking the timing between different independent asynchronous units.

In general, the philosophy of the Verifier is to warn against the slightest possibility of an
error, thereby alerting the engineer to analyze the drruit in detail to determine whether there is 2
real problem. Because the Verifier does not know the value of many signals in the network, it in
many cases will assume that things are worse than they reaily are. If a particular path i3 indicated

Page 2 Introduction §1!

to be a problem and it really is not, then information can be added to the circuit to help the
Verifier, so that the circuit will be analyzed correctly the next time. Far exampie, if the design
counts on correlations that the Verifier is not aware of, false errors can be generated.

2 Previous Approaches

There have been 2 number of previous approaches to the verification of timing constraints in
digital systems, which can be grouped into two main categories: logic simulation [1,5] and worst-case
path analysis [6]

The logic simulation approach poses several problems. It requires either a compiete design
including any microcode and diagnostics, or some way of generating patterns to drive the undefined
signals. Waiting until the design is completed to start simulation presents the problem that bugs are
not found until late in the design cycle. Generating patterns to drive undefined signals is very
time-consuming and difficuit, especially when the patterns need to go through the “worst-case” set of
states. Simulation is also a very inefficient way of finding timing errors, because of the need to run
through a large number of states in order to test all of the “worst-case” timing paths. In fact, for
maost large digital systems, it is impossible to have a high degree of confidence that the warst-case
states have all been tested.

The worst—case path analysis approach examines all paths through the combinatorial logic
between registers or latches, searching for the longest and shortest paths. This approach pases
problems when the timing of the drcuit is a function of the value of some signals, requiring logic
simulation in order to determine the timing of the circuit. It is also computationally expensive, but
does provide feedback to the designer early during the design cycle, without the need to generate
detailed test patterns.

In contrast, the SCALD Timing Verifier eliminates most of the problems with these
approaches, allowing the design to be verified as it proceeds, without the need to generate test
patterns. It also uses a computationally efficient algorithm to cover all of the states needed to find
all of the tming errors. Handling cirauits where logic simulation of parts of the circuit is needed to
understand the detailed timing is another of its capabilities.

3 Operation of the SCALD Timing Verifier

Consider checking the timing of the simple circuit shown in Figure I. As input, the Verifier
needs a derailed timing model of the components used in the circuit, the timing properties of the
signals which are not generated within the circuit, and a set of evaluation directives These
evaluation directives specify how to handle conditions which the Verifier has trouble with because
it doesn’t know whether a signal is true or faise.

Given a set of input values to a component with any needed evaluation directives, the
Verifier can calculate a new set of output values. If an output changes, then all of the primitives
that it drives are reevaluated, possibly generating more output changes. This process is continued
until afl of the signals stop changing, at which point the Verifier knows the timing behavior of all

§3 Operation of the SCALD Timing Verifier Page 3

of the signals. It then proceedes to check all of the setup, hold, and minimum pulse width errors.

The Timing Verifier is a symbolic logic simulator which does case analysis to handle the
different timing cases that need to be checked within a design. It is a symbolic logic simulator in
that it represents most signals as either stabie or changing, rather than as true or false. This greatly
reduces the number of cases that need to be checked to find all possible timing errors. Since the
Verifier is not trying to check the correct logical operation of the dreuit, knowing the actual value of

To understand the value of using a symbolic representation for most signals, consider
checking the timing of a 16-bit adder where the values of the signals are specified. Either an
analysis has to be made to determine the worst-case add to test, ar all possible combinations need to
be tried, because the addition of different pairs of numbers can take a different amount of time.
Trying all possible combinations gives 218,216 ., 2% cases, representing all the pairs of two 16-bit
numbers. Determining the worst-case test to try in general is a quite difficult problem. If, instead
of setting the inputs of the adder to a particular value, the inputs gu from a changing state to a
stable state, then the simulation can not count on a particular set of numbers being added, and the
worst case is automatically tested.

Where it is essential 1o know whether a signal is a zero ar a one for a particular cycle, the
Verifier must resort to case analysis. This is because the Verifier only knows one value for a signal

during the analysis of a particular cycle or case.

