CIRCULATION POPY
PR T SRR VA N . [W

SonOALL
AR)

UCRL-53118

Automatic physical design of
large wire-wrap digital systems

L. Curtis Widdoes, Jr.
(Ph.D. Thesis)

December, 1980

<

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-ENG-48.

Automatic physical design of
large wire-wrap digital systems

L. Curtis Widdoes, Jr.

(Ph.D. Thesis)

Manuscript date: December, 1980

LAWRENCE LIVERMORE LABORATORY

University of California - Livermore, California - 94550

Available from : National Technical Information Serivce + U.S. Department of Commerce
5285 Port Royal Road - Springfield, VA 22161 -$12.00 per copy - (Microfiche $3.50)

UCRL-53118

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

_(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

%WNMX

I certify that 1 have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

—~jij~

Automatic Physical Design of Large Wire-Wrap Digital Systems
L. Curtis Widdoes, Jr.
December, 1980

Computer Science Department
Stanford University
Stanford, California 94305

ABSTRACT

A system is described which automatically performs the detailed physical design of
a wire-wrap digital system, given a completed logical design, chip placement, and
user-specification of the particular component technology and wire-wrap package to be
used. The system approximately optimizes measures of the manufacturability, reliability,
and performance level of the physical design, as defined by parameters provided by the
user.

The system’s models of the wire-wrap environment and component technologies
are surveyed, and its major algorithms for physical design are discussed in detail. These
models and algorithms are novel in that they are detailed enough to allow the complete
high-quality physical design of large, high-performance central-processing units.
Furthermore, they are designed to be easily adapted by the user for specific design
efforts.

The performance of the algorithms is illustrated by an example from the physical
design of a high-performance central-processing unit, the S-1 Mark IIA. The short
physical-design cycle which the system makes possible has permitted frequent iterations
of the complete logical/physical design process, allowing feedback about the physical
design to be used in design optimization and timing verification.

KEYWORDS: Computer-aided design, design optimization, digital design languages,
digital system design, ECL, emitter-coupled logic, hierarchical design, physical design,
S-1 Project, SCALD, timing verification, wire list generation, wire-wrap systems, wiring
design.

-y

Acknowledgments

I am deeply indepted to Forest Baskett, John Wakerly, and Lowell Wood for their
constant friendship, encouragement, and guidance during the course of this research, and
for their many useful suggestions for improvements in this dissertation. The Fannie and
John Hertz Foundation’s gracious support via a Hertz Fellowship during my graduate
studies has provided me the freedom to pursue this research. Tom McWilliams worked
with me on the development of the SCALD base on which the Packager has been
erected, in an outstandingly enjoyable and productive collaboration. Bill Bryson, Mike
Farmwald, Tom McWilliams and Jeff Rubin have been the first major users of the
Packager, and their patience and many suggestions for its improvement have been most
appreciated. Steve Correll generously provided invaluable aid in building and
enhancing the S-1 documentation system, on which thi: thesis was produced. Joe
Simpson was of great help in overseeing the development of the wire-wrap boards used
in the S-1 Project, and in aggressively advancing of the art of applying wires to those
boards.

My thanks also go to the Office of Naval Research, the Naval Electronics System
Command, and the Naval Material Command for their support of the S-1 Project,
which has provided the necessary environment for this research, to Tom McWilliams
and Lowell Wood, whose tireless efforts were essential in getting the S-1 Project
underway, and to Forest Baskett, Jerome Feldman, and John McCarthy who graciously
provided advice and computer resources during the early days of the S-1 Pro ject.

This work was in part performed under the auspices of the US. Department of
Energy at the Lawrence Livermore National Laboratory, which is operated by the
University of California under contract No. W-7405-ENG-48.

Table of Contents

I INTRODUCTION

1.1
1.2
1.3
14

Purpose of this Investigation
Introduction to Wire-Wrap Technology
SCALD History

Previous Approaches

I OVERVIEW AND CONTEXT OF THE ALGORITHMS

2.1
22

2.3

The SCALD System

The SCALD Packager

22.1 User Specification of Technology
222 Context of the Algorithms

The S-1 Mark IIA 4108-Chip Example

III THE ALGORITHMS

8.1

82

83

84

8.5

ASSIGNMENT OF INPUTS TO VERSIONS

3.1.1 Detailed Description

3.12 Experience

DETERMINATION OF CHAINS

3.2.1 Detailed Description Ce e e e
82.1.1 Algorithm C1 — Minimum-Cost Chains
32.12 Algorithm C2 — Minimum-F Chains

32.1.3 Algorithm C3 — Quicker Minimum-F Chains

3214 Estimating Wire Lengths
822 Experience
ASSIGNMENT OF CABLE WIRES
3.3.1 Detailed Description
3.32 Guiding Cable Placement
3.33 Experience
ASSIGNMENT OF TERMINATORS
8.4.1 Detailed Description
842 Experience .
ASSIGNMENT OF WIRE TYPES
8.5.1 Detailed Description .
$5.1.1 Algorithm WT1 — The Formal Core
85.12 Algorithm WT2 — Heuristics

~vi-

18
25

29
30
35
40
48
53
b4
63
77

7
80

3

SER

100
102
103
107
112
115
118

v

3.52 Experience

836 ASSIGNMENT OF SHIELD PINS

8.6.1 Detailed Description
36.2 Experience

37 ESTIMATION OF INTERCONNECTION DELAYS

8.7.1 Detailed Description
3.72 Experience
38 CHANGES AFTER CONSTRUCTION

CONCLUSIONS
4.1 Experience

42 Contributions
4.3 Future Research

V REFERENCES

VI

FOOTNOTES

-vii-

120
182
133
134
137
139
144
151

154
154
157
159

161

167

1.2-1
1.2-2
12-3
12-4
12-5
12-6
2.1-1
3.1-1
3.1-2
8.2-1
32-2
32-3
8.2-4
822-1
8.3.3-1
34.2-1
8.4.2-2

List of Figures

A Wire-Wrap Connection
One Socket of an S-1 Mark IIA ECL 10K Board
The S-1 Mark IIA ECL-10K Board
Closeup of a Stuffed S-1 Mark I ECL-10K Board
Closeup of a Wrapped S-1 Mark 1 ECL-10K Board
A Thickly Matted S-1 Mark I ECL-10K Board
SCALD System Structure .
Explicit Versioning in the SCALD Loglc De51gn Language
Replication in the SCALD Logic Design Language
Conventional Level Assignment in a Chain
One-Arm and Two-Arm Chains
Severely Suboptimal Chain Delay
Severely Suboptimal Chain Length .
Relationship Between Chain Delay and Tw1sted-Pa1r or Cham Length
Cable Wires Used to Connect Board Pairs
Terminator Assignment Pattern
Effect of Available Terminator Density on Orthogonal Distances

~viii-

13
14
15
16
17
33

67
73
73

89

105
106

List of Tables

2.3-1 Standard Histogram Format .. . 52
3.1.2-1 Number of Versions Available in Muluple-Versmn Loglca] Slgnals 64
3.1.2-2 Number of Inputs Assigned in Multiple-Version Logical Signals . 65
3.22-1 Number of Nodes in Chains e e e e e e 90
3.3.3-1 Number of Cable Wires in Nets .o Ce e e e 99
3.5-1 Wire Types Used in the S-1 Mark IIA Processor .. 109
852-1 Rounding Error in Crosstalk Contribution of Wire-Type Assxg‘nments 122
3.52-2 Length Distribution for L1.SWXY Wire Ce e e e e 128
8.56.2-3 Length Distribution for L2ZSWXY Wire e e e e e 124
8.52-4 Length Distribution for LLUWXY Wire 125
3.56.2-5 Length Distribution for L2ZUWXY Wire 126
3.562-6 Length Distribution for L2ZTWXY Wire 127
85.2-7 Length Distribution for LATWXY Wire 128
8.6.2-8 Length Distribution for L2TWPP Wire e e e 129
3.52-9 Length Distribution for L3TWPP Wire e e e e 130
3.52-10 Length Distribution for WPCBLW Wire Coe e e e 131
36.2-1 Shield-Pin Assignment Distances e e e e e e 136
8.7.2-1 Capacitive Component of Chain Delays e e e e e 147
3.72-2 Minimum Chain Delays 148
87.2-8 Maximum ChainDelays 149
3724 Chain Skews . . Ce e e e e 150
4.1-1 Breakdown of Average Net Processmg Tlme ce e e e e 156

Chapter I

INTRODUCTION

L1 Purpose of this Investigation

Wire-wrap [1] is an important and widely accepted [2] technology for
implementing both prototype and limited-production digital systems. Wire-wrap is easy
to design with, it is capable of providing reasonably high digital-system performance
levels, it is not prohibitively expensive, it is easily changed, and it is reliable [Br62,

Do’6, E159, GD79a, GD79b, Gr61, Ma54, Ma'74, MR 53, MW78b, Ro71]

The importance of wire-wrap as a prototyping technology can be expected to
increase greatly as very large scale integration (VLSI) [Me80] of logic circuitry matures.
As the complexity of VLSI designs increases, it becomes increasingly important to verify

the correct logical operation of such circuits in an essentially mechanical fashion. As a

-1-

mechanical verification tool, software simulation is so slow that it precludes the detection
of efrors which only rarely manifest themselves in actual operation. However, a
hardware prototype (which obviously must correspond logically in an obvious and
certifiable way to the VLSI design being verified) may allow the logical design to be
exercised much more extensively, revealing more subtle logical-design errors [MW77].
Wire-wrap is a natural choice for the prototyping technology, since a wire-wrap system
can be quickly constructed, and after construction it can be probed as necessary to
discover and explore the design errors; it may then easily be changed to correct the

problems [3].

Because wire-wrap is a relatively unconstraining technology from an
implementation point of view, the logic can be designed largely independently of
partitioning and other packaging considerations; hence the design of wire-wrap digital
systems is normally divided into two phases: logical design and physical design [MW 78a,
MW78b]. During the logical-design phase, the interconnections between logical elements
are defined, while simply assuming that some correct physical design exists. During the
physical-design phase, a particular wire-wrap implementation is designed which
correctly implements the now-fixed logical design. This two-phase process may need to
be iterated before the machine is built, in order to correct for actual interdependencies

between the logical and physical designs which were neglected in this model.

Because of the large number of operations involved in the physical design of a
large digital system [4], and because multiple physical-design iterations may be necessary

in order to correct timing errors, automatic physical design is essential to make complete

-2

timing verification of such a system [MWS80a, MW80b]v a practical reality;, timing
verification provides a guarantee that the system will perform reliably and reproducibly
under all variations of data and programs. The system reported here, the SCALD
(Structured Computer Aided Logic Design) Packager, has actually been used on a
regular basis to iterate the physical design of the S-1 Mark IIA processor [S179],
producing a complete set of interconnection delays for the SCALD Timing Verifier,
which then provides the designer with the information required to correct all timing

errors.

In turn, practical timing verification makes the use of hardware prototypes
(including wire-wrap prototypes) much more attractive. The timing of a hardware
prototype is generally quite different from the timing of the object machine, hence
building a hardware prototype has in the past involved debugging two rather unrelated
sets of timing problems, i.e, that of the prototype, and that of the ob ject machine. Given
practical timing verification, the human effort involved in discovering these timing

errors is greatly reduced.

Therefore, one purpose of this research is to develop and evaluate a complete,
practical set of computer algorithms which can be used to quickly and automatically
produce high-quality wire-wrap physical designs (exclusive of component placement),
and which is sufficiently flexible to handle the wide range of different wire-wrap and
component technologies currently employed, in particular, extending to the largest and

most complex wire-wrap digital systems (e.g., the S-1 Mark IIA).

-3~

But this research also is intended as an example of how high-level hierarchical
logic design with timing verification, such as that supported by the SCALD Logical
Design Subsystem [MW 783, MW80a, MW80b, S178, $179), can be extended all the way
down to detailed physical implementation; although we have chosen wire-wrap as the
specific technology to be studied, this case study is important independent of the value of

wire-wrap as an implementation technology.

Furthermore, this research serves as a case study of a particular physical design
effort; the detailed statistics presented about the S-1 Mark IIA physical design are useful
data for the designers of computer-aided-design systems which support implementation

in other technologies.

Finally, many of the specific algorithms presented here are applicable across a
wide range of implementation technologies, including VLSI ones and those involving

integrated circuits mounted on printed-circuit boards.

L2 Introduction to Wire-Wrap Technology

Solderless wrapped-wire connections were developed shortly after World War II
for use with telephone relays [Ke52, MR53, Mab4]. This type of connection is now
known as “wire-wrap,” a term which was introduced by Gardner-Denver Company, the

first major supplier of tools for this technology.

Wire-wrap connections and the associated technology have gained widespread
acceptance for the implementation of digital systems, where they are used primarily for
"interconnecting integrated circuit packages in prototype an’d limited-production systems,
and for interconnecting the edge fingers of printed—circuit boards [Br62, Do76, EI59,
GD79a, GD79b, Gr6l, Ma54, Ma74, MR53, MW78b, Ro71]. The major advantage of
wire-wrap over printed-circuit technology is that the wire-wrap wires can cross each
other (since they are insulated), hence there is no need to perform the complex process of
routing wires to avoid crossovers. The major disadvantage is that it is more expensive in
volume production. Wire-wrap technology has been standardized for US. military use
(in MIL-STD-1130B) and for commercial use (by the Electronic Industries Association,
in EIA RS-280B). Several similar interconnection technologies employing insulated wire
have recently been developed, eg., stitchweld [Mo76], and multiwire [C176], and much of
the research and analysis presented in this dissertation relates to those technologies as

well.

Wire-wrap technology has a wide range of forms for various applications, but

because this dissertation is concerned with a system for the automatic physical design of

large, high-performance, wire-wrap digital systems, we will focus here on wire-wrap
technologf as it is typically used for interconnecting integrated-circuit packages in such
systems, eg., in the S-1 Mark I and S;l Mark IIA processors [MW?78b, $177, S178,
$179]. High-performance wire-wrap packaging technology and the associated

component technologies [Do76, Fa77] have matured only during the past decade.

A wire-wrap connection is a gas-tight electrical connection consisting of a helix of
continuous, solid, uninsulated wire tightly wrapped around a pin having sharp edges, as
shown in Figure 1.2-1. The connection is held together by cold welding of the wire to
the edges of the pin, against elastic stresses in the pin and wire. Such a connection is
ordinarily created by a precision tool having a hollow, wire-loaded wrapping bit which
slips over the pin, and which can easiiy be removed after the wire has been rapidly
‘twisted around the pin by the rotation of the bit. Although a wire unwrapped from
such a connection cannot be reused, a pin can be reused many times (except in
ultra-high-reliability applications); thus the technology is well suited for prototype
implementations. A wide variety of terminal sizes and wire gauges are supported by the
wire-wrap industry; AWG-30 wire wrapped around a 0.025-inch square-cross-section
pin is standard, and all connections in the S-1 Mark I and S-1 Mark ITA processors are

of that type.

Figure 1.2-1

A Wire-Wrap Connection

At least one end of a wire-wrap pin has sharp corners at which the multiple
(typically 12-25) gas-tight bonds between the wrapped wire and the pins are formed, and
is plated with a soft metal which is highly resistant to corrosion (e.g., tin or gold). The
wrapping is performed on the tail of the pin, which is typically only long enough to
contain either two or three wrapped ends of wires (*wraps”); the remainder of the pin is
devoted to other connection functions. The most commonly used type of wire-wrap pin
is straight, and the head of the pin contains a socket which accepts a single component

lead; different styles of pins are manufactured for other applications.

Straight wire-wrap pins are mounted firmly in a board, and are arranged in
socket patterns; the component is plugged in on one side of the board, and wraps are
made on the other side. The pins can be positioned as close to each other as 0.1 inches
(the standard for the leads of integrated-circuit DIPs), hence the density of sockets

attainable on a wire-wrap board is limited only by the size of the components used.

The custom-designed wire-wrap boards used in the S-1 Mark IIA are the largest
boards fnanufactured by Augat Corporation, the leading supplier of wire-wrap boards.
One of these boards, the S-1 Mark IIA ECL-!OK board, contains 24,700 wire-wrap pins
in an area approximately 23 inches square, and can simultaneously accept 800 standard
16-pin DIPs, 600 8-pin SIPs, 1200 twin-lead capacitors, and 110 25-pair cables.
Another of these boards, the S-1 Mark IIA ECL-100K Board, contains 24,675
wire-wrap pins in the same area, and can accept 325 0.4-inch-wide 24-pin DIPs, 650
1-pin SIPs, 650 twin-lead capacitors, and 110 25-pair cables. Figure 1.2-2 shows one
socket of the S-1 Mark IIA ECL-10K board, viewed from the component side, and

Figure 1.2-3 shows the entire board.

Some wire-wrap boards contain ‘a mix of different socket patterns, and some
contain a ‘“universal” pattern, intended to handle most standard components.
Nevertheless, the shapes of some components may not be accommodated by the fixed
pattern of wire-wrap pins on a board. For example, the S-1 Mark IIA ECL-10K board
contains a fixed array of 16-pin-DIP and 8-pin-SIP sockets, and thus will not directly
accept a 24-pin DIP. In this case, it is necessary to mount the component on a suitable
adaptor, and plug the adaptor into the board. Multiple components may be mounted on
an adaptor, and interconnections may be made between them using printed-circuit traces
on the adaptor. Figure 1.2-4 shows a portion of the component side of a stuffed S-1
Mark I ECL-10K board which happens to bear several adaptors for mounting single

24-pin DIPs.

A wire-wrap board typically contains two or more power planes, as well as

8-

locations for bypass capacitors [Fa77]. For example, the S-1 Mark IIA ECL-10K boards
confain three power planes: V. on the component side, V- in the middle, and V¢
on the wire-wrap side. When the board is manufactured, specific pins of each socket are
dedicated to power planes by soldering to readily accommodate standard chip power and
ground lead connections. After the logic design and component placement is complete,
any additional pin may be dedicated to the component-side (V) plane by installation

of a solder clip.

In ECL wire~wrap systems, transmission lines of some type must be used for long
segments, both in order to reduce inter-wire crosstalk, and in order to reduce impedance
discontinuities to acceptable levels [A160, De70]l Although many forms of
wire-wrappable transmission line are available, including twisted-pair, twisted-triplet,
shielded-twisted-pair, and coaxial, the most popular is twisted-pair [5]. Twisted-pair
consists of a pair of single, insulated wires which are twisted together; typically, one side
is wrapped to pins dedicated to V., and the other side is wrapped to signal pins. In
order to allow the use of twisted-pair on ECL wire-wrap boards, a large number of
wire-wrap pins must be provided which are dedicated to the V. plane; the S-1 Mark
IIA ECL-10K board provides at feast 10 shield pins per 16-pin-DIP socket, and the S-1
Mark IIA ECL-100K board provides one shield pin for each non-power pin of each

24-pin-DIP socket.

Fully automatic wire-wrapping machines are now available which can cut, strip,
and apply single wires to an arbitrary pattern of wire-wrap pins on a 0.1-inch grid. In

our experience, such machines are capable of applying about 800 wires per hour, at a

-9

cost of about $0.1 per wire. All single wires in the S-1 Mark I were applied using such

fully automatic wire-wrap machines, controlled by output from the SCALD System.

Semi-automatic wire-wrapping machines are available which position a wire-wrap
tool to the correct pin, position the bit of the tool to the right level on the pin, and
automatically wrap the wire, but which require an operator to choose the wire and insert
it into the bit. Semi-automatic wire-wrap machines were used for applying all the
twisted-pair of the S-1 Mark I, at an average rate of about 40 twisted-pairs per hour,

and at a cost of about $0.3 per twisted—pair.

Although all twisted-pairs for the S-1 Mark I were manually cut and stripped,
they could be cut and stripped by a fully automatic machine directly from rolls of
continuous pre-twisted wire, if the wrapping were to be done today. Semi-automatic
machines have recently become available which are designed especially for wrapping
twisted-pairs. These machines have two bits, and can thus simuitaneously wrap both the
signal side and shield side of a twisted-pair, as long as the spacing between the signal
pin and shield pin is the same as the fixed spacing (0.2 inches) between the two bits of

the machine.

The tails of the wire-wrap pins form a maze through which most of the wires
must be routed. Single wires can be easily routed orthogonally through a dense grid of
pins, even passing between pins only 0.1 inches apart, and with difficulty they can be
threaded diagonally through such a grid. However, since the fully automatic machines

which apply single wires are not capable of diagonal routing, such wires are usually

-10-

routed orthogonally. Twisted-pairs cannot easily pass between pins spaced 0.1 inches
apart, .especially if the pins are wrapped. Thus, twisted-pairs are usually either routed
in channels which contain no wire-wrap-~pin tails, or left to hang loosely out of the mat
and the maze of pins. Figure 1.2-5 shows part of a wrapped S-1 Mark I ECL-10K
board; the twisted-pairs on this board were wrapped in either of these two ways, at the

operator’s discretion.

Wherever a wire bends around a wire-wrap pin, the sharp edge of the pin tends
to cut through the insulation and short to the conductor inside. Cut-through insulation
failures are often intermittent ones, and are therefore extremely difficult to diagnose and
eliminate. They can also develop over a long period of time, as the insulation gradually
cold-flows away from the pin’s sharpv edge. In our experience, cut-through is the single
most significant problem with wire-wrap technology in high-performance applications.
Special high-strength insulations [6] have been developed to minimize the cut-through
problem, but insulations which are hard enough to resist cut-through are also stripped
by auto-wire-wrap systems only rather unreliably, since avoidance of wire-nicking is also
required. We have found that an acceptable defense against cut-through insulation
involves both the use of a medium-high-strength insulation and the minimization of the

amount of twisted-pair wire which is forced to lie in the maze of pins.