Consider the design of a processor that has a variable cycle time. Depending on the operation
to be done, a different amount of time is required to execute it, because different paths through the
execution unit having different delays are used. To analyze the timing, a number of fundamentally
different cases need to be checked, and which case is being analyzed is determined by the value of a
number of the control signals. The Verifier will then enumerate the cases, checking them one by
one. This could be a very time consuming process, but in practice has turned out not to be so. In
the verification of the S-1 Mark IIA processor, it has been found that very few cases (on the order
of half a dozen) need to be checked, and that most cases tend to change only a few local signals,
making them very quick to analyze. It has also been found that the number of places that need
detailed case analysis are small, and that simulating just the main cases is normally quite satisfactory.
This allows the verifications that are performed on a daily basis to be executed very rapidly.
Periodically, complete checks are done that go through all of the cases.

2.1 Circuit Periodicity

The clock period of a drcuit being analyzed is declared before a particular case is analyzed,
and for most designs, is the same for all cases. If different parts of the system run at different clock
periods, then the least common multiple is declared o be the period of the circuit For example, in
the Mark [JA processor, the arithmetic unit runs at twice the clock rate of the instruction unit, in
order to increase the vector processing rate, and so the period declared for the entire machine is that
of the instruction unit

Page 4 Operation of the SCALD Timing Verifier §3.1

Within a given case, the intervais of stability and change for each signal are assumed to occur
periodically at the clock frequency. Consider an edge-triggered register. Within a window
determined by the minimum and maximum propagation delay of the register and by the skew on
the clock, the output of the register may be changing, but for the rest of the cycle, it must be stabie.
For a given case, the clock will always occur at the same place within the cycle, and so the behavior
of the output of the register will be periodic if one looks only at change versus stability, not at
logical truth or falsity.

The Verifler then analyzes a case via an event-driven simulation, taking all signais to be
periodic with period equal to the cycle time. It then repeatedly evaluates the circuit elements untl
all signal values converge.

32 Values of Signals

At any instant, a signal has one of seven values:

Vaiye Meaning

0 false, or zero

1 true, or one

S or STABLE signal is stable, ie, not changing
C or CHANGE signal may be changing

R or RISE signal is going from a zero to a one
F or FALL signal is going from a one to a zero

U or UNKNOWN the state of the signal is unknown, which
is the initial value of most signals

Table 2-1
Signal Vaiues

The value of a signal over a clock period is represented by a linked list, each node of which
specifies a value and the duration of that value The sum of the durations of all the nodes in the
list must equal the period of the circuit being analyzed.

When a signal propagates through a gate or wire where it is delayed by a variabie amount of
time, then skew is added to the signal, representing the uncertainity in when the signal will change.
This skew is kept separately in the representation of the signal to preserve information about the
width of pulses, to avoid false timing errors arising from not meeting minimum pulse width
requirements. If two or more changing signals are combined, then the skew cannot be simply
represented separately, and so it has to be incorporated into signals by using the CHANGEL, RISE,
and FALL vaiues.

§33 Operation of the SCALD Timing Verifier Page 5

33 Assertions on Signals

To handle partially designed circuits, the Verifier needs timing assertions on undefined
signals. Undefined signals with no assertions are taken to be always stable, to keep them from
causing numerous spurious error messages. Two (ypes of assertions are used for specifying clocks,
and one is used for defining the behavior of control and data signals.

There are two categories of clock signals: precision and non-precision. The difference
between precision and non-precision clock specifications is the default skew used when none is
explicitly given. The skew is generated by the variation in the wire delay to the different parts of a
system and by the variation in delay between the different buffers used in the clock generation. In
the design of a large digital system, these variations can become quite large, and degrade
performance unacceptably. To reduce this skew, the shart clock paths can have extra delay inserted
into them. Because the delay in a clock distribution system varies between machines, in many cases
it must be adjusted by hand, by using some type of adjustable defay for each of the clock lines.
Using this technique, the skew can be reduced to below some specified amount. In order to verify
the timing in a design that has been so de-skewed, it is necessary to describe how the clocks will be
ad justed in detail within the design specification. A number of features which will be described in
this and the next section have been provided to make this task as easy as possible.