In ECL systems, single wires routed near each other over a long distance may
crosstalk to an unacceptable extent [7). In TTL systems, crosstalk is less of a problem;
ECL gate delays are comparable to ECL edge speeds, while TTL gate delays, being

much longer than fast {eg., Schottky) TTL edge times, intrinsically smooth out the

=11~

crosstalk noise and prevent it from propagating. Furthermore, single wires do not
perform well as uniform transmission lines at high frequency, since their long-length
impedance level varies depending upon their distance from the ground plane [8]
Shielded wires such as twisted-pairs are the most widely accepted solution for controlling

crosstalk, and additionally provide good impedance control.

However, the use of too many twisted-pairs will cause a thick wire mat tc
accumulate. A thick wire mat makes the underlying pins difficult to access, hence it
slows down the application and removal of wires and increases the manufacturing and .
maintenance costs [9). More seriously, in our experience, the problems of cut-through
insulation, broken wires, and bits of wire inadvertently imbedded in the mat during
wrapping are all negligible when using only single wires, but can become the dominant
cause of failure of a large digital system if the density of twisted-pairs is not carefully
controlled. Figure 1.2-6 shows one of the most thickly matted $-1 Mark I ECL-10K

boards, which carries approximately 1200 twisted-pairs.

-12-

i"

L}

=
"
)

8
(

E
\

a

!

‘!4
Han
{

LKA

b
I
p
i

f L
v
&

[
i

PN

i
fl
1
£ 3

i
q
4
¢
N

3

AFEVE
i 3 &

4
{

E

By

ANars

{

pee

3
]

|

e N

4
5\
!
4
[

13)

This socket is viewed from the component side, looking into th

e X

e pins, ch are spaced

(at closest) at 0.1 inches. The leftmost column of pins accepts one B-resistor SIP, with

Ve and Vo leads. Together, the second column from the left and the fourth from

[arrant o 18 _mnim TTD Tha thivd saliinan is Aadiscatad U7 wmime "Thicr snnlas

LENG FCIL -Ml.lt o 1 AR AJSAN . 4 LIT LILEIGE LRAULLIII 10 wTuivalLcu 'CC Pllla- 4 111> ARACL
g L, — — P

felsdvg i
SYNRY G I3y i adid fvBadvBifafadod g : 1l
B i :m’:mnmm’;mm T 3 ;’};’,‘?3‘
b L G TR L T e Y O 6 BRI R RE R
”’ l{i{ﬁ?ffffﬁ!?;f5;1;#4]:}!1454! ﬁ!h;'i;i;i,gag:!;ﬂ
I Bk i3 i 88 e
-///IIﬂi}l}.}iéﬂ’:;#a:?ffhlmhlri;.lfhﬁ h:zfg;:;}
bt i ikl iy
Illll'ff ﬂlil!lfh!;hl:nn;gsggnr_n:;;;J. t;f:;:fffiﬂu;i,
.{{[‘[‘[I mmm‘up:;m e L T R R R T E PY R B
g .u.,..nunuu;uumnu: IRIRTE! BT B AT EE

BN /] i g g s 08 i

mrumurmrmmimmmmm!:E i ;miihhll

208 . Tk T daitil i1 i P e
- M;lmhmri THE TR hh!ulfs?nﬂ? :

HAF i H Ty
dlg

B uuni!liﬂlﬂﬂ? ﬂﬂ”f”“fﬂﬂ'ﬁu dif
1711/ mﬂh’ﬂﬂmmﬂfsz.;.’4#:.’55:“’«; i uf 4;;§j; flliii !ﬁ

J:ig”’;fﬂig JiBaBaNeB b8 min 5,
EELEI RV RVITRI |

il
mm A mmzmmm

Tia hanwd is viawad feam tha rarmasnant slda SO0 MTD carbrare ara asvravad rasritasle
L 111y WUuall 13 VIOWLOU LIUAIEF LG WlllPUll‘:llL SIUE,. VYV LA SUALALCLY AlG u.llﬂ.]l:u lcsulml

_____ A e b ed smmand bk N2 tomalian leavimaoee il mamad 1 N dennb e vrmuidonile, 19 EN _otee
OVEr LIE puaru, bdeeu L VD LILnes NODILLULLally, alli LY IHUICS YeILiL Il’. 11V UU-PII

The 5-1 Mark TA ECL-I0K Board

;
:
:

:
=

it
e
b
-7z
’
oo
e e
e

=
=Y
o
.
-

LRLELELELELE
Ky S By Macs: Sh0gs Forpn
BB BRI R I e
ﬁn"%m‘i*gﬁ lalurl‘:::d R
SETLTREIRLRY FERL]

§gk =]
s
i

i
=
I
o

g

{RIRIY

G
Ao
g
ke b
ey

3
.

il

gart ¥
e,
oy

k

LH

L]

A
¥

This board is stuffed with ECL-10K 16-pin DIPs, and ECL-10K 24-pin DIPs. Each
24-pin DIP is mounted on an adaptor which carries traces connecting the DIP leads to
wire-wrap pins beneath the adaptor. Adjacent to each 18-pin DIP, oriented vertically,

Figure 12-4

Closeup of a Stuffed S-1 Mark I ECL-10K Board

HE

-
e
>

..
Z

QJ%E
EEiga

T 5L
s

%

-;,;i% ey
T

;

iz

Ty
aﬁégggg
=
AT

N

N U AT | R N et ST U 7o
. S it e e

ST e ol 1) Lt ™oy o o
NS B IAR) LA IRV e ae TR R W
PRESLEE 12U 18 BEE A AR IR WL RN

O I TR T A WYY B 7T el O

: CUAL T ¥ 1) VWA e

B gt A N N

[
LASLTIRGEN ¥ ' T EAIRRA B TOACEDUTL. I 5. ITH (UM W

This [0-socket area of an S-1 Mark I ECL-10K board is viewed from the pin side. It
contains only a moderate mat of twisted-pairs, relative to other boards in the S-1 Mark I
processor. These twisted-pairs were routed at the operator’s discretion, and thus

LAY PrALLEL W

Figure 12-5

Closeup of a Wrapped S-1 Mark] ECL-10K Board

-16-

This board, one of the most thickly matted in the S-1 Mark I processor, carries
approximately 1200 twisted-pairs. In some areas of this board, as much as an hour may
be required to replace a single wire.

-19-

L3 SCALD Histery

An abbreviated history of the development and use of the SCALD System in the
context of the S-1 Project is now presented, to aid in understanding the context and
course of this investigation. Development and exercise of the SCALD System has been
one major thrust of the S-1 Project at the Lawrence Livermore National Laboratory
which 1 commenced with Tom McWilliams and Lowell Wood during the Summer of

1975 [S176, S177, 5178, S179, Wi79a]

During the Project’s first six months, Tom McWilliams and I developed the
original S-1 Uniprocessor instruction-set architecture and S-1 Multiprocessor
architecture, and began designing the S-1 Mark I Uniprocessor. We used the drawing
system (SUDS [He72]) which was available on the DEC PDP-10 and associated
equipment at the Stanford Artificial Intelligence Laboratory (SAIL) for editing logic
drawings. We would edit logic-design drawings interactively with SUDS for about three
hours early every morning, when the SAIL system was minimally loaded. At the
conclusion of the interactive editing period, we would produce a complete set of revised
prints on SAIL’s KA-10-driven xerographic printer/plotter (a Xerox XGP), and do
design work for the rest of the day from this set of 8.5" x 11" hardcopy. The interactive
editing time was ordinarily spent simply entering the corrections and extensions which

we had accumulated during the previous day’s design work.

As we designed the S-1 Mark I processor, we also developed a language (the

SCALD Logic Design Language), for expressing the design hierarchically. Although we

-18-

intended to write the compiler (i, the Macro Expander) for this language later, when it
wouid be more fully understood, we felt that we understood it well enough by the
Summer of 1976 to have a Summer Research Assistant commence writing the Wire
Lister, which was to produce wire-wrap wire lists from a compiled (Macro
Expander-processed) design. The Wire Lister seemed like a straightforward program; it
would simply input an expanded design, and output a wire list. It would be little more
than a traveling-salesman solver, in this early conception, and could easily be finished in
a month. Unfortunately, the actual problem was much more demanding than a Summer

Research Assistant could be expected to handle, and very little progress was made.

During that Summer of 1976, we made good progress on the S-1 Mark I design,
and by Fall we were ready to set aside the logic design temporarily in order to
concentrate on implementing the SCALD I System, ie, the complete set of programs
which would specify in detail the implementation of the S-1 Mark I from the design
drawings which we had created. Tom began work on the Macro Expander, and I

started the Wire Lister.

Since the S-1 Mark I design had become much too big to be compiled on the DEC
PDP-10 at SAIL (primarily due to memory-capacity limitations), we developed SCALD
I on the IBM 370/168 computers at the Stanford Linear Accelerator Center (SLAC). We
finished the bulk of SCALD I roughly six months later, in the Spring of 1977, although
modules were added after that. Both programs turned out to be more demanding than
expected; the Macro Expander was about 8,000 lines of Pascal code, and the Wire Lister

was about 12,000 lines of Pascal code. Our original understanding of the Wire Lister

-18-

turned out to be naive; the traveling-salesman solver was a very small part of the
program.- Because we were designing a large ECL-10K machine, the Wire Lister needed
to be able to handle essentially all of the physical design automatically, and therefore
had to understand in detail many different aspects of the implementation besides the
shape of electrical networks, eg., it had to understand all relevant aspects of wire types,

wire levels, terminator resistors, shield pins, connectors, adaptors, and tranSmission lines.

After finishing the primary development of SCALD I, we returned to the logic
design of the S-1 Mark 1. We continued to edit interactively at SAIL in the mornings,
and to design for the rest of the day using that morning’s hardcopy. When we needed to
run SCALD 1, typically immediately after interactive editing, we would write out a text
form of the drawings onto magnetic tape, drive the magnetic tapes to SLAC, run
SCALD I there, collect the output listings, and then drive back to SAIL. Over the next
four months, as the logic design neared completion, we worked more often at SLAC, and
began developing the last few pieces of SCALD 1. At this point, the logic design of the
§-1 Mark I design consisted of roughly 300 8.5-inch-by-11-inch, relatively sparsely
populated drawings, and expanded to about 5300 ECL-10K integrated circuits. We had
used a total of about 30 hours of KL-10 CPU time in interactive editing of the S-1

Mark I processor design over the one-year period of concentrated work on it.

Tom added to the Macro Expander the capability to read a hand-specified
component placement, then began specifying such placement for the S-1 Mark I
implementation. 1 continued programming, because we found that we had overlooked

some of major functions of the Physical Design Subsystem. First, I upgraded and

~20-

installed a 2000-line Pascal transmission-line physical simulation program that a
Surﬁmer Research Assistant had written, so that we could simulate the signal waveforms
on the interconnection nets in the S-1 Mark I. Then I wrote a 5000-line Pascal program
designed to allow us to make changes in the high-level drawings, and which could
automatically produce a wiring-change list. Finally, I wrote a 3000-line Pascal program
to write the magnetic tapes which would allow us to automatically check the wiring of a
board. At this point, which concluded its development, the entire SCALD I System
consisted of about 30,000 lines of Pascal code; the Physical Design Subsystem had grown
to 22,000 lines of Pascal code, and had required a total of approximately 12 man-months
to implement. Approximately 30 hours of 370/168 time had been used in SCALD I

development.

By this time, in the early Fall of 1977, Tom had completed all aspects of the S-1
Mark I component placement, we had massaged the errors out of the SCALD I System,
and we produced the final S-1 Mark I wire list. About 40 minutes of 870/168 time were
required to generate this list and all associated documentation, starting with the high
level drawings being input to the Macro Expander. (The EBOX, the
instruction-executing unit of the Mark I, completed layout first, and was sent out for
wire-wrapping in late Summer.) Except for the subsequent addition of some minor

features to the Physical Design Subsystem, the SCALD I System was finished.

During the next year, additional personnel joined the S-1 Project, and
participated in the debugging of the S-1 Mark I and the installation of an operating

system which allowed use of the Mark I as a production computing system. The last of

-21-

the 12 large wire-wrap boards constituting the Mark I processor was received back from
the wire;wrap vendor (the Datatex Corporation of Houston, Texas) at the end of
January 1978, and the Mark I executed its first multi-hundred line Pascal program in
mid-July, following a debugging period in which Jeff Rubin and Mike Farmwald
participated crucially. The first version of its single-user operating system commenced

service in Summer 1978 also.

Debugging the S-1 Mark I provided us with a practical education about the
manufacturing problems associated with high-performance wire-wrap machines. On
some boards, wires were very difficult to add or remove [9]. The wire mat contained
buried bare fragments of wire which had been generated and inadvertently dropped into
it during manufacturing; these would slowly migrate to contact with wire-wrap pins and
the underlying Vg plane, causing intermittent shorts. Many wires were brought too
tightly into contact with wire-wrap pins because of the thickness of the mat, and would
cut through to pins (sometimes intermittently) or simply break. We resolved to improve
the algorithms in the SCALD Physical Design Subsystem in order to reduce the

wire-mat thickness on the boards of the S-1 Mark IIA.

Following the debugging of the S-1 Mark I, the S-1 Mark IIA design effort
commenced. Soon, the SCALD II Logic Design Language was developed from the
original (SCALD I) Logic Design Language base by adding the constructs which we
were finding to be necessary or highly desirable when designing the S-1 Mark IIA.
Tom wrote the SCALD II Macro Expander (consisting of 4000 lines of Pascal code)

without the component-placement module which had existed in the SCALD I Macro

-22-

Expander. Jeff Rubin wrote the Layout Program (consisting of 7000 lines of Pascal
code), which replaced that module, but was also capable of automatically optimizing

component placement within designer-specified constraints.

During the implementation of SCALD I, Tom and I had discussed two ma jor
areas which seemed to merit further development: formalization of the timing notation
used in the S-1 Mark I logic drawings, and generalization of the Physical Design
Subsystem to accommodate a wide range of user-described component technologies and
wire-wrap packaging systems. Given the size and complexity of the S-1 Mark IIA
design, these improvements were important ones. At this point, therefore, Tom
commenced development of the SCALD Timing Verifier (consisting of 6000 lines of
Pascal code), which involved both .a formal timing notation, as well as a system to
understand and check the new formalism [MW80a, MW80b), and I began to develop a
more general and higher quality version of the SCALD I Physical Design Subsystem,

ie, the SCALD II Packager.

Because the SCALD I Physical Design Subsystem was so intimately tied to the
specific package used for the S-1 Mark I, the SCALD II Packager had to be developed
from scratch. The SCALD II Packager turned out to be about twice as difficult to
create as the original Wire Lister in the SCALD I Physical Design Subsystem; without
either a wire-change or a board-check package, it amounted to 30,000 lines of Pascal
code, and required nine months to complete. The increased difficulty arose not only
from the greater generality, but also from the much greater level of detail necessary in

the models and algorithms in order to handle the more complex technology of the S-1

23

Mark IIA.

Thus, the SCALD II System now consists of nearly 50,000 lines of Pascal code. It
has been greatly generalized and improved, relative to the SCALD I System, primarily
by the extension of the SCALD Logic Design Language, addition of automatic
component placement, addition of timing verification, and generalization of the
Packager. We are currently beginning to run the entire SCALD II System together for
the first time on the S-1 Mark I, processing the S-1 Mark IIA design. This dissertation
is based on our experience with the SCALD II Packager in processing a substantial

portion of the S-1 Mark IIA design.

14 Previous Approaches

There has been no work published in the open literature on an integrated solution
to the large number of separate problems involved in the automatic physical design of
large, high-performance, wire-wrap digital systems, primarily, we suspect, because the
cost-to-create and the value-in-use of reasonably general purpose systems have each
been sufficiently great that such systems have been developed and used only behind
corporate proprietary screens. In addition, wire-wrap implementation systems intended
for iterative use during the design process have hitherto been infeasible due to lack of a
mating front end (e.g., the SCALD Logical Design Subsystem), and to severe shortages of
the computing and memory capacities required to reasonably support the frequent,
full-scale exercise of such systems. However, given the elimination of these deficiencies
and the increased importance of wire-wrap as a modern prototyping technology, and
taking note of recent developments in wire-wrap packaging and component technologies
which make it practical to wire-wrap high-performance digital systems, we believe that

wire-wrap is currently a potentially very fruitful area for research.

There have been a large number of wire-wrap systems implemented without
accompanying descriptions in the open literature (eg., the W program [He72], and the
ROUTE program [MC78)). The systems that have been described in the open literature
[A160, Ba66, Fr78, Ho72, Ka64] do not have the flexibility to exploit the full range of
wire-wrap packaging technologies available today, and do not model the wire-wrap
environment in the detail necessary for designing large, high-performance, digital

systems. They are thus inadequate in two crucial respects.

25—

There has been no work published in the open literature regarding the integration
of a wire-wrap packaging system with timing verification or a high-level logic-design
language such as the SCALD Logic Design Language. In fact, the first practical
implementation of timing verification [MW80a, MW80b] has only recently appeared in
the literature, and SCALD-like languages have only recently begun to be be used in real

hardware design.

Nor has there been any work published in the open literature which presents
detailed statistics about the physical design of a large, high-performance, wire-wrap
digital system such as the S-1 Mark IIA processor. This particular deficiency is very

significant to anyone contemplating or executing the design of such systems.

However, there has been published work on some isolated aspects of the total

problem, as discussed below.

The problem of assignment of inputs to different versions of signals with large
fanout (Section 3.1) can be reduced to one of cluster analysis in two dimensions. Cluster
analysis in general has received a great deal of attention; [Ha75] and [An73] provide
good surveys of the field. Practical cluster analysis consists of a large body of
cluster-forming techniques. [Ha75] categorizes these techniques into sorting, switching,
Jjoining, splitting, adding, and searching. Sorting techniques partition the ob jects on the
basis of their positions in a sorted list. Switching techniques start with an initial

partition, and exchange ob jects to improve the partition. Joining techniques begin with

-26-

single-object clusters and join clusters until a suitable partition is found. Splitting
techniqﬁes begin with a one-cluster partition, and split clusters until a suitable partition
is found. Adding techniques add individual objects to existing clusters. Searching
techniques enumerate all feasible clusters. Unfortunately, in the version-assignment
problem discussed below, clusters must ultimately be evaluated by how well they form
chains, clusters have a maximum-size limitation, and balance between clusters is
important; therefore, the algorithms which have veen previously reported are unsuitable.
However, the algorithm developed for the SCALD II System draws on both sorting

techniques and adding techniques.

There has been a great deal of work on net-formation methods which are not
applicable to the wire-wrap environment. [Br72] discusses techniques for routing wires
on printed—circuit boards. [Ho86] and [Lo57] discuss techniques which are not limited to
chain networks. [Ku75] and [Na76] discuss techniques for environments with peculiar

constraints.

Our environment demands the formation of nets which are chains (Section 3.2).
The prqblem of determining minimum-cost chains is equivalent to the
traveling-salesman problem, upon which a great deal of work has been done. [Be62],
[He70), [He71], [Li65], [Li78], and [Ro74] discuss specific algorithms, and [Re?7] and
[Be68) survey a number of different techniques. These techniques can be categorized as
approximate methods and optimal methods. The approximate methods are quite fast
(eg., [Li78] presents a method which is O(N?), and usually produce nearly optimal

solutions. We do not demand optimality; however, previous approximate methods cannot

-2~

easily be generalized to produce minimum-delay chains (or chains which minimize a
function of both cost and delay). Compared with the simple dynamic-programming
method [Be62] on which we base our algorithm, the more advanced optimal methods
require complex operations, and hence are slower in execution for relatively small
numbers of nodes. Furthermore, these optimal methods cannot easily be generalized.
Finally, most algorithms for this problem demand that the cost matrix be symmetric, yet
we would like an algorithm which allows an asymmetric cost matrix, so that constraints

can be easily handled.

[Hi67] presents a good overview of dynamic programming, which is the basis for
both our chaining algorithm and our wire-type-assignment algorithm. The only specific
work related to wire-type assignment in our context is [A160), which discusses an ad hoc
algorithm that depends upon the existence of a fixed set of wire types, does not take wire

mat into consideration, and does not deal with constraints on legal assignments.

There has been a great deal of work [BI72, De70, Me69, Wi79, Yab3] on the
modeling of transmission lines, but the simulation methods suggested by such models are
too slow to use in estimating interconnection delays, and they do not easily allow
bounding such delays. Our delay-estimation technique is very fast in execution, and can

be parameterized by the user to produce conservative yet reasonable delay bounds.

There has been some work on the management of engineering changes (eg.,
[Ma80]), but no discussion of the problem of integrating the management of engineering

changes with automatic physical design such as that supported by the SCALD System.

28

Chapter II

OVERVIEW AND CONTEXT OF THE ALGORITHMS

21 The SCALD System

The SCALD Packager is a component in the SCALD (Structured
Computer-Aided Logic Design) System [MW78a, MW78b, MW80a, MW80b, 178,

S179). Figure 2.1-1 shows the structure of the SCALD System.

At the top level, the SUDS Graphics Editor [He72, S179] is used to input and edit
a high-level graphical representation (ie, a SCALD Logic Design Language
representation) of the logical design of a digital system (the object machine). This logical
representation is ordinarily structured for maximum understandability, and need not be
greatly affected by the intended physical structure of the object machine. The SUDS
Graphics Editor as it is used in the SCALD System is independent of the packaging and

component technologies of the ob ject machine.

At the next level, the Macro Expander expands the SCALD Logic Design
Language representation of the object machine, detects syntactic errors, and outputs
documentation for use in the design process. By design, the Macro Expander is also

independent of the packaging and component technologies of the ob ject machine.

" The Layout Program inputs both the expanded logical design and a set of
placement constraints generated by the designer, assigns each component in the
expanded logical design to a physical position (i.e, a board and a location on the board)
s0 as to approximately optimize the placement within the constraints, and outputs a list

of logical signals. A logical signal is simply a set of physical signals, which are in turn

sets of physical nodes {eg., inputs and outputs), such that all nodes in each set are
connected in the logical design. Because the list of logical signals for a large machine is
very long (about 18 million characters for the S-1 Mark IIA processor), it must be
processed sequentially by later phases of the SCALD System. The Layout Program is
relatively independent of the packaging and component technologies of the object
machine, but is constrained to view the package as a set of two-dimensional boards

containing components.

The Packager inputs the sorted logical-signal list and a set of packaging
constraints specified by the designer, completes the physical design, and outputs
instructions for the wire-wrap implementation of the machine, as well as a list of.
estimated interconnection delays for input to the Timing Verifier. The Packager deals
with logical signals sequentially, and outputs documentation about the logical signals in
the same fashion. This sequentiality constraint is essential to allow the construction of
machines as large as the S-1 Mark IIA, and has important consequences for the types of
algorithms that can be used for the packaging process. The Packager assumes that the
object machine is being implemented on a set of two-dimensional wire-wrap boards
connected by cables and backplanes, but the details of the component technologies used,
the board geométries, the tradeoffs involved in the assignment of wire types, and other
specifics about the particular implementation are all specified by the designer in simple

input files.

The Timing Verifier inputs both the expanded logical design, and the

interconnection delays, and checks for timing errors in the complete logical/physical

-81-

design. In order to correct such errors, the designer usually modifies either the logical
design or | the component placement. The Timing Verifier is relatively
technology-independent, although it deals bnly with synchronous digital systems, and in
its current implementation depends upon signals having symmetrical rising and falling

edges.

The SCALD System thus constitutes a complete design system for wire-wrap
machines using any (wire-wrappable) component technologies. It extends from the
creation and editing of the high-level drawings which describe the logical design down
to the algorithms which determine the details of the implementation. The SCALD
System can be used without change to design any wire-wrap digital system, and only the
Packager needs to be revised in order to .design a digital system which uses a different
packaging technology. The amount of code in the Packager which would be retained in
such a revision would depend upon the similarity of the new packaging technology to
wire-wrap; most of the Packager would be retained in upgrading to printed—circuit
capability, and many of the bookkeeping and reporting functions would be retained even

in a upgrade to include nMOS VLSI capability.

~82-

KEYBOARRD INPUT \\r// Ggg??égs \\7 HIERARCHICAL ~
) ~
/’L\\ (SUDS) //J LOGIC PRINTS
UNEXPANDED LOGICAL DESIGN
MACRO \\7 SYNTACTIC ~
EXPANDER //J ERRORS -
EXPANDED LOGICAL DESIGN
PLACEMENT \J//, LAYOUT \\7 PLACEMENT ~
CONSTRAINTS /’L\\ PROGRAM //J MAP -~
LOGICAL SIGNAL LIST
TECHNOLOGY \\r// \\1 IMPLEMENTATION ~_
SPECIFICATION /1\\\ PACKAGER //J INSTRUCTIONS -~
EXPANDED ESTIMATED WIRE DELAYS
LOGICAL DESIGN
TIMING \\T TIMING ~
VERIFIER //J ERRORS ~
Figure 2.1-1

SCALD System Structure

-83-

2.2 The SCALD Packager

The SCALD System is roughly analogous to a high-level-language compiler
system; the SUDS Graphics Editor corresponds to the text editor, the Macro Expander
corresponds to the compiler (which generates intermediate code), the Layout Program
corresponds to the intermediate-code optimizer, and the Packager corresponds to the
code generator. In this analogy, the Packager corresponds to a table-driven code
generator; it generates machines of a wide range of user-specified packaging and
component technologies, just as a table-driven code generator generates programs for a

wide range of user-specified instruction-set architectures.

Given user specifications of the component and packaging technologies to be
employed, the Packager is responsible for making all the decisions involved in the
physical design, exclusive of decisions about component placement. As a first priority,
the Packager attempts to create a physical design which is free of electrical problems
such as excessive voltage-wave reflections and inter-wire crosstalk, and which does not
require completion by manual effort. As a second priority, the Packager attempts to
optimize the object machine’s manufacturability and performance. To accomplish this
optimization, the Packager contains a great deal of built-in expertise about the general
wire-wrap environment, and relies on many externally defined parameters which

characterize a specific wire-wrap package and set of components.

22.1 User Specification of Technology

A simple set of languages understood by the Packager allows the user to define the
specific cabinet, boards, sockets, cables, adaptors, components, and wire types to be used,
and to control the Packager algorithms. These languages are general enough to allow
specification of the full range of commercially available component and wire-wrap
technologies, and include enough detail to allow the Packager to deal adequately with

high-performance digital systems.

The cabiﬁel: is defined as a set of boards; each board is just a board name and a
board type. The boards in a cabinet definition have no explicit relative positions or
orientations; they are connected together only by cables of use_f—speciﬁed lengths and
positions. Boards are organized into named pages within the cabinet definition in order
to give the Packager a basis for formatting the various summary reports generated for a

machine with many boards.

A board type consists essentially of a list of sockets, each of which has an arbitrary
string name, position, and socket type. In order to simplify the specification of
parameters and reporting formats which apply to groups of sockets within a board, the
sockets of a board type are organized into arbitrary partitions called areas (eg., the
main-DIP-socket area, or the top-connectors area). Each area definition includes
parameters which are used for board-dependent terminator-resistor and shield-pin
searches within the area, and defines formats for reporting the results of those searches.

Within an area, the board-definition language supports iteration, allowing easy

-85~

definition of regular socket arrays.

A socket type consists primarily of a list of the names, positions, and properties of
the wire-wrap pins within the socket type. Wire-wrap pins can be of various types and
levels. A wire-wrap pin can be permanently dedicated to a power plane, or can be
solder-clippable to a power plane; when components are plugged into the board by the
Packager, correct use of dedicated power pins is checked, and solder clips are specified
for installation as appropriate. A wire-wrap pin which is dedicated to ground (and thus
is available to be used for the shield side of shielded wires) can be reserved for shielding
wires connecting to a particular signal pin; this feature is important to support modern
dual-bit semi-automatic twisted-pair wire-wrap machines which require the signal pin

and shield pin to be located at a fixed spacing.

Some wire-wrap digital systems require the use of channelled wire (i.e, wire which
lies completely within major channels on the board), especially for relatively bulky wire
types such as twisted-pair. Hence, each socket has associated with it a set of via points;
the Packager determines the length of each channelled wire using the assumptions that
such a wire must pass through a via point of each of the sockets to which it connects,
must be routed orthogonally between the via points, and must be routed orthogonally
from each via point to the appropriate wire-wrap pin within the socket. Thus, as long
as there exists an orthogonal series of connected channels between each pair of via
points, and between each wire-wrap pin of a socket and every via point of that socket,
then all channelled wires are guaranteed to be long enough to lie completely within

channels. We have found that this model of channels is quite general {most boards

-36-

contain a regular orthogonal network of major channels), yet is easy to specify and is

computationally quite efficient for determining wire lengths.

The interconnections between boards are specified using the cables language. In
this language, cable types are defined by specifying the shapes of the cable connectors,
and the number, type, position, and electrical properties of all the wires in the cable.
The language also allows cables of any specified length to be plugged into any defined
sockets. Thus, for example, any DIP socket in a board of DIP sockets can accept a cable,
as long as the cable type has a connector of the appropriate type to fit the DIP socket.
This flexibility is important for handling general wire-wrap systems, in which cables are

often plugged into standard sockets.

The use of adaptors to mate special components to a fixed socket pattern is very
common in wire-wrap systems. For example, a standard 24-pin DIP will typically plug
into a board containing a fixed array of 16-pin DIP sockets through an adaptor which
covers three sockets and uses some pins of each. The adaptor concept is also useful for
specifying the different ways in which a given component can plug into a socket without
using a real adaptor, for example, in specifying the ways that a 14-pin DIP can plug

into a 16-pin-DIP socket.

The adaptor-definition input language is used to describe each adaptor type. An
adaptor is modeled as having a substrate which covers a two-dimensional area on the
component side of the wire-wrap board, with conductive traces on it which connect

component pins either to other component pins on the substrate, to wire-wrap pins on

-87-

the board, or to both. Multiple components may be mounted on a single adaptor; thus
"polylithic- components” can be constructed with traces on the adaptor connecting
components mounted on it. Terminator resistors may also be mounted on an adaptor,
and will be used to terminate signals on the adaptor when possible. We have found that
allowing adaptors to carry terminator resistors is important, since a adaptor typically
covers several locations on the board which otherwise would have contained

terminator-resistor packages.

The definition of each component type includes a list of the adaptor types which
can be used with the component, the default adaptor to use for each board type, the pin
names of the component, and the important electrical properties of each pin (e.g., pin
type, leakage current, lumped capacitanée, and output transition time). The definition

also specifies how the component pins map to nodes on the adaptor.

Many different wire types are used in a high-performance wire-wrap digital
system, and the detailed properties of each wire type are specified with the wire-type
definition language. In particular, this language is used to define the impedance,
per-unit-length propagation delay, per-unit length inter-wire crosstalk contribution, and
per-unit-length wire-mat contribution of each wire type. These parameters of wire types
are necessary and sufficient to allow the Packager to evaluate the tradeoffs between
different packaging decisions when working with commonly available wire types such as
single wires, twisted-pairs, twisted triplets, shielded-twisted pairs, and coaxial wires, and

commonly available cables such as twisted-pair cable and coaxial cable.

Most Packager algorithms are highly parameterized to allow the user to tailor their
operafion to a specific environment. Many of these parameters are specified in the input
files discussed above, but in addition the Packager reads a list of miscellaneous
parameters for each different user-defined net type (where the net type is determined by
the electrical types of nodes in the net, eg, a net might be ECL-100K, ECL-10K,
LSTTL, or so forth). These parameters are used to control algorithms such as wire-type
assignment for which the operation of the algorithm needs to vary, depending upon the

type of net.

-39

2.2.2 Context of the Algorithms

When the packaging process begins, the logical design and component placement
have already been fixed. The logical design specifies the logical interconnections, and
the component placement specifies the physical positions of components. Hence, when the
packaging process begins, the processed design consists of a list of sets of logically
interconnected nodes having fixed physical positions (perhaps spanning multiple boards).
The operation of the Packager primarily involves determining the details of the wiring

of these logical signals.

The Packager first reads the input files which define the cabinet, boards, sockets,
cables, adaptors, components, wire types, and net types (see Section 2.2.1), and creates
internal data structures to represent those definitions. The Packager then reads and
stores a file which specifies the configuration of cables in the ob ject machine, and a file
which assigns cable wires to special inter-board signals selected for hand-assignment
(eg. interfaces to external logic). A signal is allowed to span more than two boards, thus
multiple cable wires may be assigned to a single logical signal. Next, the Packager reads
a list of the physical positions of all the components in the ob ject machine, and simulates
plugging tﬁe components into the specified locations using the appropriate adaptors,
checking for errors such as overlapping adaptors, rﬁultiple leads plugging into a single
wire-wrap pin, signal leads plugging into power pins, and no power connection available
for a power lead. The placement of terminator resistors and other components not
included in the logical design is specified manually using an iterative language in a

separate file. This iterative placement language is sufficiently powerful that all the

—40-

terminator resistors in the S-1 Mark IIA can be placed with ten short text lines.
Terminator resistors are plugged into boards like any other components, but the

wire-wrap pins into which they plug are marked as being available to terminate signals.

Finally, the Packager processes the logical-signal list. Because a large digital
system may have several tens to a few hundreds of thousands of logical signals, the
processing of the logical signals is sequential and single-pass, i.e, each logical signal is
fully processed on the first pass and is then written out; there is no possibility of
changing the wiring due to the processing of another logical signal. We have found that
in large wire-wrap systems such as the S-1 Mark I and S-1 Mark IIA, the benefits
obtainable by non-sequential or multi-pass processing of the logical signals (e.g., better
terminator-resistor allocation) are nvot significant. On the other hand, a packager for a
more constraining packaging technology (e.g., printed-circuit boards) could not afford to
neglect the interactions (eg. crossovers on a signal layer) between different logical

signals.

The functions that the Packager performs on a single logical signal consist of
partitioning the logical signal into sets of nodes which will actually be electrically
interconnected and then, for each such electrical network, finding the “best”
interconnection pattern, finding the cable wires to use between boards, assigning
terminator resistors, determining the wire type and level for each wire segment, assigning
shield pins to shielded segments, estimating interconnection delays, checking for
design-rule violations, and generating appropriate documentation. These functions are

overviewed below; detailed discussion is contained in the following chapter.

—-41-

In order to simplify buffering, the SCALD Logic Design Language extensively
supports the use of multiple-version logical signals (i, logical signals in which multiple
outputs are generated by identical components having identical inputs, and hence have
the same value over all time). Before designing the physical interconnection networks,
the logical signals must be partitioned into nets. Each net will ultimately be electrically
interconnected, and must contain only one of the equivalent outputs. We have found
that multiple-version logical signals are heavily used when designing large digital
systemns using the SCALD Logic Design Language; hence, automatic partitioning is
important. In doing this partitioning, the Packager attempts to minimize interconnection
delay while keeping the magnitude and duration of signal voltage-wave reflections
within acceptable limits. Automatic partitioning of logical signals into nets is an
important problem in general, since all currently practical digital technologies have
fanout which is limited, and since high-level logic-design languages such as SCALD
make it difficult to specify the partitioning explicitly in the logic drawings. This
problem has not been considered previously because high-level logic-design languages

such as SCALD have only recently become available.

After partitioning a logical signal into nets which must be electrically
interconnected, the Packager continues by processing each net separately. The Packager
first designs the interconnection pattern of the net. Since \.larious factors (see Section 3.2)
limit consideration to chain networks, determination of the interconnection pattern
amounts to ordering the nodes of the chain. In ordering the nodes, the Packager

approximately minimizes a user-parameterized function combining interconnection delay

42

with a measure of the wire-mat buildup. This algorithm is novel not only in that its
beha\?ior can be controlled by the user to range from minimizing interconnection delay
to minimizing wire mat, but also in that it is capable of minimizing interconnection delay
at all. It is applicable to any technology in which interconnection networks are limited to
chains (for example, stitchweld, multiwire, or ECL circuitry on printed—circuit boards),
and is especially important in technologies such as wire-wrap, in which the thickness of

the wire mat can cause severe implementation and reliability problems.

In a large wire-wrap digital system such as the S-1 Mark IIA, the wire-wrap
boards are connected with tens of thousands of cable wires. (The Packager does not
attempt to automatically assign the positions of cables, but does provide the feedback
necessary to allow the designer to specify the positions of cables in an input file.) In the
SCALD System, any net is allowed to span multiple boards; hence, after the
interconnection order for a chain has been determined, cable wires must be assigned for
those segments of the chain which cross between boards. In our experience, although the
manual positioning of cables is relatively easy, the manual assignment of cable wires to
specific nets is quite time-consuming, therefore, the Packager automatically assigns cable
wires (although it allows manual assignment where required, e.g., where the assignment is
predetermined by external logic). Our approach is novel in the way it supplies feedback
to the designer about the degree of optimality of his cable position and length
specifications. The algorithm is also applicable to assignment of 1/O pins of VLSI chips

or printed-circuit boards.

The highest-performance wire-wrappable digital technologies commercially

43—

available today (the ECL families, [Fa77]) have edge times and gate delays so small that
they practically necessitate treating all wire-wrap interconnections as transmission lines,
i.e, ensuring that impedance discontinuities are minimal, and that each transmission line
is terminated in its characteristic impedance. Thus, after assigning cable wires to a net,
the Packager allocates one or more terminator resistors to the net (if necessary).
Terminator resistors may be located directly on the adaptors which mount components,
or they may be separately plugged into the board by means of a hand-generated input
file. The board geometry can greatly affect the number of terminator resistors locally
available for allocation (e.g., a board corner typically has a scarcity of terminators, even
if they are uniformly distributed over the board surface); hence our algorithm is
structured so that parameters in the board definition can guide it to avoid such local
depletion. This algorithm is novel in the way it avoids local depletion of terminators
(eg., at board corners); it is applicable to any technology which requires termination of

electrical networks.

After the positions of terminator resistors (if any) are known, the Packager assigns
a wire type to each segment of the chain. In order to maintain inter-wire crosstalk and
impedance discontinuities within acceptable limits, wire-wrap digital systems using ECL
components require the use of high-quality wires such as twisted-pairs for segments of a
chain more than a few inches long. Unfortunately, if such wires are used for all
segments, the wire-mat thickness becomes a serious problem, resulting not only in high
manufacturing costs, but also in low reliability of operation. Therefore, in assigning wire
types to segments of a chain, the Packager attempts to optimize a user-parameterized

function combining the total crosstalk contribution of the chain with the total wire-mat

44—

contribution of the chain, and generates reports which allow the user to tune the
paraineters of the function in order that the tradeoff of crosstalk against wire-mat
thickness will be made to his satisfaction. This algorithm is a novel approach to
wire-type assignment, and is applicable to any technology in which wires of different
electrical quality have differing mechanical costs, including nMOS VLSI, and stitchweld

with twisted-pairs.

Shielded wires such as twisted-pairs require that the shield side be connected on
each end to a voltage source. Hence, after the wire type is known for each segment of a
net, the Packager automatically allocates shield pins (if necessary) from among those
available on the board. A shield pin is used only once, except that it may be used for
both the incoming and outgoing ségments connecting to a single signal pin. During
shield-pin allocation, the wire-type assignment is viewed as fixed, and is not repeated. (It
is notable that the length of a twisted~pair cannot be calculated exactly, in general, until
after shield-pin allocation, since it depends upon the exact position of each shield pin
relative to its associated signal pin.) Our algorithm is novel in the way it avoids local

depletion of shield pins (e.g., at board corners).

Timing verification using actual interconnection delays plays an important part in
the SCALD design strategy. Therefore, after the wiring of a net is fully designed, the
Packager makes estimates of the minimum and maximum interconnection delays from
any output to any input within the net, and reports those delay bounds to the Timing
Verifier. SCALD II is the first instance of a physical design system being interfaced to

timing verification. To guarantee a timing-error-free design, the delay bounds need

—45-

only be conservative, not exact; hence our algorithm is extremely simple. On the other
hand, our algorithm is sufficiently accurate that the designer is not presented with a
large number of spurious timing errors. The basic idea that a conservative delay
estimator is much simpler than an exact delay estimator is a concept which may be
useful in other technologies in which timing verification is employed. The algorithm
itself is directly applicable to machines implemented with a wide range of digital
component and implementation technologies, including integrated circuits mounted on

printed-circuit boards.

After a net has been fully designed, the Packager checks it for various design-rule
violations {(e.g., direct-current overloading, excessive signal voltage-wave reflections, no
inputs, no outputs, too many outputs, excessive separation between multiple outputs, etc.).
These design-rule checks are a function of the net type and are controlled by parameters

input by the user.

It is important to supply extensive feedback to the user so that he can evaluate the
performance of the Packager’s algorithms and ad just parameters in the input files. Each
net is fully documented in an output file for reference during debugging of the ob ject
machine, and many different summaries, histograms, and maps are generated. Some
reporting formats are user-parameterized (e.g., board-map formats, which depend upon
user-defined board geometries). A simple language vallows the user to specify the
counting of events of interest to him during packaging (e.g., plugging in an MSI chip),
and the Packager reports those counts by board. Reporting functions comprise a large

amount of the total code in the Packager, as they must for any highly automatic

-46-

packaging system.

A key element in a design strategy for prototype digital systems is the proper
support for changes after the system has been constructed. In the SCALD System, the
designer can make changes in the high-level soﬁrce drawings even after the construction
of the ob jec't machine, and the system will determine a minimal set of changes which are
sufficient to make the existing physical machine consistent with the new logical design.
The techniques developed to close the loop from constructed system to high-level logic

drawings and derivative documentation are important in any prototyping technology.
The following chapter deals with the details of the major algorithms introduced

above, and presents data about the performance of those algorithms on a representative

4108-chip section of the S-1 Mark IIA design, which is described in the next section.

~47-

23 The S-1 Mark IIA 4108-Chip Example

The following chapter presents data derived from exercising the Packager and

evaluating its performance on a major portion of the S-1 Mark IIA processor design.

The logic in this example is mounted on 12 wire-wrap boards (11 S-1 Mark IIA
ECL-10K boards, and 1 $-1 Mark IIA ECL-100K board). The boards are mounted in
a frame such that they form two parallel six-board layers, separated by approximately 4
inches. Within each layer, the boards are tightly packed in a regular
2-board-by-3-board grid. Cables are mounted on the edges of the boards, and are

unrestricted with respect to which pairs of boards they can connect.

Logic on the ECL-100K board consists entirely of 119 24-pin DIPs (mounted
without adaptors), whereas the logic on the ECL-10K boards consists of 3509 16-pin
DIPs (mounted without adaptors), as well as 120 ECL-100K 24-pin DIPs, 356
24-pin-QIT packages (both mounted on adaptors occupying 2 16-pin-DIP sockets), and

4 48-pin packages (mounted on adaptors occupying 4 16-pin-DIP sockets).

The 12 boards in this example contain 34% empty DIP sockets. Some logic {eg,,
registers to pipeline control signals) which will ultimately be located on these boards has
not yet been placed, and the inclusion of such logic can be expected to reduce the

fraction of empty sockets to approximately 10%.

The logic in this example is part of the IBOX of the S-1 Mark IIA processor

-48-

[$179]; it consists primarily of the complete index-register file, data~address arithmetic,
virtual-to-real data-address map, data cache, and operand queue. It contains 1.04
million bits of high-speed ECL random-access memory in 1067 RAM chips, in addition
to 644 ECL-10K SSI chips, 2158 ECL-10K MSI chips, 19 ECL-100K SSI chips, and

220 ECL-100K MSI chips.

The Layout Program produced the component-placement specification from
high-level input created by the designer. In general, the placement of the logic in the
data paths was specified exactly by the designer, whereas the placement of miscellaneous

control logic was automatically generated, given designer constraints.