If a clock signal is ad justed to some specified skew, then an assertion can be given within the
signal name denoting that fact. Assertions are given at the end of signal names and are preceded by
a period. They are considered part of the signal name by the rest of the SCALD system, which
makes sure that all of the assertions for a given signal are consistent.

The format for the assertions for the precision and non-precision clocks are:

SIGNAL NAME P <value specification> <skew specification>
SIGNAL NAME .C <value specification> <skew specification>

where:

<value spedification> == <time range> | <time range> , <value specification>

<time range> == <time> | <time> - <time>
<time> == <real number> :
<skew specification> == | (<minus skew> , <plus skew>)
<minus skew> == <negative real or zero>

An example clock specification is
XYZ C4-6 L

which says that the signal goes from a high to 2 low at time 4, and from a low to a high at time 6.
The time units that the clocks are specified in are normally set to a fraction of the cycle ime. For

Page 6 Operatioa of the SCALD Timing Verifier §3.3

example, one eighth of the cycle is the period used in the design of the Mark ITA processor.
Specifying clocks as fractions of the cycle time rather than in absolute time units allows the relatve
timing within the design to scale nicely if the cycle time is changed. The signal

XYZ C2-3,5-6

is a high from 2 to 3 and from 5 to 6, and is a low for the rest of the time. If a single time is given
instead of a range, then a range of one ciock unit is assumed. For example,

XYZ 25
is equivalent to the previous signal

The other type of assertion states when a given signal is stable, and when it may be changing.
Its general form is

SIGNAL NAME S <value specification>

For example, the name XYZ S4-8 says that the signal is stable from time 4 to time 8, and may be
changing during the rest of the cycle.

This type of assertion has several uses. First, it allows the designer to specify his assumptions
about when signals are valid (ie, not changing) as he creates them, and those assumptions will be
used by the Verifier until the signals are generated. For generated signals, the assertion is checked
against the timing of the actual generated signal, and an error message is generated if the assertion
is violated. In the design of the Mark IIA processor, most signal names have stable assertions in
them. This greatly improves the readability of the logic, since a signal name very explicitly states
when the signal is valid.

Putting the stable assertion on interface signals is the key to the ability to verify a design in
sections. After each section is verified, SCALD checks to see that the interface signals have the
same assertions. If no section has an error, and all of the interface signais have the same assertions,
then the entire system must be free of errors.

3.4 Evaluation Directives

Evaluation directives tell the Timing Verifier how to evaluate certain gates. They can also
specify the exact point in a circuit at which a clock is ad justed to some specified time.

Because the Verifier is not doing full logic simulation on a completed design, it does not know
the logic level of maost signals, but only whether the signals are stable or changing. Consider the
crcuit shown in Figure 1. The clock signal "CK .P2-3 L* is being ANDed to the controi signal
"WRITE S0-6 L" to generate a write enable pulse for the RAM array. If the data is stable every
cycle during the period that the RAM is to be written, then the most efficient way to check for
timing errors is just to analyze the case in which the signal “"WRITE S0-6 L° enables a write. The

§ 3.4 Operation of the SCALD Timing Verifier Page 7

"%H" directive shown at the end of the clock signal says to ignore the value of the "WRITE S0-6
L signal, allowing the clock signal always to propagate through the gate. In addition, it says the
timing specified by the clock signal is to be ad justed so that it refers to the time at which the output,
rather than the input, of the gate changes. The “%H" directive also specifies to check that the
control signal "WRITE S0-8 L° is stable during the period that the clock is asserted, to ensure that
the write will be either solidly enabled or solidly disabjed.

There are a number of different directives along the lines of the “&%H" directive. For
example, the "&Z°" directive on the signal “CK P0-4" states that the clock timing refers to the time
the output of the gate changes. If multipile directives are given after a signal, such as "%HZ", then
the first letter refers to the first leve! of gating and the second refers to the second level of gating
after the directive. There is no limit on the length of a directive string.

4 Design Specification

Figure 1 shows a drouit example specified in the SCALD Hardware Description Language.
The dircuit consists of a 16-word by 32-bit RAM, a 32-bit register, a 2-input muitiplexer and

several gates. This design description is entered into the computer via an interactive graphic editor,
and forms the data base that drives the entire SCALD system.