The style of component placerhent specified by the designer was distributed within
boards, ie, the components which operate on multiple bits of a data path were, in
general, placed in a distributed fashion across the entire length of a row or column of
sockets on a single board, instead of being clustered in one small area of the board. This
component-placement strategy tends to keep the numerous data-path wires short, thus
minimizing the wire mat, and also tends to distribute the multiple loads in control

signals, reducing voltage-waveform reflections in such.

At the next higher level, the style of component placement was clustered, ie.,

related logical functions were placed on the same board, wherever possible.

Unless otherwise noted, all of the data reported about the example were gathered

while chaining for minimum-length chains (see Section 3.2). Furthermore, during the

—49-

collection of these data, the wire-type-assignment parameters (see Section 3.5) were tuned
to produce a twisted-pair density which is acceptable for our purposes, but which may
be suboptimal in other systems (e.g., systems in which larger or smaller channels exist for

routing twisted-pairs).

Except as noted, the boards were fully stuffed with SIP resistor networks,
providing 6 terminator resistors per ECL-10K DIP socket, and 10 terminator resistors
per ECL-100K DIP socket. All the terminators, even those not ad jacent to a populated

socket, were made available for assignment by the terminator-assignment algorithm.

Al the execution statistics reported were gathered by running the Packager on the
S-1 Mark I processor (which has a throughput rate approximately equivalent to that of

an IBM 370/168).

Many execution statistics are reported in a standard histogram format, such as that
shown in Table 2.3-1. Each event of interest causes a single count to be accumulated in
one bucket of the histogram, corresponding to the value of interest. For example, this
histogram shows the number of versions assigned in each versioning process; the number
of versions is the value of interest. The entry in the leftmost column is the floor of the
bucket. The entry in the next column to the right is the number of counts accumulated
in the bucket {eg., in this example, there were 41 eveﬁts counted having not less than
three, but less than four versions). The third column shows the ratio of the count
accumulated in this bucket to the total count. The fourth column shows the sum of all

entries in the third column, up to and including this bucket. The fifth column shows the

50~

ratio of the value accumulated in this bucket to the total value. The sixth column shows
the sﬁm of all entries in the fifth column, up to and including this bucket. The total
value accumulated, the total count accumulated, and the minimum, average, and

maximum values are shown at the bottom.

-51-

Cumulative Cumulative

Count Count Versions Versions

Versions Count Fraction Fraction Fraction Fraction
0.9 (%) 0.000 0.000 0.000 9.000
0.0 0 0.000 0.000 0.000 0.000
1.0 0 0.000 0.000 0.000 0.000
2.0 119 9.531 0.531 8.352 0.352
3.0 41 0.183 0.714 0.182 9.533
4.0 42 0.187 0.902 ©.248 9.781
5.0] 0.000 0.902 9.000 0.781
6.0 18 0.080 0.982 0.160 9.941
7.0 4] 0.000 0.982 0.000 0.941
8.0 2 0.009 0.991 0.024 0.965
9.0 (7] 0.000 0.991 0.000 0.965
10.0 0 0.000 0.991 0.000 0.96S5
11.0 (%) 0.000 0.991 0.000 0.965
12.0 2 0.009 1.000 0.635 1.000
13.0 7] 0.000 1.000 0.000 1.000

677.000 = Sum of versions
224 = Sum of counts

= Minimum versions
3.022 = Average versions
= Maximum versions

Table 2.3-1

Standard Histogram Format

-52-

Chapter III

THE ALGORITHMS

~58-

3.1 ASSIGNMENT OF INPUTS TO VERSIONS

In the design of large digital systems for implementation in any currently practical
digital technology, it is frequently necessary to create multiple physical outputs having
the same value behavior over all time, and to use those unconnected outputs to drive a
large set of inputs. Each such output, along with the inputs that it drives, is called a

version.

Depending upon the logic family being used, the size and performance goals of the
design, and the level of support provided for versioning by his design tools, a designer
will choose to use versioning for different reasons and with different frequencies. In the
TTL logic family, versioning is often used to reduce loading due to input leakage
currents; a TTL output can typically drive only ten TTL inputs. In the ECL-100K logic
family, versioning is used primarily to reduce reflections, and to reduce interconnection
delay (due to wires and capacitive loading by inputs) by providing a high branching

factor at the source of the versions.

In order to allow the designer to use versioning without proliferating logical signal
names or confusing the logical operation of the design, the SCALD Logic Design
Language allows a single logical signal to represent multiple versions; wherever the
logical signal name is used in the logical design, all versions are implicitly available.
Figure 3.1-1 illustrates how a designer using the SCALD Logic Design Language can
label different physical outputs as being versions of the same logical signal; in this case,

six versions of the signal OUTPUT are created. Figure 3.1-2 indicates how a designer

using the SCALD Logic Design Language can replicate a macro multiple times,
connecting all the inputs together, but leaving the outputs as separate versions; in this
case, the gate macro is replicated twice (because of the “x2” written inside), providing six
total versions of the logical signal “CK” (since each instantiation of the gate macro has
three versions of its output buried inside), all of which are implicitly available wherever

“CK"” is used.

The completeness of the support for versioning provided by the SCALD System
and the large size and high performance goals of the S-1 Mark IIA processor design
combined to encourage the extensive use of versioning in the S-1 Mark IIA design
process. Section 3.1.2 discusses our experience with the use of versioning in the S-1

Mark IIA 4108-Chip Example.

At some point before construction of the ob ject machine commences, assignment
must be made of inputs to versions. This version assignment needs to be a strong
function of the actual placement of components, since ignoring placement can result in
unacceptably large reflections and highly suboptimal interconnection delays. Automatic
component placement therefore implies the need for automatic version assignment. Even
without automatic component placement, the great frequency with which versioning is

used in a high-performance digital system makes manual version assignment impractical.

-55-

INPUT L

\ OUTPUT -1

19111) OUTPUT ,2
G1) OUTPUT -3

A

OUTPUT ~4
19111 OUTPUT /5
G2 yl OUTPUT 6

\

Figure 3.1-1

Explicit Versioning in the SCALD Logic Design Language

INPUT L

.2
19111V OUTPUT
G1)

Figure 3.1-2

Replication in the SCALD Logic Design Language

-56-

Most version assignment must therefore be done automatically, although the
designer can be expected to explicitly specify version assignment in exceptionally
complex or critical cases. Our algorithm receives sets of logical signals in which the
physical positions of all nodes are fixed (in fact, each node corresponds to a unique
wire-wrap pin on some board); its outputs are marked with version identifiers, and all
inputs need to be assigned version identifiers. Based primarily on the physical positions
of the nodes, the algorithm proceeds to assign version identifiers to the inputs. In our
system, for simplicity, this assignment is made before any further operations on the
versions {such as determining the actual physical electrical interconnection networks), and

is not repeated for any reason.

There are two important goals of the version-assignment process: first, to design
versions in which no inputs will observe excessive reflections from lumped loads within
the version, and second, to minimize the worst-case interconnection delay across all

versions.

Ultimately, each version will be electrically interconnected using a chain
interconnection network {(see Section 3.2). There are two basic styles of chain in which
the waveforms observed by the inputs are always acceptable (ie., nearly monotonic in
time, although possibly degraded in “crispness”). distributed chains, in which the
separation of the inputs is sufficiently large, relative to the rise time of the output, that
the individual reflections disappear before they accumulate, and clustered chains, in

which the inputs are so close together that the individual reflections accumulate

-5-

immediately (i, over a time interval short compared to that of a gate delay).

It is easy to see that a balanced version assignment which allows tightly clustered
chains is also good from the point of view of minimizing interconnection delay, since
such a version assignment clearly tends to minimize the worst-case chain length.
Therefore clustered chains are good both from the point of view of controlling

reflections and from the vantage point of minimizing interconnection delays.

On the other hand, a balanced version assignment which properly distributes
inputs to allow the construction of distributed chains does not necessarily tend to
minimize interconnection delays. Our algorithm therefore does version assignment so as

to guarantee that clustered chains are produced.

3.11 Detailed Description

Given a set of N, output nodes, and a set of N, input nodes, all with fixed
physical positions, we seek to partition the input nodes into N clusters of one or more
inputs, such that the inputs within a cluster will be physically close along a chain, and to

assign one output to each cluster of inputs.

In general, clustering is a difficult problem, one which has been explored in depth.

However, we have exploited the special nature of our particular domain in developing a

simplé clustering algorithm which has been shown to work well in practice.

Since we are most concerned with the properties (e.g., compactness) of each
individual cluster, the algorithm attempts to grow each cluster up to its full size one at a
time, rather than to grow all clusters simultaneously. It first determines a tentative
maximum cluster size, which applies to all clusters to be formed from this set of inputs
and outputs, and then grows each cluster up to its natural size (but to no larger than the
maximum cluster size). If a suitable partition is not formed, then it chooses a larger

maximum cluster size and iterates the process.

Given a maximum cluster size, the algorithm forms each cluster separately. It
begins by picking any output, and assigning to it the nearest input. It continues to add
the “best unassigned input” to the cluster in progress until no more suitable inputs
remain unassigned, or until the cluster has reached the maximum cluster size, and then

forms the remaining clusters from the remaining inputs in the same way.

Since we are actually concerned only that the inputs within a single cluster be close
along the chain which will ultimately be formed, we simply define the best unassigned
input to be that unassigned input which is closest to some input already assigned to the
cluster, and an unassigned input is suitable if and only if it is within a fixed

(user-defined) cluster step of some input already assigned to the cluster.

Choice of the maximum cluster size is critical. If the maximum cluster size is too

-59-

small, then the the algorithm will fail to find any valid partition, i.e,, inputs will remain
unassigned. On the other hand, if the maximum cluster size is too large, then the
algorithm will attempt to assign too many inputs to the initial clusters, and the last
outputs to be considered will receive no inputs; the smaller the maximum cluster size, the
more balanced will be the clusters in a valid partition. The algorithm thus searches for
the smallest maximum cluster size which yields a valid partition; it begins with a small
maximum cluster size, increases it until the first point at which a valid partition is

found, and delivers that partition.

Obviously, if the maximum cluster size is less than N/N_ inputs, then a valid
partition cannot be formed. We thus begin by trying a maximum cluster size equal to
the ceiling of N;/N_, and increase the maximum cluster size in units of one input as

necessary thereafter.

By controlling the cluster step, the designer can control the tightness of clusters
produced; if the cluster step is very small, then any input must be very close to some
input already in the cluster, but if the cluster step is large, then distant inputs may be
assigned to the cluster. Of course, if the cluster step is too small, then the algorithm will
fail to find any valid partition. In the SCALD System, the designer can control the
cluster step independently for each output type, so that, for example, ECL-100K nets can

be forced to be more tightly clustered than ECL-10K ones.

If the algorithm fails to find a valid partition, then the designer using the SCALD

System has several options for correcting the problem: the designer can create additional

-60-

versions in the logical design, he can modify the component placement, or he can
explicitly specify the assignment of inputs to versions. The SCALD System will accept
partial assignments of inputs to versions, so he also has the option of assigning only a

few “seed” inputs to control the version-assignment algorithm.

The basic goal of the clustering process is to reduce signal voltage-wave
reflections. Unfortunately, in real systems, not all inputs are equivalent in terms of their
contributions to reflections; a rough measure of the amount that an input contributes to
reflections is the lumped capacitance of the input, which, for example, in the ECL-100K
family varies by about a factor of three across different pins of different part types. We
therefore found that a better minimization of worst-case reflections could be obtained by
measuring cluster sizes in units of average input capacitance (where the average is taken
across all inputs of the logical signal), instead of in units of “one input;" we measure the
maximum cluster size in these units, and increase it by one average input capacitance on

each iteration.

Let M be the maximum cluster size for the last iteration of a successful versioning
process. Now, since each of the N, inputs must have been assigned, since each such
assignment involved considering (on the average, in the worst case) N,/2 inputs, and
since each such consideration of an input involved testing its distance from the {at most)
M other inputs in the current cluster, an upper bound on the number of operations

required to find the final valid partition is

-61-

N2Mp2.

Furthermore, since at most M iterations will be done, an upper bound on the total

number of operations required for one entire versioning process is just

N 2M%2.

Actual behavior of the algorithm is much better than this upper bound, since
typically only a few iterations need to be done before the first successful partition is
obtained. Suppose that the first iteration (with M set to the ceiling of NN, is
successful, and that N,/N_ is an integer. Since, on the average, consideration of an input
for inclusion in a cluster requires less than M/2 operations, the number of operations

actually performed is less than

2 3

For a large case, eg., Ni-IOO, and No-lo, this amounts to 25,000 operations. Of course,
this work is amortized over N nets, and furthermore, in our experience, only a small

fraction of logical signals require versioning (see below).

8.12 Experience

In the S-1 Mark IIA 4108-Chip Example, automatic version assignment was done
for 224 multiple-version logical signals; these logical signals contained 3974 inputs to be
assigned, and resulted in 677 independent nets. Table 3.1.2-1 shows the distribution of
the number of versions available in multiple-version logical signals. Table 3.1.2-2 shows

the distribution of the number of inputs assigned during the versioning processes.

Assignment of versions was not computationally expensive, relative to the other
processing done on each net. On the average, each versioning process took 47.1 ms.
Amortized across all 11308 nets, this amounted to only 0.3% of the total time required to

process a net.

-63-

Count

Versions Count Fraction
0.0 0 0.000
9.0 %] 0.000
1.0 7] 0.000
2.0 119 0.531
3.0 41 0.183
4.0 42 0.187
5.0 0 0.000
6.0 18 0.080
7.0 0 0.000
8.0 2 0.609
9.0 (%] 0.000
16.0 0 0.0600
11.0 %) 0.000
12.0 2 0.009
13.0 0 0.000

677.000 =

224 =

2.000 =

3.022 =

12.000 =

Cumulative
Count
Fraction

——=QO000ROROOOO®

Table 3.1.2-1

.000
.000
. 000
.531
.714
.902
.902
.982
.982
.991
.991
.991
.991
.000
.000

Sum of versions
Sum of counts

Minimum versions
Average versions
Maximum versions

Versions
Fraction

OOOOOOOIIOOOOOQ

Comuliative
Versions
Fraction

Number of Versions Available in Multiple-Version Logical Signals

——_OROOPROROOROQ

. 000
. 000
.000
.352
.533
.781
.781

>=

Cumulative

Count Count

Inputs Count Fraction Fraction
0.0 %] 0.0600 0.000
0.0 4 0.018 0.018
2.9 17 0.076 0.094
4.0 2 0.009 0.103
6.0 10 0.045 0.147
8.0 8 0.036 0.183
10.0 Sl 0.228 0.411
12.0 43 9.192 0.603
14.0 1 0.004 0.607
16.0 S 0.022 0.629
18.0 6 0.027 0.656
20.0 17 0.076 0.732
22.0 4 6.018 0.750
24.0 2 0.009 0.759
26.90 8 0.036 0.795
28.0 (%) 0.000 0.795
30.0 1 0.004 9.799
32.0 4 0.018 0.817
34.0 3 0.013 0.839
36.0 8 0.036 0.866
38.0 e 0.000 0.866
490.0 17 9.076 0.942
42.0 9 0.040 0.982
44.0] 0.000 0.982
46.0 7] 9.000 0.982
48.0) 0.000 9.982
50.0 1 0.004 0.987
52.0 0 9.000 0.987
54.0 3 0.013 1.000

3
:

1.000
17.741

Table 3.1.2-2

Number of Inputs Assigned in Multiple-Version Logical Signals

65

Sum of inputs
Sum of counts

Minimum inputs
Average inputs
90.0060 Maximum inputs

Inputs
Fraction

0.000

0.072

)

383858

@
W

SOOOOISO

®
&

Cumulative
Inputs
Fraction

:

AN —~ODOOD
BEEJIED==D
BEZpRA-or=

N7
%}

.

b b
\l%ww\lm
W—WWON

.

LOLRNNN
tntntnd O
BRBRN— O

—0000OOCOOIIOOOIOOOIDOOOOOO
8643

3.2 DETERMINATION OF CHAINS

Only after a logical signal has been partitioned into versions does it become
reasonable to design the actual interconnection networks. Here we consider how to
determine the interconnection network which will be used to electrically interconnect a set
of input and output nodes with known physical positions (i.e,, a single version) to form a

net.

Essentially all existing wire-wrap digital systems use interconnection networks
which are cAains, that is, trees with at most two edges incident to any vertex. Several
factors account for the chain-interconnection limitation. Most importantly,
high-performance digital systems require that the interconnections form nearly
reflection-free transmission lines, which is difficult to accomplish if branches are present,
since a branch presents a major impedance discontinuity. Furthermore, careful selection
of wire levels for the segments of a chain (e.g,, Figure 3.2-1) can guarantee that at most
three wires will need to be removed in order to replace any wire in the chain. Also,
many wire-wrap digital systems are built using two-level wire-wrap pins, which
precludes branching interconnection networks and, even in systems with three-level pins,
it is often convenient to leave the third level for additions. Finally, the benefits of
branching (e.g., reduced interconnection delay) can usually be obtained simply by using
multiple-version logical signals. We therefore restrict our discussion to the issue of how
to determine chain interconnection networks, i.e., how to determine the interconnection

order of the nodes.

Figure 32-1

Conventional Level Assignment in a Chain

We consider chains of two types, called one-arm and two-arm chains, as in Figure
$.2-2. A one-arm chain is a chain in which every output is located at one of the two
ends. A two-arm chain is a chain in which some output is not located at an end; such
an output is an end of two subchains, or arms, and each arm must be properly
terminated. Two-arm chains are important for low-output-impedance technologies such
as ECL-10K or ECL-100K, because outputs in those technologies can drive two
properly terminated wire-wrap transmission lines simultaneously. Two-arm chains are
also important for technologies such as TTL in which signals are normally not
terminated at all. One-arm chains are important in case the output cannot drive two

properly terminated arms.

-67-

XK o o

VAN
ouTRPUT INPUT INPUT INPUT INPUT
N4 \ ./ N/ \
TWO-ARM CHAIN
/ "\ /" \ / "\ / "\ /" \
INPUT INPUT ouTPUT INPUT INPUT
Figure 3.2-2

One-Arm and Two-Arm Chains

There are three important measures of chain quality which might be considered in
selecting a chain: the severity of reflections, the delays from the output to various inputs,

and the effect of the associated wire on the mat thickness.

Unacceptable reflections can be caused by a poor distribution of inputs along the
chain. Our algorithm does not explicitly consider reflections; thus, it may create chains
in which, for example, a tightly clustered group of inputs is located sufficiently far away
from some other input that the waveform observed by the isolated input is unacceptable.
This type of problem can be easily detected automatically after chaining, and the
designer can eliminate it either by altering the placement of the components so that the

chaining algorithm will produce an acceptable chain, or by increasing the number of

versions available so that the number of inputs per version is smaller.

The delay from an output to an input is basically the time required for the signal
to travel from the output to the input along the chain; it is typically composed mostly of
the delays of the interconnecting wires (see Section 8.7). Each input in a chain may have
a different interconnection delay, and these interconnection delays can be affected

strongly by the choice of the chain.

When using high-performance component technologies such as ECL-100K, the
interconnection delays are typically comparable to the component delays. Therefore,
when using those technologies it is extremely to choose chains which minimize the
maximum delay to any input, called the chain delay. Chains which minimize the chain

delay will be called minimum-delay chains.

Chain skew, which is the difference between the maximum delay to any input and
the minimum delay to any input, is important in some designs {e.g. in the Cray-1, built
with ECL-100K SSI logic on printed—circuit boards [Cr76]) because such control can
allow the designer to pipeline some simple functions without using storage elements.
However, in designs using ECL-10K and ECL-100K MSI and LSI circuits, the
components themselves have such large differences between maximum and minimum
propagation delays that minimizing chain skews would not be worthwhile because the
chain skew typically amounts to only a small fraction of the total skew in a logic path.
Furthermore, in cases where control over chain skew is important (which are detected by

timing verification), the designer can alter the placement of components or add versions.

-69-

Our algorithm therefore does not consider chain skew.

For simplicity, we consider all nets to have exactly one output. The chaining
algorithm we discuss can be applied to multiple-output nets, but will produce
less-optimal chains for those nets, because it will consider only one of the outputs to be
the source for delay calculations. Although it is acceptable in some technologies to
connect outputs together, multiple-output nets are relatively rare; hence, the
suboptimality of the chaining algorithm on multiple-output nets is not statistically
important, and in the rare case that it affects a timing-critical path, timing verification
will reveal the problem for manual correction. In addition, because of reflections caused
by load-sharing ad justments between the outputs, component placement must normally
ensure that multiple outputs are all within a small area, hence only a small amount of

suboptimality is introduced by considering only one output.

Minimization of wire-mat thickness is an important problem in high-performance
wire-wrap digital systems because those systems normally require extensive use of
twisted-pair or other shielded wire. Experience with the S-1 Mark I processor showed
that a thick wire mat can cause a large number of manufacturing problems, such as bare
fragments of wire being imbedded in the mat, wires being broken by mechanical stresses,
and wire insulation being cut-through. Also, a thick wire mat greatly increases the

difficulty of replacing wires after the machine has been constructed.

In our judgement, the severity of the wire-mat problem on a given board is

strongly correlated with the total length of wire on the board. The physical-design

-10-

process is unable to affect the number of chains on a board, since that is fixed by the
logical design and component placement, but can impact the mat by affecting the average
length of chains. Unfortunately, the problem of minimizing chain lengths is complicated
by the fact that there is often a strong tradeoff between chain delay and chain length.
Figure 3.2-3 illustrates a case in which a small increase in chain length would reduce the
chain delay by about a factor of two if two-arm chains are allowed. Figure 3.2-4
exhibits a case in which a small increase in chain delay would reduce the chain length
by about a factor of two. As shown in Figure 3.2.2-1, cases similar to these are

statistically important.

The severity of the wire-mat problem is also related, of course, to the positions of
the segments of the chains on the board. However, the segment positions are largely
constrained during component placement (i.e., some wire must connect to each node of
the chain, and the node positions are fixed), so it is plausible that the wire-mat
reduction that can be obtained by consideration of segment positions during chaining is
less than that which can be obtained by minimizing their total length. Furthermore, we
have not been able to find a reasonably efficient chaining algorithm which considers

segment positions. Thus, we ignore the effect of segment positions within this algorithm.

The choice of which wire type to use for each segment of a chain also strongly
affects the wire mat. However, when dealing with wire types in real machines,
minimizing the chain length does not usually restrict later assignment of wire types to
segments (see Chapter 3.5), but actually increases the range of possible wire-type

assignments (since, in general, two nearby nodes can be wired together with any wire

1-

type that two distant nodes can be, and often with additional wire types as well). Since
the chaining algorithm which we discuss here can minimize the chain length, we do not

explicitly consider wire types.

Based on these considerations, we have developed a chaining algorithm that
makes its selection by considering only the chain delay and the chain length. Limiting
consideration to these parameters still allows the algorithm to effectively control both the
chain delay and the wire mat. A desirable side-effect of the algorithm is that it is

capable of limiting consideration to only one-arm chains, if necessary.

Consider an arbitrary two-arm chain with arms Ap and A;. By convention, the
output (or root) is considered to be part of each arm, and arms which contain only the
root are valid arms. Let the chain delays of the individual arms Ap and A; be called
Dy and Dy, respectively. Let D, be the minimum of Dy and D; (i, the minimum-arm
delay), and let D2 be the maximum of Dp and D; (Le., the maximum-arm delay). D2 is

thus the chain delay of the entire chain.

_ N/ NS NS
AN A A
INPUT INPUT INPUT
ouTPUT N\ N/ N/
7N\ ZAN N
INPUT INPUT INPUT
Figure 3.2-3
Severely Suboptimal Chain Delay
NSNS N/
N /NN

INPUT INPUT INPUT

OUTPUT INPUT

Figure 3.2-4

Severely Suboptimal Chain Length

-73-

Our chaining algorithm finds the chain which minimizes an arbitrary
user-defined chaining function F(Dl,Dzi, which is constrained to be a non-decreasing
function of its two variables. We call such chains minimum-F chains. For example, if
F-Dz, then the algorithm will find the minimum-delay chain. If F-Dl, then the
algorithm will attempt to drive the delay of the minimum-delay arm to zero; hence, it

will find some one-arm chain.

Because the delay from an output to an input along a chain is estimated by simply
adding the total enclosed wire delay to a linear function of the total enclosed node
capacitance {see Section 3.7), and since the two arms of a chain enclose all the node
capacitance of the chain, then, if we assume that all wire types have equal propagation
delays, we have the fortunate result that the chain length, L, is a linear function of

D, +D,, for any given set of nodes, ie,
L= u(Dl+D2) -g,

where o and @ are positive constants. So, if F=D,+D,, then the algorithm will find the

chain with minimum length.

Simple linear combinations of these basic functions produce behaviors which are
combinations of these basic behaviors. For example, if F-otDl+D2, where o is a large
positive constant, then the algorithm will find the one-arm chain which minimizes the

chain delay.

-74-

.In the SCALD System, each different net type can have a different default
chaining function, F, which is used for chaining all nets of that type. Thus, for example,
differential signals can be chained using a function which can produce only one-arm
chains, while non-differential signals are chained using a less-restrictive function.
Furthermore, any specific logical signal can have a special chaining function, different
from the default chaining function; these special chaining functions are input to the
Packager by means of a separate text file which lists the logical signal names and their

associated special chaining functions.

Inclusion in the chaining algorithm of the specific range of behaviors described is
intended to support two new modes of physical design which depend upon timing

verification as a key component.

In the first new mode of physical design, the designer starts by doing a complete
packaging run with the default chaining function set to produce minimum-delay chains.
The designer then does timing verification using the actual chain delays calculated in
the packaging run. Since all chains are minimum-delay chains, any errors detected by
timing verification must be removed by altering the logical design and the component
placement. After iterating the process involving logical design, component placement,
packaging, and timing verification until the design is free of timing errors using
minimum-delay chains, the designer begins to work on reducing the wire mat; he
increases the dependence of the chaining function on the chain length (L). As he

increases the dependence on L, the chaining algorithm begins to trade off chain delay

-75-

against wire mat, chain delays increase, and timing verification begins to detect new
errors. The new errors can be corrected by altering the logical design and component
placement, by flagging timing—critical logical signals to be chained for minimum delay, or
both. The designer continues to increase the chaining-function dependence on L and to
correct the resulting timing errors until he makes the very high-level decision that the
anticipated improvement in the wire mat during the next iteration is not worth the
design effort and possible system cycle-time degradation due to the next iteration’s

increasing of chain delays.

In the second new mode of physical design, the designer starts by doing a complete
packaging run with the defaﬁlt chaining function set to produce minimum-length chains.
This run produces a package with minimal wire mat. The designer then does timing
verification using the actual chain delays calculated in the packaging run. In order to
remove the errors detected during timing verification, the designer may alter the logical
design and the component placement, or flag timing~critical logical signals to be chained
for minimum delay, or both. The designer continues to iterate this process, adding
timing-critical logical signals to the list of logical signals to be chained for minimum
delay, until the design is timing-error free. Since all non-timing-critical logical signals

are then minimum-length chains, the wire mat is minimized in this approach.

Both of these new modes of physical design depend upon a packaging system
which can rapidly determine all the the details of a physical design, without the necessity
of manual completion of the packaging work. Only such a system can allow the designer

to quickly iterate the complete logical design, component placement, and physical design

—~96-

to optimize packaging under the global constraint of complete freedom from timing

€errors.

8.2.1 Detailed Description

To structure discussion of the algorithm, we will first consider the problem of
finding a chain of minimum cost, where the cost of a chain is the sum of the costs of all
the segments in the chain, e.g, the sum of the lengths of wires used to connect nodes in
the chain. This problem is equivalent to the traveling salesman problem, and has been
explored in depth. After developing a dynamic-programming solution to the
minimum-cost-chain problem, we will extend it to find minimum-F chains, and finally

we will refine the result to find minimum-F chains more quickly.

3.2.1.1 Algorithm Cl - Minimum-Cost Chains

Suppose that the version to be chained contains N nodes, named Ni' 1<isN,
including all the inputs and the output. Assume that we are given an NxN cost matrix
C such that C(j,j) is the (non-negative) cost to connect node Ni to node N P and C(i,i) is

zero for all i.

=77-

Although the cost matrix might simply contain real wire lengths, and would then
be symmetric, the algorithm we develop here does not demand that it be symmetric.
Non-symmetric infinite entries in the cost matrix can be useful for constraining nodes
(ag., inputs with built-in terminators) to be at the ends of chains. Non-symmetric cost

matrices can also be useful for incorporating capacitive delays, as we shall see below.

In the following, we use Pascal set notation. Let S be any set of node numbers.
Let S* be the full set of node numbers. Let XIi,S] be the minimum cost of a chain

starting with node N,, and including exactly nodes N, such that jeS. XIiS] thus does

!

not depend upon the order of the nodes in S, or upon which node is on the other end of

the chain. XI[i,S] is undefined if i¢S.

Suppose that we know the cost X[i,S] for each set S having no more than k
elements, and for all ieS. Now, let S’ be a set having k+1 elements. Then it is easy to
compute any cost X[}S’]; we simply try connecting N jte each possible end node N, such
that ie(S’-[j]), and select the one connection which minimizes the total cost of the new
chain. The key to this approach is that the total cost of the larger chain is the sum of
the cost of the new connection and the cost of the smaller chain. Formally, to compute

X[jS'] for any given jeS’, we set
X[j,S'] = minj e(s-_UD(C(J,IHX[i,S'-[J]]). (32— l)

We trivially know the minimum costs of all one-node chains (k=1), ie.,

-78-

X[i[il} = C(i,i).

Therefore, we can compute the minimum costs of all 2-node chains (k=2), and, by
induction, the minimum costs of N-node chains, X[i,5*1. Minimizing X[i,$*] over all i
yields X*, the minimum cost of all chains, independent of which nodes are endpoints. It
is possible for X* to be infinite, indicating that no chain of finite cost exists. (In the
subsequent discussion, we will assume that some finite-cost chain exists) When
computing (3.2-1), if we record an i which minimizes that expression in a backtracking
array B[jS’], then we can trivially construct an actual minimum-cost chain

corresponding to any particular X[jS’1

If for some node Ne Cle,i] is infinite for all ive, and Cl[i,e] is finite for all ive, then
the minimum-cost chain must contain N, at an end. Thus special nodes {eg., outputs)
can easily be constrained to be at the ends of the chain, if desired. Indeed, both ends

can be simultaneously constrained.

For a particular set S containing k elements, the computation of (3.2-1) for all jeS
involves k(k-1) operations. Since the k elements are chosen out of N possible elements,

the total number of operations required to compute the minimum-cost chain is

N
¥ k-1 l:) = NN-n2N-2 (32-2)
k=2

This algorithm requires enough memory to store integer costs X[i,S] and node
names B[i,S] for all 1sisN and ScS* This memory requirement is O(N2N) memory
elements of sufficient size to represent an entire node name or integer cost. Additional
memory is required to store auxiliary constant tables for rapid enumeration of the sets
and of the elements of those sets. This additional memory requirement is o(N2M)

memory elements of sufficient size to represent an entire set of nodes.

This algorithm is a dynamic-programming solution to the minimum-cost-chain
problem, as in [Be62). One advantage that our algorithm has over other approaches is
that the inner loop is extremely simple, and can therefore execute quickly; it involves
only one deletion of an element from a set, one integer addition, and one integer
comparison. But the major advantage that our algorithm has over other approaches,
eg., [Li78], is that it can be generalized to minimize the function F without significant

additional computing.

3.2.1.2 Algorithm C2 — Minimum-F Chains

Section 3.7 describes a delay estimator which uses as its estimate of the delay from
the output of a chain to an input in the chain simply the total enclosed wire delay, plus

the total enclosed capacitive delay, ie,

DW + aCL + 8,

where Dy, is the sum of the propagation delays of the individual wires between the
output and the input, C; is the total lumped capacitance of the nodes between the
output and the input, inclusive, and « and 8 are positive constants. This simple model
of delay suggests a modification of Algorithm C1 which will produce minimum-F chains
instead of minimum-cost chains. No previous chaining algorithms are known which

produce either minimum-delay chains or minimum-F chains.

Let Dy,[ijl be the wire delay between nodes N; and Nj’ and let C; [i] be the
lumped capacitance of node Ni' Now, suppose that the cost matrix, C, is initialized as

follows:

(i#) Clijl = Dy,l,jl+ oC, il

(=) Clijl=aC[jl+p
Note that, in general, this initialization results in a non-symmetric cost matrix.

Call the output (ie, the root of a potential two-arm chain) N,. To compute
minimum-F chains, we first execute Algorithm C1 using the cost matrix initialized as
described above. After execution of Algorithm C1, each entry XI[r,S] (reS) is simply the
delay of the minimum-delay arm extending from N, and containing exactly the nodes
with numbers in S. Of course, this minimum-delay arm can be trivially constructed as

described above.

-81-

Sincé we have guaranteed that the function F(D l,D2) is a non-decreasing function
of its two variables (respectively the minimum-arm delay and maximum-arm delay of
the chain with root N), we know that minimum-delay arms extending from N, will
minimize F. Furthermore, initializing the cost matrix C[i,j] in the way described above
has conveniently produced all the minimum-delay arms which could possibly extend
from N‘_. Hence, all that remains to be done in order to find the chains with root Nr
which minimize F is to enumerate all the possible pairs of arms extending from N, and

choose the pair which minimizes F.

There are 2N"! possible subsets of nodes to choose for the first arm, and any
choice for the first arm completely determines the second arm. Therefore, a simple
post-processing pass over the results of Algorithm C1 in order to minimize F requires
oN-1 operati'ons, each involving one calculation of F. Actually, only about half this
number of operations are required, since the arms are indistinguishable. The entire
computational cost of Algorithm C2 is thus dominated by the cost of computing the

minimum-delay chains, given in (3.2-2).

8.2.1.8 Algorithm C3 — Quicker Minimum-F Chains

Noting that the final stage of Algorithm C2, which enumerates all possible pairs of
arms extending from the root Nr, does not ever reference any entries X[i,S] such that isr,
leads to an algorithm for computing minimum-F chains which is twice as fast as

Algorithm C2.

This algorithm proceeds exactly like Algorithm C2 except that, during the
imbedded execution of Algorithm Cl1, it simply avoids computing the superfluous entries
in the X array. The first step is‘ to compute all X[i,S] such that ivr and r¢S. This
initial computation is equivalent to Algorithm C1 operating on the full set of nodes
reduced by one (namely, Nr). The second step in the reduced computation is to calculate
all X[r,S+[r]] (such that r¢S, and S non-empty) using the results of the first step as

follows:
X[r,S+[r]] = min, o(Clri+X[iS]).
Counting the empty set for simplicity, there are N1 sets to consider. Since the
average number of elements in those sets is (N-1)/2, this second step requires (N-1)2N'2

operations. Hence, the total number of operations involved in this reduced version of

Algorithm C1 is just

-83-

(N-1XN-222N -3 (N-1)2N-2 = N(N-1)2N-3,

8.2.1.4 Estimating Wire Lengths

The algorithms discussed above depend upon knowledge of the length of wire
which would be needed to connect any pair of nodes. Unfortunately, both cable-wire
assignment (Section 3.3) and wire-type assignment (Section 3.5) must be completed before
the true lengths of wires connecting nodes are known, but neither can be accomplished
before chaining is complete. It is therefbre necessary to estimate the wire lengths before

chaining, and to determine true wire lengths after chaining.

On-board wire lengths are relatively easy to estimate. For such wires, we use the
orthogonal distance between the nodes if the nodes are close together, since such nodes
are likely to be connected with orthogonally-routed wire, and we use the shortest-path
distance between the nodes if the nodes are far apart, since such nodes are likely to be
connected with point-to-point-routed wire. The user is permitted to define the threshold

for crossover between these two distance metrics.

In order to estimate the wire length between nodes on different boards, we sample

a subset of the available cable wires connecting the appropriate boards, and use the

cable wire which yields the shortest total wire “length” to connect the nodes. The subset
of céble wires to be sampled consists simply of special archetypal cable wires flagged by
the designer in the cable definitions; the designer chooses the wires to flag so that the
total wire length for a signal which uses any non-flagged wire in the cable will be not

much different than the total wire length for the same signal using some flagged wire.

This method of sampling cable wires greatly reduces the execution time of the
algorithm, relative to that required by a true optimal algorithm (i.e,, one which would
sample every cable wire), since typically only a few cable wires within each cable need to
be flagged by the designer in order to obtain highly representative sampling.
Nevertheless, the designer has the option of producing solutions which are as optimal as

he requires, simply by flagging ever more representative wires in each cable.

The *length,” L, of an inter-board segment is a user-defined function of the length
of cable wire in the segment, as well as of the length of the connecting segments on the

ends of the cable wire. We restrict this function to be of the form
L=oa+pL +L, (8.2-3)

where L_ is the length of cable wire in the segment, L, is the total length of on-board
wire in the connecting segments on the ends of the cable wire, and « and @ are positive

constants.

Thus, the designer can emphasize or deemphasize cable wires in the chaining

-85-

algorithm, as he chooses. If « is very large, then the chaining algorithm will tend to
minimize fhe number of cable wires used in a chain; this behavior is important if cable
wires are a scarce resource. Similarly, if g is small, then the chaining algorithm will tend
to minimize on-board wire length at the expense of additional cable-wire length; this
behavior is important in case the designer wishes to remove wire mat from the boards at
the expense of cable-wire length. Of course, only if a=0 and =1 will the chaining

algorithm behave exactly as described in Section 8.2.1.3

3.2.2 Experience

For simplicity, in the current Packager implementation, we restricted the chaining

function to be of the form
Fe «Dl + 3D2,
where o and 8 are constants.
The basis for developing Algorithm C3 was the cl_aim that chain delay could be
traded off against wire mat. The total length of twisted-pair used (or the average length

of twisted pair per net, since the number of nets is constant) is a plausible measure of

wire mat. Figure 3.2.2-1 shows the relationship between the average chain delay and the

average twisted-pair length per net in the S-1 Mark IIA 4108-Chip Example; the first
redu&ion of 7% in average chain delay (relative to the minimurﬁ—length—chains case)
costs about 9% in additional twisted-pair length per net. The same figure shows the
average chain delay as a function of the average chain length; the first reduction of 7%

in average chain delay costs about 4.6% in additional average chain length.

We found that consideration of the capacitive component of chain delay (as
outlined above) resulted in a small reduction in chain delays; the average chain delay
(when chaining for minimum-delay chains) was reduced by 3.1%, from 2.378 ns to 2.304

ns.

Although Algorithm C3 is exponential in the number of nodes to be chained, it
has a very fast inner loop. We found it to be quite practical, because our design rules
prohibit large (ie, more than 11 nodes) nets in any case, in order to minimize reflection

problems.

In all, 10245 chains of two or more nodes were formed in the S-1 Mark IIA"
4108-Chip Example, and these chains had 4.34 nodes each, on the average. Table

8.2.2-1 shows the distribution of the number of nodes per chain.

We found that determining chains using Algorithm C3 required a significant, but
not overwhelming, portion of the total time required to process nets. On the average,
determining a chain required 96.5 ms, or 28.0% of the total time required to process a net.

The largest chain formed, having 11 nodes, required 1.48 seconds. Since this example

-87-

included a large number of maximally loaded RAM address lines, the distribution is

skewed toﬁrard chains with 11 nodes.

Although it would be reasonable to augment this chaining algorithm by a fast
heuristic minimum-length algorithm to handle large nets, we have demonstrated that the
generality of Algorithm C38 is available at reasonable cost for small nets, which

predominate in high-performance digital wire-wrap systems.

Average chain detay (ns)

'I | T 1 ¥ I L] | L] ¥] 1] 1 T] T | \ T
2.55__ F=aD, +fD, Bl
i \ 1.00
| Minimum — length chains
2.50
245} 1.25
I 1.50
r
240
R Twisted-pair length
_ 2.00
2.35
| 2.50
- Chain length
230
5 Minimum — delay chains/
[U T NS N VA ST S TR SO SO SN WA SRV S WA S
1.00 1.05 1.10 1.15 1.20

Actual average length per net/minimum average length per net

Figure 3.2.2-1

Relationship Between Chain Delay and Twisted-Pair or Chain Length

-89-

Cumuliative "~ Cumulative

Count Count Nodes Nodes
Nodes Count Fraction Fraction Fraction Fraction
0.0 (%] 0.000 0.000 0.000 0.000
0.0 (7] 0.000 0.000 0.000 0.000
1.0 (%] 0.000 0.000 0.000 0.000
2.0 4054 0.396 0.396 0.182 0.182
3.0 1904 0.186 0.582 0.128 0.311
4.0 831 0.081 0.663 0.075 0.385
5.0 985 0.096 0.759 0.111 0.496
6.0 510 0.050 0.809 0.069 0.565
7.0 271 0.026 0.83S 0.043 0.608
8.0 165 0.016 0.851 0.030 0.637
9.0 137 0.913 0.865 0.028 0.665
10.0 373 0.036 0.901 0.084 0.749
11.0 1015 0.9099 1.000 8.251 1.000
12.0 (7] 9.000 1.000 0.000 1.000
44474.000 = Sum of nodes

10245 = Sum of counts

2.000 = Minimom nodes

4.34]1 = Average nodes

11.008 = Maximum nodes

Table 3.2.2-1
Number of Nodes in Chains

33 ASSIGNMENT OF CABLE WIRES

In order to permit the logical design of a digital system to proceed relatively
independently of packaging considerations when desired, the SCALD System allows nets
to span multiple boards. .Boards are connected by cables, the positions and lengths of
which are defined by the designer before packaging begins. Each cable contains one or
more cable wires (which may, in fact, be paired wires, such as twisted-pair or coaxial
wire), and each cable wire connects a wire-wrap pin on one board with a wire-wrap pin
on another board. At some point in the packaging process, it becomes necessary to

determine exactly which cable wires will be used in the nets which span multiple boards.

For large digital systems such as the S-1 Mark IIA processor, manual assignment
of cable wires would be inconsistent with the goal of rapid physical-design turnaround.
In fact, during the final stages of the physical design of the much smaller S-1 Mark 1,
manual assignment of cable wires was initially attempted because it was felt that a
manual assignment would be of higher quality than an automatic assignment. The
single manual assignment done for the S-1 Mark I required several man-weeks, and was
of such low quality that it was discarded and replaced by an automatic assignment

before the machine was wrapped.

On the other hand, some manual assignment of cable wires must be permitted in
order to support the use of cables which have predefined signal positions (e., to connect
to existing hardware). =The SCALD System allows both manual and automatic

assignment, performing automatic assignment only for those nets which do not have

manual assignments.

Before chaining, automatic assignment of cable wires would be a very difficult
task, since it would not be known exactly which nodes of a net would ultimately need to
be connected. However, after chaining has been completed, assignment of cable wires
amounts simply to assigning a cable wire to each segment of the chain which crosses
between boards, and splicing it into the existing chain by using a connecting segment of
on-board wire at each end of the cable wire. As long as the inter-node distance
estimates used in the chaining algorithm were accurate approximations to the actual
inter-node distances, then the modified chain will obviously be nearly optimal, relative to

what could be obtained by perfect inter-node distance estimates.

8.3.1 Detailed Description

Our algorithm for assignment of a single cable wire operates on a pair of nodes,
assumed to be on different boards; it attempts to find the lowest-cost path between the

nodes which involves at most one cable-wire segment.

We do not attempt to solve the difficult problem of finding a path through
mutltiple boards, involving multiple cable wires, but assume that any inter-board segment

of a chain can be wired using a single cable wire. In our experience, providing direct

cable wires wherever necessary is just as technically feasible and economical as its
alterné.tive, ie, wiring some inter-board segments through a third board, even for

systems in which cable wires are in places extremely scarce, such as the S-1 Mark L.