A detailed description of the basic SCALD language can be found in [2,3,4], and will not be
repeated here. The main points of interest to the Timing Verifier in Figure 1 are the assertions on
signals, evaluation directives, and the specification of possible wire delays. The assertion on the
signal "W DATA S0-6<0:31>" says that it is stable from time 0 to time 6, allowing the Verifier to
check the timing of this circuit without knowing how the signal is generated. The assertion on the
clock signal "CK .P2-3 L" says that it is low between times 2 and 3, and high for the rest of the
cycle. The signal "ADR<0:31> [0.0:5.0] states that the address wires on the RAM can be between 0
and 6 nsec long. The evaluation directives "&H" and “%Z" have already been described.

5 Chip Definitions

For each chip used in a design, a definition of its timing and logical properties is given in the
SCALD Hardware Description Language.

A chip is defined in terms of a set of primitive functions that the Verifier understands
These primitives include AND, OR and CHANGE gates, registers, latches, multiplexers, a setup
and hold checker, and a minimum pulse width checker. Two example chip definitions are shown in
Figures 2 and 3. Figure 2 shows the definition of a 10145A, a 16-word RAM. Figure 3 shows the
definition of a 10158, a 2-input muitiplexer. The 10145A model is a timing model only. The "3
CHG" and "¢ CHG" gates are CHANGE gates, which output the value CHANGE when any of
their inputs change, and output the value STABLE the rest of the time. Using CHANGE gates has
been found to be invaluable in modeling complex functions for which knowledge of the exact logical
operation is unnecessary. The mode! for the 10158, on the other hand, is an accurate model, which
could be used to do full logic simulation. For the 10158, the model of its compiete logical operation
is necessary to verify timing constraints in many cirauits.

Page 8 Wire Delay Estimates and Caiculations §6

6 Wire Delay Estimates and Calculations

Before the actual wire delays are known, the Timing Verifier uses a rule to estimate them,
except where they have been specified by the designer. After the routing of the wires is known,
accurate wire delays are calculated. This is done by the SCALD Physical Design Subsystem [3,41
which then feeds them back into the Timing Verifier, which does a detailed check of the timing.

7 Circuit Verification Example

Figures 4 and 5 show the resuits of running the circuit shown in Figure 1 through the Timing
Verifier, with a specified cycle time for the dircuit of 50 nsec, and a default wire delay of 0 to 2 nsec.
Figure 4 gives a complete listing of all of the signals, showing their value as a function of time
Consider the first signal in the list, "ADR<0:3>". It has the same value for all of i3 bits, and so has
only one value given. It is stable at the beginning of the cycle, and starts changing 0.5 nsec into the
cycle. It is then changing from 0.5 nsec to 5.5 nsec, at which paint it goes stable until 255 nsec. It is
then changing from 25.5 nsec into the cycle until 30.5 nsec. It then goes stable from 30.5 nsec until
the end of the cycle.

Figure 5 lists the setup and hold time errors. Because of the long wire specified on the signal
"ADR<0:3> [0.0:6.0]", two setup time errors are generated. The first error message shows the address
on the RAM just guing stabie at time 115, the same time as the write enable (WE) signal starts
rising. Since 2 RAM requires a setup time of 3.5 nsec, the wire delay on the address signal must be
reduced to 2.5 nsec in order to eliminate the error. The second error message listed shows the data
being read out of the RAM guing stable at time 47.5 nsec, and the clock starting to rise at time 49.0
nsec, giving only 1.5 nsec of setup time instead of the required 2.5 nsec.

8 Correlations Within Digital Systems

Consider constructing an 8-bit shift register using two 4-bit shift register chips. The shift
output of one chip must to be connected to the shift input of the other chip. If the minimum delay
from the clock to the shift output is not greater than the hoid time on the shift input by at least the
maximum skew possible between the two clock inputs, then there is a timing problem. The key to
checking this timing constraint is to caiculate the maximum skew between the two clock inputs,
taking into account any correlations within the circuit.