This algorithm first selects a best cable in the same way that the chaining
algorithm selects a best cable (see Section 3.2.1.4); it computes L (via Equation 3.2-8) only
for the specially flagged archetypal cable wires within each cable connecting the
appropriate two boards, and chooses a cable which minimizes L. After choosing a cable,
the algorithm simply computes L for every wire within that cable, and selects a wire

which minimizes L.

Unfortunately, if cable wires are a scarce resource, then this simple algorithm is
likely to suffer from bunching, ie, a number of (possibly related) nets will choose cable
wires which are near each other, due to the arbitrary order in which cable wires are
sampled, even though a large number of equivalent cable wires might be available.
These bunched nets then tend to block large contiguous cable areas from being used
subsequently by other nets which may not have a large range of equivalent choices. In
the the S-1 Mark I physical design, we observed that bunching was a significant
problem, and corrected it by randomizing the choice of cable wire, whenever multiple,
nearly equivalent choices weré available. Bunching was not observed to be a problem in
the S-1 Mark IIA 4108-Chip Example, due to the substantially larger number of cable

wires available.

-93-

8.3.2 Guiding Cable Placement

The algorithm which assigns cable wires is simple only because we assume that the
positions and lengths of cables have been fully specified by the designer. In fact, the
problem of determining good cable positions and lengths involves a great deal of
intelligence, and was considered too difficult to be included in this present investigation,
since our goal was a practical and implementable system. For example, determining good
cable positions and lengths involves integrating knowledge about the shape of the
cabinet, the constraints of cable-ways, the connectivity of the machine, and the timing

constraints of signals.

Fortunately, it is quite easy for the designer to determine good cable positions and
their corresponding lengths. For example, the initial cabling for the S-1 Mark IIA
4108-Chip Example, involving 482 cables, took only about six hours to determine and
manually specify using the Packager's iterative cable-specification language, and
required only 193 lines of text to specify. Furthermore, it is our experience that cable
positions do not need to be frequently changed; in fact, they need to be changed less
frequently than the associated component placement, and it is far easier to alter them

than it is change the placement of components.

However, it is difficult for the designer to assign good cable positions without

feedback from the design system about the number of segments which span each board
pair. On the other hand, the system cannot report the number of segments spanning
each board pair without creating chains, and cannot create chains without knowing the

positions and lengths of the cables.

We have addressed this deadlock by providing a form of feedback to the designer
which can help him in assigning cable positions, and which does not depend upon
chaining. For each board pair, we compute the minimum and maximum number of
cable wires which will be required to connect the boards, assuming that no chain will
cross between the same pair of boards more than once, but which is otherwise
independent of chaining. To compute this minimum and maximum, we update the
minimum and maximum counters for each net, before chaining, as follows: If a net
contains nodes on only one board, then the net will require no cable wires, so we make
no change to the counters. If a net contains nodes on only two boards, then the net will
require exactly one cable wire connecting the two boards, so we count one cable wire for
that board pair in both the minimum and the maximum counters. If a net contains
nodes on three or more boards, then the net may or may not require one cable wire
between any specific pair of boards among them, so we count one cable wire in the
maximum counter for each possible pair of boards, and we do not change any minimum

counter.

These minimum and maximum requirements are reported to the designer, even
before any cable positions have been specified. If the designer plugs in enough cables

between each board pair to supply the maximum requirement, then he is guaranteed

-95-

that the system will be able to find enough cable wires on the next pass. Since, in typical
systems, most nets involve only one or two boards, the minimum and maximum
requirements are usually quite close and supplying the maximum requirement is not

incrementally difficult, given that the minimum requirement must be provided anyway.

Even if enough cables are plugged in to satisfy the maximum cable-wire
requirement between each board pair, the positions of the cables may be suboptimal, and
thus the chains which the system designs may be distorted and lengthened. It is
therefore necessary for the system to provide appropriate feedback for the designer to

indicate that the cable positions are suboptimal, so that they may be improved.

In order for the system to determine that cable positions are suboptimal, it
obviously must have some knowledge about the full range of possible cable positions and
the corresponding cable lengths. This is very similar to the problem of determining
physical cable positions and lengths, and is very difficult to solve without designer
assistance. We therefore simply allow the designer to specify this information in a

convenient language, i.e, by allowing him to plug in virtual cables.

A virtual cable effectively defines the distance from one connector socket to all
other relevant connector sockets. Virtual cables can overlap arbitrarily, allowing a large
number of virtual cables to plug into a single connector stscket. The system forms chains
using the virtual cables, but assigns cable wires using the physical cables. For each
assigned cable wire, the additional length required in order to use a physical cable,

relative to that predicted by using a virtual cable, is reported to the designer. If the

-96-

differences are large, then the physical cables may be poorly positioned, and the designer
may choose to reposition them for the next pass. If the differences are small, then the
designer can feel confident that the physical cables are well positioned, relative to the

“optimal” possibilities represented by the virtual cables.

3.3.3 Experience

The S-1 Mark IIA 4108-Chip Example consisted of 12 boards, and required a
total of 1814 cable wires (i.e, 1814 paired cable wires). Figure 3.3.3-1 shows the number

of cable wires which were actually used to connect each pair of boards.

A very small percentage of nets required cable wires, and of nets that required
cable wires, most required only one. Figure 3.3.3-1 shows the number of cable wires

required for nets.

We found that the amount of time spent assigning cable wires was not very large
compared with the total amount of time required to process a net. A total of 1814 cable
wires were automatically assigned (ie, none were manually assigned), and each
assignment required 28.1 ms, on the average. Amortized across all 11308 nets, this

amounted to only 1.3% of the total time required to process a net.

-97-

© W0 9O AW N -

— e et
N = ©

145

© ® © © ®© ®© 9 ®© &

o 8 &

70

18
52

217
0 0
9 e 25
o o 17
1%} 9 84
40 32 60
8 72 69
5 6 7
Figure 3.3.3-1

88

60

113

42 9

52 3 125
9 10 11

Cable Wires Used to Connect Board Pairs

12

Cumuvlative Cumulative

Count Count Wires Wires
Wires Count Fraction Fraction Fraction Fraction
0.0 %) 0.000 0.000 0.000 0.

0.0 9569 0.853 0.853 0.000 0.000
1.0 1479 9.132 0.985 0.815 0.815
2.0 160 ‘ 0.014 1.000 0.176 0.992
3.0 5 0.000 1.000 0.008 1.000
4.0 (7] 0.000 1.000 0.000 1.0600

1814.000 = Sum of wires

11213 = Sum of counts

0.000 = Minimum wires

0.162 = Average wires

3.000 = Maximum wires

Table 8.3.3-1

Number of Cable Wires in Nets

3.4 ASSICNMENT OF TERMINATORS

In high-performance digital systems using ECL technology, it is necessary to
terminate every chain interconnection network in order to prevent signal distortion due
to reflections, as well as to maintain the proper DC signal levels. Depending upon the
position of the output in the chain, and the edge speed of the technology being used,

either one or both chain ends may need to be terminated.

The S-1 Mark I and S-1 Mark IIA processors use parallel resistive terminations
exclusively. (Some digital systems use series resistive terminations in place of or in
addition to parallel resistive terminations, and some digital systems use active
terminations.) We will consider only parallel resistive terminations here; however, our
assignment algorithm for parallel resistive terminators would apply with little change to

other termination styles.

After the ends of a chain have been determined, it is reasonable to consider the
terminators. For each end of a chain, the Packager determines whether a terminator is
necessary and selects a resistance value by means of a simple, user-parameterized
algorithm. This algorithm takes into account the wire length to the most distant output,
and the loading due to nearby inputs. The parameters can be different for each net
type, so that, for example, the user can allow longer unterminated arms on ECL-10K

nets than on ECL-100K nets.

This section considers only the problem of how to find a terminator, after it has

-100-

been determined that one is required, and what its type and value is. In order to reduce
intef—wire crosstalk and wire mat, it is desirable to locate each terminator as close as
possible to the end of the chain which it terminates. Because the design of the
wire-wrap board cannot depend upon the unpredictable locations of the ends of chains,
typical wire-wrap systems provide a large number of terminators distributed uniformly
over the boards (plugged into special sockets); this strategy makes it likely that a
terminator can be connected to either end of a chain simply by wrapping a short wire

from the end of the chain to the appropriate wire-wrap pin.

The problem of terminator assignment is thus simply one of choosing the closest
available terminator, given the fixed end of a chain. Although locating the closest
unused terminator is relatively simple, the number of terminators required in a large

digital system precludes manual assignment.

In our experience, it is extremely difficult to do a good job of assigning
terminators if they are scarce, because such assignment requires global knowledge of the
positions of the ends of all the logical signals on a board. On the other hand, we have
found that it is very easy to do a good job of assigning terminators if they are plentiful
(see Figure 342-2). In both the S-1 Mark I and the S-1 Ma:.. ITA designs, supplying

the necessary surplus terminators added negligibly to the cost of the ob ject machine.

-101-

3.4.1 Detailed Description

Our algorithm for terminator assignment therefore depends upon the availability -
of plentiful terminators; it does not attempt to use global information about the positions
of all chains, but assigns one terminator at a time. The basic algorithm is trivial; we
simply sample each wire-wrap pin of the board, in order of increasing distance measured
orthogonally from the end of the chain to be terminated, until a terminator of the right

value is located. The first such terminator found is used.

Unfortunately, our experience in the S-1 Mark I and S-1 Mark IIA physical
designs has shown that even on a board which has a uniformly distributed supply of
terminators which is plentiful on the average over the entire board, this simple
assignment algorithm may perform poorly in the corners, because the corners have a
reduced local-average density of available terminators. In fact, the basic algorithm
would perform poorly in any area where the local-average density of terminators was not

always completely adequate, and the corners of our boards are only one example.

We have modified the basic algorithm based on our experience with this problem.
The designer is permitted to divide a board definition into areas, and to define a point
in each area which is a “center point” for terminator assignment. The modified

algorithm still selects the closest terminator to the end of the chain being terminated, but

-102-

if several terminators are located at the same distance from the end of the chain, then
the oﬁe is assigned which is closest to the center point of the area in which the end of
the chain is located. {(Several terminators are likely to be located at the same distance
from the end of the chain, since wire-wrap pins are on a fixed grid) Hence, if the
center point is located in the geometric center of a rectangular area, then the assignment
is drawn inward, away from the corners, resulting in a higher effective local-average

density of terminators in the corners.

3.4.2 Experience

In the S-1 Mark IIA 4108-Chip Example, 6 terminators were provided per 16-pin
socket on the 11 ECL-10K boards, and 10 terminators were provided per 24-pin socket

on the one ECL-100K board.

The designer is permitted to define as many areas and “center points” as a board
requires; some very complex boards may require more than one. However, for the
uniform, rectangular boards of the S-1 Mark IIA, we used only one center point (the

geometric center) for the main socket area.

The parameters controlling the chaining algorithm have a significant effect on

how many terminators are required; chaining for minimum delay increases the number

-103-

of two-arm chains and hence increases the number of terminators required. If we
cgnsiderA only the 25148 terminators associated with populated sockets as beihg
“available” (since in the Example, there are large areas stuffed with terminator SIPs, but
not with integrated-circuit DIPs), then when chaining for minimum-length chains, only
52% of the available terminators were assigned to nets, and when chaining for
minimum-delay chains, 63% of the available terminators were assigned. Figure 3.4.2-1
shows the terminator-assignment pattern for a typical ECL-10K board, when chaining

for minimum-length chains.

We found that local depletion of terminators occurs rapidly as the density of
available terminators approaches the density required. We also found that negligible
gains in the orthogonal distances to assigned terminators are produced by increasing the
available terminator density above about 1.6 times the density required. Figure 3.4.2-2
shows the effect of the available terminator density on the distribution of orthogonal
distances to assigned terminators, using our centered assignment algorithm and chaining

for minimum-length chains.

We found that the time required for the assighment of terminators using this
algorithm was quite small, relative to the total amount of time required to process a net.
On the average, chaining for minimum-length chains, 13.1 ms were required to find a
single terminator, and this represented only 3.8% of the fotal time required to process a
net. On the average, 15.1 ms were required to find all terminators for a net, and this

represented only 4.47 of the total time required to process a net.

-104-

Rl
B
Ci
D1
El
Fl
H1
K1
L1
M1
N1
P1
s1
T1
u1
vi
Wl
X1
Yl
21

(R 2222220 2 &% 28 Bk %

lsg p22] E s % 2 % x|
! e 0 B R !
Ix % S ¥R X ¥EE X X K & k% % % *

I5% SRLXISR . g% X e X £ KX & BE SK KX % RERSEX R%E!
! & E2 T 2 E3 223 !
! £ RF BEOEEORER!
I & S E%E % § % % SEREEEERE & ok E¥k ¥ & sxekEe!
s = 000 000 000 000 000 & x:xxs:x2sx2x000 000 000 000 k% BRERLk!
| 000 & 000 #+000 »%000 2000 »2x000 #2000 =000 000 *ex
| et 000% $000%%500052%0002250008x5%%x $x% & 000%5%000%%%000 000% *:kdrdskxikik!
I s sxx 0002%3000%52000252000%22000 *20002+200023x000 000

Iss o2 *¥2% *% X &5 85 2 X X 2% ¥k B0 & 88 & 5 PAEBRPLRAELR!
| % RkokE Tkbbkkebbik |
Ix L - & SERBAEDE %% x 2 X % % $% SdddkkgtdoxiRk |
I * = L ® % % dk |] * * % %k 2 X X » & TBEEBTRREBEE!
l s % & &2 % 8% XX X% & 5 $X IREE EEEREBEERER%!
! 2 E 22 = T8 BB 0 REEE & % BB K H ® X £ SEEEREREEERR!
Ik %% £ SE A L £ % BE X SERXRPRLRBDEARLAR ESAX REEX FRSE KXRBXTRREREAEEK!

| & RRRkER

% kiR Rk |

! * % kRREEREEE ®% kikrikkkkk !
! 25 X5%] Sk Rk |
! % £k X X kT ot ftskkikiiky !
! * EEEREERE & * = x 2 ¢ FEFREEEELRER !
I & = % xx 22 %% !
! ® % % & knkihiEk & £k & * & &£ T & ® ¥ €% % & eebEkkhuk!
| *k *% !
! ok bk kg x % ¥ %% !
| & 2% 2% 000« 000 000 000 000 000 o000 000 % 2000%sssxsssx!
' x2 000 000 000 oo 000 000 000 000 000 ok |
lesxxsaxex 000 000 000 00O 000 000 000 000 ©0OC 000 000 00O [
' «x 000 000 000 000 O0O0C 000 000 000 OOC 000 000 000 !
| EEERRLEEE % % % 000 000 LT I - 2
| sk BhkinE 2 3% = % %t ¢ % 2000 000 kX & k% & slEikbrkies !
! 2] 000 000 #eex 2 !
] = 000 000 % ExERRERkrRRe !
! ik +000 000% !
[E2 2233202 5 & k& Rk * &k 000 000 * pRkkdk SRR ERRRE RS |
| SHREPRRHAEEE & KB & ¥ & CEEEE X% 000 000 !
[F 2222327022 3] & 8% & FRESE 000 000 !

In this pattern, the character “x” represents an available (unassigned) terminator, a space
represents an assigned terminator, and the character “O” represents a position at which
no terminator exists (ie, a location covered by an adaptor). All 600 sockets are

represented as a regular array of 2-character-by-3-character rectangles.

Figure 3.4.2-1

Terminator Assignment Pattern

-105-

Fraction of terminators assigned within the indicated orthogonal distance

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

rlllllll||lrll|||ll|llll|ll|||l[]lllllllllll'II'I

] ! 1 !] |

llllllllllllllllllllllllllllllllllllIIlll

Effect of Available Terminator Density on Orthogonal Distances

1.0 1.6

Available terminator density/required terminator density

Figure 3.4.2-2

-106-

ol INNTE NNY

3.5 ASSIGNMENT OF WIRE TYPES

In order to reduce inter-wire crosstalk and impedance discontinuities to acceptable
levels, designers of high-performance wire-wrap digital systems using ECL components
normally use high-quality kinds of wire (typically twisted-pair, twisted-triplet,
shielded-twisted-pair, or coaxial) instead of single wire for segments of chains more than
a few inches long. However, not only are high-quality kinds of wire much more
expensive to apply than ordinary single wires but, if used excessively, they can cause
extreme wire-mat buildup and result in unreliability due to the numerous manufacturing

and operational problems caused by a thick wire mat.

After chaining has been completed, and cable wires and terminators have been
assigned, the details of the individual segments can be considered. Wire-type assignment
consists of determining for each segment in a net both the kind of wire to apply, and at
what physical level on the wire-wrap pin both ends of the wire will be applied. Because
it is convenient to consider both together, we call the combined wire kind and wire level

simply the wire type.

The S-1 Mark IIA physical design uses nine different wire types, shown in Table
3.5-1. The prefix in the wire-type name indicates the wire level, with level 1 being

closest to the board.

Single wire (wire types LLSWXY and L2SWXY) is applied by fully-automatic

wire-wrap machines, is the least expensive to apply, and contributes the least to the mat;

-107-

it is applied on either level 1 or level 2 and is routed orthogonally.

Untwisted-pair wire (wire types LLUWXY and L2UWXY) is simply wire which
needs to have two conductors (eg., in a differential net, or ad jacent to a shielded-pair
cable wire), but is too short to be twisted; it actually consists of two single wires, which

are both positioned at level 1 or level 2 and are routed orthogonally.

Twisted-pair has better impedance and inter-wire crosstalk characteristics than
does single wire. XY-twisted-pair (wire types L2TWXY and LS TWXY) is
twisted-pair which is routed orthogonally in channels (between via points); it is wrapped
only on levels 2 and 3. Point-to-point-twisted-pair (wire types L2TWPP and
LS. TWPP) is routed in a straight liné between the nodes it connects, and contains
enough slack to hang somewhat loosely out of the region populated by the wire-wrap

pins; it is used for long wires to remove wire bulk from the channels.

Wire type WPCBLW is woven-pair cable wire used to interconnect boards; a

cable contains 25 pairs.

In general, the various wire types used on a board must be applied in some
particular order (i.e, in wire-wrap steps), because of operational constraints in the
wire-wrapping process having to do with wire-wrap mﬁchine tolerances, mat buildup,
and wire-level conflicts. For example, all lower-level wires on a board are usually
applied before any higher-level wires are. Furthermore, in the S-1 Mark IIA, single

wires are applied using a fully automatic wire-wrap machine which has critical

-108-

tolerances on the positions of pins. Since the application of twisted-pair using a

semi-automatic machine invariably mis-aligns some pins beyond the tolerances of the

fully automatic machine, all single wires must be applied before any twisted-pairs are.

Table 3.5-1 shows the order of application used for the wire types of the S-1 Mark IIA.

Within a wire type, application order is not important in the context of this discussion.

Nire Type

L1.SUXY
L2.SHXY
L1.UNXY
L2.URXY
L2. TUXY
L3. THXY
L2.THPP
L3. THPP
WPCBLH

Hire-Hrap
Step Description

Level~1 single wire routed orthogonally

Level-2 single wire routed orthogonally

Level-l untuisted-pair sire routed orthogonally
Level~2 untuisted-pair wire routed orthogonally
Level-2 tuisted—pair wire routed orthogonaliy
Level-3 tuisted-pair wire routed orthogonally
Level-2 tuisted-pair wirs routsd point-to-point
“Leve)-3 tuisted-pair wire routed point-to-point
Hoven~pair cable mire

[0 W2 SN o

Table 3.5-1

Wire Types Used in the S-1 Mark IIA Processor

Any wire-type assignment chosen must be physically realizable, in the sense that if

segments W, and W, are ad jacent, and W, is applied in an earlier wire-wrap step than

Wz, then Wl must be at a lower wire level than W? Also, no ad jacent wires can be at

the same level. Furthermore, the level of each wire must be no greater than the level of

the wire-wrap pins to which it connects. These constraints explain why the wire types

-109-

used in the S-1 Mark IIA place twisted-pairs at levels two and three instead of the
traditioné.l levels one and two, and why the S-1 Mark IIA boards contain 3-level
wire-wrap pins; wherever a single wiré at level two is adjacent to a twisted-pair, the
twisted-pair cannot be placed at level one because it must be applied after the single

wire.

Another constraint on the wire-type assignment is that if some node of a chain
has no shield pin available nearby, then any segments ad jacent to that node cannot be of
a shielded wire-type (see Section 3.6). This constraint is particularly important on boards
such as the ECL-100K board used in the S-1 Mark IIA, where every shield pin is

dedicated to some signal pin, and no free shield pins exist.

Still another constraint on the wire-type assignment is that any segment ad jacent
to a shielded cable wire must also be shielded. This constraint guarantees that the shield
side of the cable wire will be connected to the shield plane on both ends, and can be

ignored if the shield side of the cable wire is permanently connected to the shield plane.

A final constraint on the wire-type assignment is that a differential net must
contain shielded wires throughout; the true signal connects to one side of the shielded

wires, and the complementary signal connects to the other side of the shielded wires.

After all these constraints have been taken into consideration, a good wire-type
assignment must attempt to control both inter-wire crosstalk and wire-mat thickness.

Because of the difficulty of predicting the exact amount of inter-wire crosstalk in a net,

-110-

and of predicting the exact amount of wire mat at any point of the board, our algorithm
is based on averages of inter-wire crosstalk and wire mat across an entire board, and on
the contributions of any given wire-type assignment to these averages, i.e, the crosstalk
contribution and wire-mat contribution of a wire-type assignment. We have found that
control of the average crosstalk and wire mat gives adequate control of the warst case

crosstalk and wire mat as well.

To further complicate the problem of wire-type assignment, our experience with
the S-1 Mark I and S-1 Mark IIA processors has shown that when a skilled human
assigns wire types in a way to effectively manage both the inter-wire crosstalk and wire
mat thickness, the assignment of a wire type to any segment in a given net depends upon

the assignment of wire types to the other segments in the net.

Therefore, our algorithm simply attempts to mimic the behavior of a person doing
wire-type assignment, and provides the appropriate input parameters and feedback so
that the designer can evaluate and tune the performance of the algorithm. Nevertheless,
the algorithm does have a formal core (described below) which could be interfaced to

different heuristics than were actually used in this investigation.

A novel feature of the algorithm discussed here (and of the models of wire types
upon which it depends) is that it does not depend on the existence of any particular set
of wire types; in the SCALD System, wire types are designed to be easily redefined by
the user. For example, the user might define a set of wire types consisting of only

twisted-pair and coaxial wire, and he could easily tune the wire-type-assignment

-111-

parameters so these wire types would be well-assigned, according to his own standards.

3.5.1 Detailed Description

Assume that, given the positions of the nodes on the end of a segment, and given
the wire type of the segment, we can compute the length of any segment. In general, a
simple, wire-type-specific algorithm is required to compute segment lengths for each wire
type. For example, a special algorithm computes the length of channeled twisted-pair by

searching for a path through channels.

After cable-wire assignment and terminator assighment, each net may have gained
nodes, but they will still form a chain. There are a great many possible assignments of
wire types to a typical chain. For example, if each segment might be assigned any of
eight wire types, then there are 2% possible assignments of wires types to a 12-segment

chain.

Of course, some of these assignments are obviously illegal, because they violate one
or more of the constraints on wire-type assignments. qu example, any assignment is
illegal which contains adjacent segments violating the application-order constraint.
However, it is infeasible even to investigate all legal wire-type assignments, even if they

could be generated in isolation.

-112-

But the information contained in a complete assignment is far more than we could
possibly evaluate in a practical algorithm which considers inter-wire crosstalk and wire
mat. Certainly a skilled human does not consider the differences between all legal

assignments in doing manual wire-type assignment.

Our algorithm is therefore based on the important assumption that
human-equivalent crosstalk and wire-mat control can be obtained by considering for
each legal assignment only a measure of the total crosstalk contribution and a measure of
the total wire-mat contribution for the chain, and by ignoring the order of segments
within the chain, and the positions of segments on the board. (In fact, considering the
positions of relevant nearby segmeﬁts other than those in the current net would be
difficult since nets are necessarily processed sequentially.) In particular, the total measure
of crosstalk contribution by which this determination is made is taken to be the sum of
the crosstalk contribution for each segment, and similarly for the total measure of

wire-mat contribution.

Thus, our algorithm does not take into account local deviations from the average
wire-mat density. However, we believe that a wire-type-assignment algorithm which did
so, and could thereby smooth out the peaks of the wire-mat distribution, would be quite

useful.

Under this assumption, any wire type is completely characterized by its crosstalk

contribution as a function of wire length, along with its wire-mat contribution as a

-118-

function of wire length, for the purposes of this algorithm; the SCALD System allows
the user to specify these functions for each wire type. It is important to note that, since
the wire-type-assignment algorithm deals only with these abstractions of wire types, it is

independent of any specific set of wire types.

Our assumption has been confirmed by observing human performance at
wire-type assignment. During manual wire-type assignment, a skilled human invariably
first computes two parameters of a legal assignment: the crosstalk contribution, and the
wire-that contribution. He then either accepts the assignment or rejects it based on those
measures. Our assumption has also been confirmed by manual examination of the

automatic wire-type assignments after tuning of the algorithm’s parameters.

Thus, there is reason to believe that crosstalk contribution and wire-mat
contribution can each be considered to be additive on a segment-by-segment basis,
independent of the order of segments. This assumption makes the wire-type assignment

problem amenable to a dynamic-programming solution.

-114-

3.5.L1 Algorithm WTI1 —~ The Formal Core

Suppose that we are assigning wire types to the Ng segments of a chain. Starting
at one end of the chain, we will build partial assignments, proceeding segment by

segment. Let the length of a wire of type w assigned to segment i be Lw(i);.

We define a wire-mat-contribution function for each wire type such that the
wire-mat contribution of a segment of length L and type w is M_(L). Hence, the
wire-mat contribution resulting from assigning a wire of type w to segment i is just
Mw(Lw(i)). The total wire-mat contribution of a chain will be the sum of the wire-mat

contributions of the individual segments of the chain.

We define a crosstalk-contribution function for each wire type such that the
crosstalk contribution of a segment of length L and type w is X (L). Hence, the
crosstalk contribution resulting from assigning a wire of type w to segment i is just
Xw(Lw(i»' The total crosstalk contribution of a chain will be the the sum of the
crosstalk contributions of the individual segments of the chain.

We define a maximum total crosstalk contribution, X we will automatically

max’
reject any assignment having total crosstalk contribution greater than X .. Dividing

the range from O to X _ = into Ny, equal crosstalk intervals, we assume that the value of

-115-

the function X is a crosstalk-interval index, calculated by rounding. For now, we assume
that Ny is large enough so that rounding errors are negligible; we return to verify this

assumption.

We define a (symmetric) ad jacency matrix, Alw,,w,], such that if w, and w, are
wire types, then A[wl,wzl is true if and only if a wire of type w; can legally be ad jacent

to a wire of type w,.

We define an array, WIi], 1sisNg, such that WI[i] is the set of all legal wire types
for segment i, considering all constraints on the wire-type assignment except ad jacency
constraints. For example, if the net under consideration is a differential net, then every
element of W would be a set containing only shielded segments, and if some wire-wrap
pins in the chain were only two-level pins, then the corresponding elements of W would

contain only wires with level no greater than two.

Consider an array Cli,w,x], where i is a segment number, w is a wire type, and X is
the index of a crosstalk interval. We will show how to compute the values of the array
C such that C[i,w,x] is the lowest attainable total wire-mat contribution of the wire-type
assignment extending from segment 1 to segment i, inclusive, such that segment i is
assigned wire-type w, and the total crosstalk contribution of the assignment lies within
the crosstalk interval x. The elements of C are defined to be infinite if no such

assignment exists.

We begin by setting all elements Cli,w,x] to infinity. Then, we compute the values

-116-

of the elements of C corresponding to segment 1. Specifically, for each wire type, w, we

set

CILWwX (L (1) = M (L (D).

Now, for each i’=i+1, we simply compute the elements of C corresponding to
segment i’ on the basis of the elements of C corresponding to segment i. Specifically, to

compute Cli’,w’x’] for a particular wire type w' and crosstalk-interval x’, we let

Xe=x - Xw.(Lw.(i’)). (3.3-1)

Now, let S be the set of all wire types, w, such that A[w’w] is true and weWI[i’]. If S is

empty, then we let C[i’,w’x’] be =, otherwise we compute as follows:

(x20) CL'Ww.x']=min ‘s(Mw.(Lw(i’))-f-C[i,w,x]) (8.3-2a)

x<0) CliwWX]=ew (3.3-2b)

Minimizing C[Ngw,x] over all wire types yields C*[x], the minimal wire-mat
contribution for any legal assignment of all Ny segments having a total crosstalk
contribution in crosstalk interval x. It is possible for any or all of the elements of C*to
be infinite, indicating that no such legal assignment exists. (In the subsequent discussion,
we will assume that some legal assignment exists.) If, during the computation of (3.3-2),
we record a w which minimizes that expression in a backtracking array Bli’'w'x’], then

we can trivially construct an actual wire-type assignment corresponding to any particular

-117-

element C*[x].

It is remarkable that the complexity of computing the optimal assignment for all
crosstalk intervals is linear in the number of segments. If there are Ny, wire types, then
computation of (3.3-2) requires Nw operations; thus, the entire computation of C*[x] for
all x requires NSNXNW2 operations. The memory requirement is linear in Ng, Ny, and

Ny.

The power of this technique derives from the fact that it considers only a finite
number of crosstalk intervals; it cannot distinguish between partial assignments which
have different crosstalk contributions but, because of rounding error, faﬂ within a single
crosstalk interval. In fact, if the crosstaik interval is computed by rounding, then the
computation of (3.3-1) can introduce an error as large as half the crosstalk interval; ie,
the assignment corresponding to C[1,w,x] might actually have a crosstalk contribution as
large as x+€, where € is half the crosstalk interval, and the assignment corresponding to

C*{x] might really have a crosstalk contribution in error by as much as Nge.

-118-

3.5.1.2 Algorithm WT2 - Heuristics

Algorithm WT1 computes, for each of Ny crosstalk intervals, the legal wire-type
assignment which minimizes the wire-mat contribution. We still must select the best
assignment from these Ny candidates. We have developed a heuristic algorithm which

mimics human behavior at this task.

Let A and B be two candidate complete wire-type assignments for the Ng
segments of the chain. Let W, and X, be the total wire-mat contribution and total
crosstalk contribution of legal assignment A, respectively, and similarly for legal
assignment B. We say that A is better than B if and only if A has a smaller wire-mat
contribution than B, and A has a greater crosstalk contribution than B, and the decrease
in wire-mat contribution is more than a positive, user-defined factor times the increase

in crosstalk contribution, i.e,,

WB—WA > (XA-XB) - F(XA))
where F is an arbitrary, positive, user-defined function of crosstalk contribution. If F is
constant, then the algorithm always trades off crosstalk contribution at the same rate

against wire-mat contribution. If F increases with crosstalk contribution, then the

algorithm resists adding to the crosstalk contribution of the best assignment more

-119-

strongly as the crosstalk contribution increases; it does so by requiring a larger

wire-mat-contribution payoff to justify a unit increase in crosstalk contribution.

3.5.2 Experience

Evidence from actual operation indicates that rounding errors were not a
significant problem. We measured the rounding error in the crosstalk contribution of
each selected assignment by subtracting its actual crosstalk contribution from its rounded
crosstalk contribution (i.e., the crosstalk contribution corresponding to its crosstalk
interval in the C array). Table 3.5.2—l.shows the distribution of rounding errors, as a

fraction of the crosstalk interval (for Nx-io).

In actual operation, constraints on wire-type assignment reduce the number of
wire-type pairs which need to be investigated for each segment. Also, since the C array
is very sparse for the first few segments, the algorithm can be optimized not to explore
sub-arrays containing only infinite values. Furthermore, the algorithm often finds x<0
in the computation of (3.3-2). Because of these considerations, we found that for NX-‘iO
and NW-Q, the algorithm performed only 131.5 comparisons (i.e., the primitive operation
inside of 8.3-2a) per segment, averaged over all nets in the S-1 Mark IIA 4108-Chip

Example, instead of the the upper bound of (40X9X9) = 3240.

-120-

We found that assigning wire types required a significant, but not overwhelming,
portion of the total time required to process nets. On the average, assigning wire types
to a net required 84.5 ms, or 24.5% of the total time required to process a net. The

largest chain, having 16 segments, required 338 ms.

Tables 3.5.2-2 through 3.5.2-10 show the distribution of lengths produced by our

algorithm for each type of wire in the S-1 Mark IIA 4108-Chip Example.

-121-

Error
Intervals

< =2.5
=-2.5

1
N
[~)

WNN et QOO —

.

QUIQUI.QMQUIQUI

Cumulative

Count Count Error
Count Fraction Fraction Fraction
0 0.000 0.000 0.000
1 0.000 0.000 0.000
15 0.001 0.001 0.005
158 ©.9014 0.016 0.038
1019 0.091 0. 106 0. 145
3402 0.303 0.410 0.173
4299 0.383 0.793 0.218
1594 0.142 0.935 0.221
427 0.038 0.973 0.100
283 0.025 0.999 9.093
12 0.0601 1.000 0.005
3 0.000 1.600 0.002
0 0.000 1.000 0.000
5048.829 = Sum of error (magnitudes)
11213 = Sum of number
-2.167 = Minimum error
0.450 = Average error (magnitude)
2.867 = Maximum error
Table 3.5.2-1

Cumula

tive

Error

Frac

®

Rounding Error in Crosstalk Contribution of Wire-Type Assignments

-192-

——0000OO0OO0

tion

>=

Inches

MMA&QQNN-—-—QQP
NOSNONONINONOD

Cumuiative

Count Count Inches
Count Fraction Fraction Fraction
%) 0.000 0.0600 0.000
] 0.000 0.000 0.000
8562 0.362 0.362 0.200
4850 0.205 0.567 0.171
6665 0.282 0.848 0.326
1691 0.046 0.894 0.067
961 0.041 0.935 9.071
501 0.021 0.956 0.045
425 0.018 0.974 0.045
459 0.019 0.993 0.055
133 0.006 9.999 0.018
23 0.001 1.000 0.003
0 0.000 1.000 0.000
35218.018 = Sum of inches

23670 = Sum of number

9.800 = Minimum inches

1.488 = Average inches

5.000 = Maximum inches

Table 3.5.2-2

Length Distribution for L1.SWXY Wire

-128-

Cumuiative
Inches
Fraction

9.
.000
.200
371
.696

—_-—OOOOOOPOO®

000

Count
Inches Count Fraction
< 0.0 (%) 0.000
0.0 %] 0.000
0.5 2632 9. 165
1.0 3923 0.245
1.5 7448 0.466
2.0 1178 0.973
2.5 768 0.048
3.9 48 0.003
>= 3.5 (7] 0.000
24433.759 =
15994 =
0.800 =
1.528 =
3.600 =

Cumulative

Count Inches
Fraction Fraction
0.000 0.000
0.000 0.000
0.165 0.092
0.410 0.197
0.876 0.520
0.949 0.103
0.997 0.082
1.000 0.006
1.0600 0.000

Sum of inches
Sum of number

Minimum inches
Average inches
Maximum inches

Table 8.5.2-3

Length Distribution for L2SWXY Wire

-124-

Cumuiative
Inches
Fraction

——0PO0000®

—t
=2
o
® >
< @
[~]

* e & w

MM:&AQQNN:——-‘.@@
NOMANONOUNONS

Cumviative Cumulative

Count Count Inches Inches
Count Fraction Fraction Fraction Fraction
(%] 0.000 0.000 0.000 0.0600
) 0.000 0.000 0.000 0.000
(7] 0.000 0.000 0.000 0.000
12 0.016 0.016 0.006 0.006
23 0.030 9.045 0.017 9.023
132 0.171 0.216 0.114 9.137
122 0.158 0.373 9.129 0.266
150 0.194 0.567 0.188 0.454
110 0.142 0.709 0.159 0.613
143 0.185 0.894 0.235 0.848
70 0.090 0.984 0.129 0.976
12 0.016 1.000 0.024 1.000
(2] 0.000 1.000 0.900 1.600

2552.200 = Sum of inches

774 = Sum of number

1.100 = Minimum inches

3.297 = Average inches

5.000 = Maximum inches

Table 3.5.2-4

Length Distribution for LLUWXY Wire

~125-

Inches

WWNN—~—OO®
NoOUMPNOUNOO

Count
Count Fraction
0 0.000
] 0.000
(7] 0.000
1 8.006
34 8.26s
81 0.488
44 0.265
6 0.036
0 0.000
372.200 =

3

N
N
i
7]
]

Cumulative
Count
Fraction

—~—Q00000

Table 3.5.2-5

. 000
.000
.000
.006
.211
.699
.964
. 000
.000

= Sum of inches
Sum of number

Minimum inches
Average inches
Maximum inches

Inches
Fraction

0.000
0.000
0.000
0.004
0.152
0.484
0.312
0.048
0.000

Length Distribution for L2ZUWXY Wire

Cumulative
Inches
Fraction

Length Distribution for L2ZTWXY Wire

Count
Inches Count Fraction
< 3.0 o 0.000
3.0 323 0.204
3.5 192 0.121
4.0 378 0.238
4.5 363 9.229
5.0 223 0.141
5.5 56 0.032
6.0 44 0.028
6.5 11 0.007
7.0 2 0.001
7.5 1 0.001
>= 8.0 (2] 0.000
6821.600 =
1587 = =
3.000 =
4.268 =
7.600 =

Cumulative
Count
Fraction

0

.000

0.204

Table 3.5.2-6

-127-

—~— QOO0 e00

.325
.563
<791

Sum of inches
Sum of number

Minimum inches
Average inches
Maximum inches

Inches
Fraction

0.000
0.150

N —
We
- Ch

28

-

.bg

83

OOOOOOOOOO
-~ ONW

-

Cumulative
Inches
Fraction

0.000
0.150
0.255
0.486
0.736
9.905
9.946

.

R
$88¢%

>=

Cumutative

Count Count Inches

Inches Count Fraction Fraction Fraction
3.0 %) 0.000 0.000 0.000
3.0 117 0.189 0.189 0.142
3.5 93 0.150 0.339 0.125
4.0 75 0.121 0.460 0.116
4.5 73 0.118 0.577 0.126
5.0 249 0.402 0.979 0.462
5.5 3 9.005 0.984 0.006
6.0 10 0.016 1.000 0.023
6.5 (%) 0.000 1.000 0,000

2472.400 = Sum of inches

620

3.000 = Minimum inches
4,423 = Average inches
6.200 = Maximum inches

Sum of number

Table 3.52-7

Length Distribution for LSTWXY Wire

-128-

Cumulative
Inches
Fraction

0.
. 142
.267
.383
.509
.971
.977
. 000
.000

—_——_P00000

000

Cumulative Cumulative

Count Count Inches Inches
Inches Count Fraction Fraction Fraction Fraction
6.0 7] 0.000 0.000 0.000 0.000
6.0 6 0.019 90.019 0.011 9.011
7.0 28 0.088 0.106 0.059 0.070
8.0 S3 0. 166 0.272 0.127 0.197
9.0 32 0.100 0.372 0.083 0.280
10.0 117 0.366 0.737 0.347 0.627
11.0 13 0.041 0.778 0.041 0.668
12.0 10 9.031 0.809 0.034 0.702
13.0 6 9.019 0.828 0.023 0.725
14.0 s 8.016 0.844 0.020 0.745
15.0 1 0.003 0.847 0.004 0.749
16.0 2 0.006 6.853 0.009 0.758
17.0 15 0.047 0.900 0.972 0.830
18.0 16 0.050 0.950 0.082 0.912
19.0 11 0.034 0.984 0.059 0.971
20.0 4 0.012 0.997 0.022 0.993
21.0 0 0.000 0.997 0.000 0.993
22.0 o 0.000 0.997 0.000 9.993
23.0 %] 0.000 0.997 0.000 0.993
24.0 1 0.003 1.000 0.007 1.000
25.0 0 0.0600 1.000 0.000 1.000
3603.200 = Sum of inches

320 = Sum of number

6.600 = Minimum inches

11.260 = Average inches

24.000 = Maximum inches

Table 3.5.2-8

Length Distribution for L2ZTWPP Wire

-120-

Cumulative Cumulative

Count Count Inches Inches
Inches Count Fraction Fraction Fraction Fraction
4.0 0 0.000 0.000 0.000 0.000
5.0 125 0.022 0.022 0.012 0.012
6.0 623 0.108 0.129 0.069 0.081
7.0 785 0.136 0.265 0.098 0.179
8.0 1250 0.216 0.482 0.176 0.355
9.0 606 0.105 0.586 9.095 9.451
10.0 565 0.098 0.684 0.099 8.550
11.0 364 0.063 0.747 0.970 0.620
12.0 308 9.053 0.800 0.065 0.685
13.9 286 0.049 0.850 0.065 0.749
14.0 215 0.037 0.887 0.052 0.802
15.0 135 0.023 0.911 0.035 6.837
16.0 129 0.022 0.933 0.036 0.873
17.0 88 0.015 0.948 0.026 0.899
18.0 67 0.012 0.960 0.021 0.920
19.0 79 0.014 0.973 0.026 0.945
20.0 79 0.014 0.987 0.027 0.973
21.0 57 0.010 0.997 0.021 0.993
22.0 17 0.003 1.000 0.006 1.000
23.0 1 0.000 1.000 0.600 1.000
24.0 (%] 0.000 1.000 0.000 1.060

59135.200 = Sum of inches

5779 = Sum of number

5$.200 = Minimum inches

10.233 = Average inches

23.400 = Maximum inches

Table 3.5.2-9

Length Distribution for L3TWPP Wire

-180-

Cumulative Cumulative

Count Count Inches Inches
Inches Count Fraction Fraction Fraction Fraction
4.9 0 0.000 0.000 0.0600 0.000
4.0 188 0.104 0.104 0.048 0.048
6.0 1279 9.705 0.809 0.408 0.456
8.0 0 0.000 0.809 9.000 0.456
10.0 (%) 0.000 0.809 0.000 9.456
12.0 0 0.000 0.809 0.000 0.456
14.0 (7] 0.000 0.809 0.000 0.456
16.0 (%] 0.000 0.809 0.000 0.456
18.6 7] 0.000 0.809 0.000 0.456
20.0] 0.000 0.809 0.000 0.456
22.0 (7] 0.000 0.809 0.000 0.456
24.0 (7] 0.060 0.809 0.000 0.456
26.0 1] 0.000 0.809 0.000 8.456
28.0 0 0.000 0.809 0.000 8.456
30.0 310 0.171 0.980 0.476 0.932
32.0 o 0.000 0.980 0.000 9.932
34.0 0 0.000 0.980 0.000 0.932
36.0 37 9.020 1.000 0.068 1.000
38.0 1) 0.000 1.000 0.000 1.000
19537.000 = Sum of inches

1814 = Sum of number

5.000 = Minimum inches

10.770 = Average inches

36.000 = Maximum inches

Table 3.5.2-10

Length Distribution for WPCBLW Wire

-181-

3.6 ASSIGNMENT OF SHIELD PINS

Every shielded segment (e.g. a twisted-pair) in a non-differential net needs to
have its shield wire wrapped to a shield pin on each end. After wire-type assignment
has determined which segments are shielded, it is reasonable to consider the selection of

those shield pins.