Now consider the case where there is a large amount of skew on the time at which the clock
signal will occur, but that the two clock inputs are wired together with a short wire The skew that
each chip sees is large, but the maximum possible skew between the two inputs is quite small,
because of the correlation between the two clock inputs. To analyze this case correctly, the Verifier
needs to understand the correlation between the two clocks. The approach that the Timing Verifier
has taken is to make the designer explicitly declare this correlation in the design specification,
relieving the system of the burden of automatically finding it Since this type of correlation tends to
occur in only a few simple macros (defining items such as shift registers and counters), it seems a
small burden to declare when a circuit is counting on a correlation to work properiy.

§9 Verification of the S-1 Mark IIA Processor Timing Page 9

9 Verification of the S-1 Mark IIA Processor Timing

The Timing Verifier has been used to check all of the timing constraints in the S-1 Mark TA
processor design. The design was checked in two parts, consisting of the instruction and operand
preparation unit and the instruction execution unit Each of these units consists of approximately
5,000 MSI and LSI ECL chips. The verification of one of these units takes about 12 to 15 minutes
of execution time and 6 to 8 megabytes of storage on the S-1 Mark I processaor. The Mark 1
processor is the first generation S-1 processor which was designed with SCALD, and is comparabie
in performance 1o an IBM 370/168.

The verification of the timing constraints proceeded on a daily basis. Each day the Timing
Verifier was run to find any timing errars which might have been introduced during the previous
day’s work into the design. This allowed errors to be found and fixed as they were introduced into
the design, before their effects could propagate throughout the design. This early continuous
feedback was found to be invaiuable in timely completion of a design with a high degree of
confidence in its operability.

10 Conclusions

The SCALD Timing Verifier has been a very efficient way of discovering tdming errors in
large digital systems. It is efficient from the standpoint that it requires little mare effort from the
designer beyond what is required to do the basic design. It is also computationally efficient,
allowing a large design to be verified in a relatively small amount of computer time.

Once the timing constraints have been verified, then a simple logic simulator which does not
have to worry about timing can find the highly probabie logic errors. The less probable logic errors
can be found either by a hardware simulator or prototype. The timing in both the prototype and
the final implementation can then be checked with the Timing Verifier.

11 Acknowledgments

1 would like to thank Forest Baskett and Bill vanCleemput for the constant support and
guidance they have provided throughout the course of this research. The Fannie and john Hertz
Foundation’s gracious support has provided me the freedom to pursue this research. Biil Bryson,
Mike Farmwald, and Jeff Rubin have been the first users of the SCALD Timing Verifier and their
patience and many suggestions for improvement are most appreciated. My thanks also go to the
Office of Naval Research and the Naval Electronics System Command for the support to the S-1
Project which has provided the necessary environment for this research, and to Curt Widdoes and
Lowell Wood, whose tireless efforts have made the S-1 Project possibie.

12 References

1. Kusik, R. and Wesley, P. “Hierarchical Logic Simulation for Digital Systems Development,”
Proc. Electro/76, Boston, Mass,, May 1976, pp. 26.3.1-26.38.

Page 10 References §12

2. McWilliams, TM. and Widdoes, L.C, “SCALD: Structured Computer-Aided Logic Design,”
Proceedings of the Fifteenth Design Automation Conference, Las Vegas, Nev, June 1978,
271-27. :

3. McWilliams, T.M. and Widdoes, L.C,, “The SCALD Physical Design Subsystem,” Proceedings of
the Fifteenth Design Automation Conference, Las Vegas, Nev,, June 1978, 278-284.

4 S-1 Project Staff, "Advanced Digital Computing Technology Base Development for Navy
Applications The S-1 Project,” Prepared for the Naval Systems Division, Office of Naval
Research, September 30, 1978. (UCID-18038)

& Szygenda, S.A., "TEGAS2-—Anatomy of a General Purpose Test Generation and Simulation
System for Digital Logic,” Proceedings of the ACM IEEE Design Automation Workshop, June,
1072, 116-127.

6. Wold, M.A_, “Design Verification and Performance Analysis®, Proceedings of the Fifteenth Design
Automation Conference, Las Vegas, Nev, June 1978, 264-270.

H DATA .59-6¢0:31»

HRITE ADR ,99-&01 B

-
10168
mo
REFD POR .84-%@1> ||
]
K .Pa-8 |
X .Pe-3 L &H
o 19195A

HRITE .50-6 L o

Gl

28
164 RN 38
101458 REG
J‘ l_Rwe:In L 1eze | aureurcoian
R R2
AL E C8 x
(oK ¢Z
K .PO-4 82
ADR(O: D [0.0:16.9) ':",_"5“ REG CLK

S-1
PROJECT

EXAMPLE MACRO DEFINITION

16-DEC-79 @2:30]

DRALN BY:

PAGE 1 OF 1

APPROVED BY:

PROJECT : EXAMPLE

NUMBER

EXAM MK2, $1]
REU.

Figure 1 - Example circuit to be verified.

DELAY=1.6, 3.

M P
A1 AP
> A 460‘0 TSR (0] A
M» P DELAY=1.0, 6.9
cs A 3 e 181 M o8
T3 G2
(8IZD)
SETUP HOLD Q&K
KeI18IZE-12 &P “ PARAETER DEFINE MNUFACTURER
SETUP=4,. 51
HOLD =1.8 1¢0:812E- 1 X STEP = SIZE F
o« WE L
-l Cs L
- Ao D>
18
SETUP HOLD O TCOISIZE-1P N
cs P 82
SETUP=4.6;
HOLD «9.6
CK
- VE P 1}
48
SETUP RISE
HOLD FALL O —
B> £ 83 MIN PULSE MIDTH
SETUP-1.63 W
HOLD =1.0 1
. a HIGH=4,8;
E P LOH 0.0
5-1 164 RAM 10146A 10-DEC-79 23:16]
PROJECT 10145[MK2, ss; |
DRAWN BY: PAGE 1 OF 1 .
APPROVED BY: PROJECT: TIMVER

Figure 2 - Deflnition of the 10145A, a 16-word random access memory chip (RAM).

PARAIETER
H9:181ZE-1
1<0:81ZE-1

]

Tan 8IZE-»

K SIZE-1 P

X 8TEP = SIZE

1¢@:SI2E-1 A

s A

HANLFACTURER

S-1 10168 10-DEC-79 23:16]
PROJECT 10166[MK2, St _
DRAWN BY; PAGE 1 OF 1 NUFBER | ﬁE&
APPROVED BY; PROJECT; TIMXER |

Figure 3 - Definition of the 10158, a two input multiplexer chip.

Values of all signals

ADR<O:3)> .) ;) .)) . . s:0.0, C:0.5, S:5.5, C:25.5, $:30.5
Ck .Po-4 . .) .)) .) " R.e.@ i:1.0, F:24.0, 0:26.0, R:49.0 (constant vaiuve)
CK .P2-3 . X .) . \)) . © @:0.0 R:il.5, 1:13.5, F:17.8, 0:19.8 (oonstant value)
CK .P4-8 F:0.0, 06:1.0, R:24.0, 1:26.0, F: 49.0 (constent value)
OUTPUT(0:31> .))) :) © s:0.0. C:0.5, S:7.5
RAMCO:31).) . . . : : : " S:0.0. C:5.0, S:20.5, C:30.0, 5:45.5
READ ADR .S4-9{0:3>. . . . : \)) S:0.0, C:6.3, S:25.0'
REG CLX) . A)) R:0.0. 1:1.0, F:24.0, 0:26.0, R:49.0
u DATA se-sco 31> .))) . . .) S:0.0. C:37.5
. . . .)))) 0:0.0. R:11.5, 1:13.5, F:17.8, 0:19.8
HRITB .S0-6) . . .))) S:0.0, C:37.5
WRITE ADR .S0-6<0:3> . . . : .)) S:0.0, C:37.5

Figure 4 - Output from the Timing Verifier showing values of signals.

Setup, Hotd and Minimum Puise Width errors

Setup time error; Setup Time
CK INPUT = WE
DATA INPUT = ADR

3.5, Hold Time = 1.0

Setup time error; Setup Time = 2.5, Hold Time =].
CX INPUT = REG CLK (-0.
DATA INPUT = RANM (-0

h

Figure 5 - Setup and hoid errors found by the Timing Verifier.

0
o

o0

[lod