In order to reduce the signal-shield wire spread at the end of the shielded wire
(which can contribute significantly to manufacturing cost and result in both electrical
and mechanical unreliability), it is desirable for the shield pin to be as close as possible
to the signal pin. Typical wire-wrap systems provide a large number of shield pins
distributed uniformly over the boards; this strategy makes it likely that a shield pin will

be located near any given signal pin.

Wire-wrap board designs do not always provide a dedicated nearby shield pin for
every signal pin, since usually only a small fraction of the segments on a board are
shielded. However, to handle boards with dedicated shield pins, the SCALD System
allows the designer to dedicate any particular shield pin to any signal pin when he
defines a board. Whenever a shielded segment is wrapped to such a signal pin, the
dedicated shield pin is used for the shield wire (in order to ensure that the shield pin is

available if needed, it is never used with any other signal pin).

Wherever shielded segments are adjacent in a chain, it is permissible for the

segments to share a shield pin, just as the segments share a signal pin. In this case, the

-182-

shield wire is wrapped at the same level as the signal wire. Sharing shield pins between
non—ad jacent segments is not permitted because it may lead to difficulties in removing
wires (ie, if such sharing is permitted, then when making a logic change that requires
removing a shielded wire, it may be necessary to remove unrelated wires in order to

access the end of a lower-level shield wire on a shared shield pin).

Given a fixed signal pin which requires a shield pin nearby, and barring the
possibility that a dedicated shield pin can be used, or that a shield pin from an ad jacent
segment can be used, the problem of shield-pin assignment is simply one of choosing the
closest available shield pin. Although locating the best unused shield pin is relatively
simple, the number of twisted-pair wires in a large digital system precludes manual

shield-pin assignment.

8.6.1 Detailed Description

Our algorithm for shield-pin assignment is the same as for terminator assignment,
since both problems require finding a nearby wire-wrap pin, and since the problem of
depletion in “corners” is similar. The designer is permitted to specify a “center point” for
shield-pin assignment in each area of the board definition; we simply sample each
wire-wrap pin of the board, in order of increasing distance measured orthogonally from

the signal pin, and we select the one closest to the “center point” from the set of pins

-183-

closest to the signal pin.

8.6.2 Experience

In the S-1 Mark IIA 4108-Chip Example, at least 10 shield pins were provided
per 16-pin socket on the 11 ECL-10K boards. Some integrated circuits required that
solder clips be installed to connect other pins to the shield plane, and on the average this
contributed an additional 0.6 shield pins per ECL-10K DIP on ECL-10K boards. On
the one ECL-100K board, at least 21 shield pins were provided per 24-pin socket, and
every such shield pins was dedicated for use with one of the 21 non-power pins of an

integrated—circuit socket.

The parameters controlling the wire-type assignment algorithm have a significant
effect on how many shield pins are required; if the parameters cause a large number of
shielded wires to be used then, of course, a large number of shield pins will be required.
If we consider only those non-dedicated shield pins in populated sockets as being
“available,” then with the parameters set to their final values, only 27.2% of the available

shield pins were assigned.

Just as with terminators, we found that local depletion of shield pins occurs quite

rapidly as the density of available shield pins approaches the minimum density

-184-

necessary.

The amount of computation time required for the assignment of shield pins using
this algorithm was quite small, relative to the total amount of time required to process a
net. On the average, with the wire-type-assignment parameters set to their final values,
1.6 ms were required to find a single non-dedicated, non-shared shield pin, and this
represented only 0.5% of the total time required to process a net. On the average, 1.8 ms
were required to find all non-dedicated, non-shared shield pins for a net, and this

represented only 0.5% of the total time required to process a net.

Figure 36.2-1 shows the distribution of orthogonal distances to assigned shield

pins on a typical board of the S-1 Mark IIA 4108-Chip Example, with the

wire-type-assignment parameters set to their final values.

~185-

Cumulative Cumuiative

Count Count Inches Inches
Inches Count Fraction Fraction Fraction Fraction
0.0] 0.000 0.000 0.000 0.000
0.0] 0.000 0.000 0.000 0.000
0.1 7209 0.558 0.558 0.354 0.354
0.2 4693 0.363 0.921 0.461 0.815
0.3 530 0.041 0.962 9.078 0.893
0.4 337 0.026 0.988 0.066 0.959
0.5 185 0.008 0.997 0.026 0.985
0.6 23 0.002 0.998 0.607 0.991
0.7 9 0.001 0.999 0.003 0.995
0.8 10 0.001 1.000 0.004 0.999
0.9 7] 0.000 1.000 0.000 9.999
1.0 3 0.000 1.000 0.001 1.000
1.1 () 0.000 1.000 0.000 1.000

2036.900 = Sum of inches

12919 = Sum of number

0.100 = Minimum inches

0.158 = Average inches

1.000 = Maximum inches

Table 3.6.2-1

Shield-Pin Assignment Distances

~186-

8.7 ESTIMATION OF INTERCONNECTION DELAYS

In a high-performance digital system using ECL SSI and MSI logic,
interconnection delays are significant compared with component delays. Thus, in order
to perform accurate timing verification of such systems, it is necessary to estimate the
interconnection delays of the nets which the system designs, and to report upper and

lower bounds on those delays back to the next iteration of timing verification.

The delay of a chain from some output to some input is basically the time required
for the output waveform to reach the input. More formally, we define this delay to be
the amount of time elapsed from when the unloaded-output waveform would have
reached 50% of its transition to when the input node under consideration actually reaches

B0% of its transition.

The delay of a chain from some output to some input can vary greatly depending
upon the types of nodes in the chain, the order of nodes in the chain, the distances

between nodes in the chain, the wire types, and the values of the terminations.

There has been a great deal of work on the problem of accurately simulating the
behavior of electrical networks, especially networks of the simple kind with which we are
concerned; such networks can be modeled satisfactorily as one or more outputs driving a

segmented transmission line containing lumped resistive and capacitive loads [B172].

In fact, during this investigation we implemented two transmission-line-analysis

-187-

programs which performed detailed simulation of these networks in response to output
waveformsL Our first program symbolically integrated the transmission-line equations,
using heuristics to prune the solution to a manageable number of terms [MW78b]l. Our
second program was a straightforward time-domain integration. Neither program

proved to be adequate for estimating interconnection delays in large digital systems.

One major problem with the simulation approach was that developing a solution
for a typical network required on the order of a second of S-1 Mark I CPU time, which
was far too great to allow every network of the S-1 Mark IIA design to be analyzed
during each packaging run. However, it should be noted that simulation can be
practical for small digital systems, or for large digital systems when used only as a final

check.

A second major problem was that various uncertainties in the physical parameters
of a network (for example, the per-unit-length propagation delays of the various wire
types, and the magnitudes of the lumped capacitive loads) cause the results to be
inaccurate, and automatically estimating useful bounds on the inaccuracy in such a

simulation is a difficult problem.

Fortunately, most of the information produced by detailed simulation of these
networks is superfluous for the purpose of timing verificﬁtion. All the information that
is required in order to do timing verification is, first, an assurance that the waveform
observed by any input is reasonably clean (ie., nearly monotonic in time, and having

reasonably large slope) and, secondly, upper and lower bounds on the delay from any

-188-

output to any input. This information can be generated quite easily for chain networks.

Certifying that the waveform is clean involves simply examining the chain to see
if the lumped capacitance in any interval can cause an unacceptable reflection to occur.
If such a reflection can occur, then the net is simply flagged as an error, and the problem

must be corrected by changes in the logical design or component placement.

In the remainder of this section, we consider how to simply bound the delay of a
chain. We will assume that the network is free of severe reflections, eg., properly

terminated.

8.7.1 Detailed Description

We will first consider how to determine an upper bound on any output-to-input
delay. Because we assume that there are no severe reflections, the delay to the most
distant input in a given arm must be greater than the delay to any other input in the
same arm, and the waveforms in the two arms must be independent. Therefore, to
compute this upper bound, we need only compute the maximum delay from any output

to each of the two most distant inputs {one in each arm).

In order for the computation to be simple, we would like it to be independent of

-189-

the distribution of the loads. There are two lossless-transmission-line models which do
not depeﬁd upon the distribution of the loads: the distributed mode! assumes that the
loads are perfectly distributed along a transmission line, and the lumped model assumes
that they are all lumped at the end of a long transmission line. In both of these models,
we will assume that the transmission-line characteristics of the segments of the chain are
the same, which is roughly required anyway by our assumption that reflections are not

unacceptably large.

Let T, be the per-unit-length propagation delay of the unloaded chain, let C, be
the per-unit-length distributed capacitance of the unloaded chain, let Z; be the
characteristic impedance of the unloaded chain, let L be the length of the chain between
the output and the load being considered, and let C; be the total capacitance of all the
loads between the output and the load being considered, inclusive. Define T to be the

characteristic time CLZOI2.

In the distributed model, the delay does not depend upon the shape of the driving

waveform. The delay from a given output to the most distant load in an arm is [B172]
D = TyL « {1+C; (CLN'2,
and a convenient upper bound on this delay is

D < T,L « (1 + C;A2C,LY) = ToL + C « (ToH2C).

~140-

Noting that, for lossless transmission lines, T/C,, = Z,, we can rewrite this upper bound

as

D<TyL+C;Zy2 = Tyl + T. (8.7-1)

This upper bound is also reasonably accurate for typical values of physical
parameters in the S-1 Mark IIA 4108-Chip Example. In that case, T is about 0.1
nsfinch, Z, is about 100 ohms, and loads (typically 4 pf including the wire-wrap pin) are
distributed at an average of about one per 3 inches. Hence, C; /(C,L) is typically about
1.3, and the upper bound is (typically) overly conservative by about 10%. The greatest
inaccuracy occurs for very short chains, and D approaches this upper bound

asymptotically as L increases and C; remains bounded.

In the lumped model, we might assume that the output waveform is a step
function. In this case, the lumped load then behaves like a capacitor charging with

time-constant T, and reaches 50% of its transition at time
D=TyL +069T. (8.7-2)
Now, if we assume that typically about half the delay is capacitive (which is
approximately correct, in the S-1 Mark IIA 4108-Chip Example), then the upper bound

given in (3.7-1) is (typically) overly conservative by about 20%, according to this model.

The relative error goes to zero as L increases, just as it does in the distributed model.

-141-

Of course, the output voltage waveform is not a step function, but is more closely

approximated by an exponential of the form
V(1 - ey,
where V; and K are constants. In the lumped model, if the output voltage wave has
this form, then the delay in (3.7-2) is attained only for 1/K>>T, or for K>>T. For K=T,
the waveform at the lumped load is
V() = V(1 -1 - e ¥T),
Solving V(t) = Vol2 numerically, and subtracting from that solution the time required
for the driving waveform to reach its 50% point, we obtain the delay for the lumped
mode), ie,
D= ToL +099.T,

which, coincidentally, is remarkably close to the delay for the distributed model.

Therefore, in both the distributed and lumped models, a good upper bound on the

delay is of the form

ToL + otCL,

-142-

where a is a constant.

Of course, the approximations that we have made become invalid for very short
chains, very large lumped loads, or mis-matched transmission-line characteristics. Even
within the region of validity, the value of the “best” constant o varies, depending upon
these parameters. Therefore, in the SCALD System, the designer is allowed to specify o,
as well as another additive constant, 8, for each net type, so that he can ad just the delay
estimator to agree well with liboratory experiments in the domain of interest to him. He
is also allowed to specify upper and lower bounds on per-unit-length propagation delay
for each wire type. To find the upper-bound of the delay of a chain, we find the

maximum (for the most distant input in each arm, based upon each Output) of
DW + ctCL + 8,

where Dy is the sum of the maximum propagation delays of wires between the output
and the input, C; is the total lumped capacitance between the oquut and the input,

inclusive, and a and # are constants.

Since the two arms of a chain enclose all the nodes of the chain, and thus all of its
lumped capacitance, this method of estimating delay leads to the fortunate result that thé
chain length is a linear function of the sum of the arm delays, independent of the order
of the nodes in the chain. (We also made use of this result in creating minimum-delay

chains in Section 3.2).

-148-

A reasonable lower bound on the delay from any output to any input is trivial to
generate: we use simply the minimum of any minimum wire delay between an output

and an ad jacent input.

8.7.2 Experience |

In the laboratory, we measured actual chain delays in special chains having both
lumped and distributed inputs, both near an ECL-100K output and far from the output.
For these cases, we found that o = (100 ohms)/2 = 0.050 ns/pf, and 8 = 025 always

yielded reasonable but conservative chain-delay estimates.

The capacitive component of chain delay proved to be significant, relative to total
chain delay, ie, 49.3% of the chain delay, on the average. Table 3.7.2-1 shows the
fraction of the chain delay which was due to the lumped capacitance, for all nets in the

S-1 Mark IIA 4108-Chip Example {using default lead capacitances of 4 pf).

The detailed delay estimates produced by the Packager proved invaluable in
timing verification. The initial logical design was timing-verified by assuming that all
interconnections had delays in the range 0.5 to 2.0 ns, except for ones specially marked
by the designer. The first time that the Timing Verifier ran using delays estimated by

the Packager, 221 new timing errors were reported.

~144-

‘Timing verification using actual estimated delays turned out to be a very effective
tool for finding problems with the placement of components. In the SCALD System, the
high-level planning of the component-placement (e.g., the development of a global
strategy, the partitioning of components into clusters, and the placement of those clusters)
is accomplished manually, and it is practically impossible for the designer to keep track
of the huge number of timing constraints which should influence the placement in a
large digital system. We found that timing verification based on estimated delays was an
ideal technique for highlighting the timing constraints which had been neglected during
component placement. We also found that the Packager’s rapid throughput rate
supported an iterative style of improving the component placement; in each iteration we
would simply intelligently perturb the component placement to correct the most serious

timing errors, and would then run the Layout Program and Packager again.

Relative to the uncertainty in the propagation delay bounds of ECL MSI
components, the typical over-conservatism of our estimator was not large. Furthermore,
timing verification is essentially just a filter for discovering situations needing further
investigation. Usually, there is an easy solution to a timing problem based on perturbing
the component placement, though in some cases the logic design may need to be changed.
Where no other easy solution is evident, and a particular set of wire delays are suspect,
then a test can be performed in the laboratory, and actual wire delays can be input into

the Timing Verifier to override those estimated delays.

Table 3.7.2-2 shows the actual minimum delays calculated for all chains in the S-1

-145-

Mark ITA 4108-Chip Example. Table 3.7.2-3 contains the maximum delays and Table

3.7.2-4 displays the skews (all using default lead capacitances of 4 pf).

-146-

Cumulative Cumuiative

Count Count Percent Percent
Percent Count . Fraction Fraction Fraction Fraction
0.0 0 0.000 0.000 0.000 0.000
0.0 (5] 0.000 0.000 0.000 0.9000
5.0 S8 0.006 0.006 6.001 0.001
10.0 506 0.053 0.059 0.013 0.01S5
15.0 424 0.044 0.104 0.016 0.030
20.0 449 0.047 0.151 0.022 0.052
25.0 587 0.062 0.212 0.034 0.086
30.0 727 0.076 0.288 0.050 0.136
35.0 642 0.067 8.356 0.051 0.187
40.0 467 0.049 9.405 9.042 9.229
45.0 505 0.053 0.458 0.051 0.280
50.0 1030 0.108 0.566 0.115 0.395
§5.0 78S 0.082 0.648 0.097 0.491
60.0 886 0.093 0.741 0.118 0.610
65.0 693 0.073 0.814 0.099 0.709
70.0 569 0.060 0.873 0.088 0.797
75.0 764 0.080 9.953 0.125 0.922
80.0 363 0.038 0.992 0.063 0.985
85.0 81 0.008 1.000 0.015 1.000
90.0 0 0.000 1.000 0.000 1.000
95.0 0 0.0600 1.000 0.000 1.000
100.0 0 0.000 1.000 0.000 1.0600
469963.160 = Sum of percentage
9536 = Som of number
7.665 = Minimum percentage

49.283 . Average percentage
89.041 = Maximum percentage

Table 3.7.2-1

Capacitive Component of Chain Delays

-147-

Nanosec

w\].\l.ODO)UIUIALQQNN—»‘QQQ
SNONONOINONONONOLNEO

Cumulative

Count Count
Count Fraction Fraction
o 0.000 0.000
0 0.000 0.000
6059 9.635 9.635
1072 90.112 0.748
941 0.099 0.846
528 0.055 0.902
242 0.025 0.927
129 0.014 0.941
126 0.013 0.954
148 0.016 0.969
122 0.013 0.982
89 0.009 0.992
S8 0.006 0.998
19 0.002 1.000
(7] 0.000 1.000
(7} 0.000 1.600
3 0.000 1.000
o 0.000 1.000
11949.659 = Sum of nanosee
9536 = Sum of number
90.522 = Minimum nanosec
1.253 = Average nanosec
7.536 = Maximum nanosec

Table 3.7.2-2

Minimum Chain Delays

-148-

Nanosec
Fraction

0.

000

0.000

OOCROOCODODOOOOS

.342
117
.134
.098
.054
.035

Cumulative
Nanosec
Fraction

——_ QOO OOOOOOOOOO®

. 000
. 900
.342
.459
.592
.691

Cumulative Cumuiative

Count Count Nanosec Nanosec
Nanosec Count Fraction Fraction Fraction Fraction
0.0 0 - 9.000 0.000 0.000 0.000
0.0 (%) 0.000 0.000 0.000 0.000
0.5 1756 0.184 0.184 0.062 0.062
1.0 1222 0.128 0.312 0.060 0.122
1.8 1122 0.118 0.430 9.082 0.205
2.9 1203 a.126 0.556 0.111 0.316
2.5 1559 0.163 0.720 0.178 0.493
3.0 610 0.064 0.784 0.082 0.575
3.5 540 0.057 0.840 0.084 0.659
4.9 378 0.040 0.880 0.066 0.725
4.5 350 0.037 0.917 0.069 9.793
5.0 271 0.028 0.945 0.059 0.852
S.5 175 0.018 0.963 0.041 0.893
6.0 122 0.013 0.976 0.031 0.925
6.5 79 0.008 0.984 0.022 6.947
7.0 32 0.003 0.988 0.010 0.956
7.5 33 0.003 0.991 0.011 0.967
8.0 26 0.003 0.994 0.009 0.976
8.5 13 0.001 0.995 0.005 0.980
9.0 7 0.001 0.996 0.0603 0.983
9.5 3 0.0600 0.996 6.001 0.984
10.0 11 0.001 0.997 0.005 0.989
10.5 17 0.002 0.999 0.007 8.997
11.0 6 0.001 1.000 6.003 0.999
11.5 1 0.000 1.000 0.001 1.000

24204.626 = Sum of nanosee

9536 = Sum of number

0.730 = Minimum nanosec

2.538 = Average nanosec

16.638 = Maximum nanosec

Table 3.7.2-3

Maximum Chain Delays

-149-

Cumulative Cumulative

Count Count Nanosec Nanosec
Nanosec Count Fraction Fraction Fraction Fraction
0.0 0 0.000 0.000 0.000 0.000
0.0 3528 0.370 0.370 9.079 0.079
0.5 1867 0.196 0.566 0.109 0.188
1.0 1639 0.109 0.675 0.104 0.292
1.5 679 9.071 0.746 0.096 0.389
2.0 1165 0.122 0.868 0.209 0.598
2.5 383 0.040 0.908 0.0986 0.684
3.0 320 0.034 0.942 0.085 0.768
3.5 168 0.018 0.959 0.051 0.819
4.0 84 0.009 0.968 0.029 0.848
4.5 93 0.010 0.978 0.036 0.884
5.0 47 0.00S 0.983 0.020 0.904
5.5 30 0.003 0.986 0.014 8.918
6.0 43 0.00S5 0.991 0.022 0.940
6.5 22 0.002 0.993 0.012 0.952
7.0 24 0.003 0.995 0.014 9.966
7.5 6 0.001 0.996 0.004 0.970
8.0 1 0.000 0.996 0.001 0.970
8.5 %) 0.000 0.996 0.000 0.970
9.0 7 0.001 0.997 0.00S5 0.976
9.5 29 0.0603 | .000 0.023 0.999
10.0 0 0.000 1.000 0.000 0.999
10.5 0 0.000 1.000 0.000 0.999
11.0 0 0.000 1.000 0.000 0.999
11.5 7] 0.000 1.000 0.000 0.999
12.0 (5] 0.000 1.0060 0.0600 0.999
12.5 (7] 0.000 1.000 0.000 0.999
13.0 1 0.000 1.000 0.001 1.000
13.5 o 0.000 1.000 0.000 1.000

12254.966 = Sum of nanosec

9536 = Sum of number

0.208 = Minimum nanosec

1.285 = Average nanosec

13.096 = Maximum nanosec

Table 3.7.2-4

Chain Skews

-150-

3.8 CHANGES AFTER CONSTRUCTION

A main goal of a design system which supports creation of prototype digital
systems must be to provide the support necessary to produce a set of final source

drawings and related documentation which correspond exactly to a working prototype.

Most prototypes need to be altered after they are constructed. The traditional
method for making changes in a wire-wrap prototype is to determine how to change the
source drawings to fix the discovered problem, then to guess at the way that the changes
would be reflected in the physical implementation, and finally to install the guesses in the
actual prototype. After numerous changes of this type, the real design consists of the
altered source drawings as well as all the notes about changes that were installed in the
physical implementation. In our experience, it is quite difficult to maintain a perfect
correspondence between the notes and the source drawings when changes are made in
this way. As a result, it may even be difficult to build a second prototype which

corresponds exactly to the first.

The SCALD System supports changes to a constructed prototype in a more elegant
way. A designer using the SCALD System simply changes the source drawings, then
runs the entire SCALD System again. When creating the new physical design, the
Packager inputs the previous physical state of the prototype, and outputs a list of
changes which need to be made in order to attain the new state, along with complete
documentation of the new state. If all changes are made in this way, then the final

source drawings are guaranteed to correspond exactly to the final prototype.

-151-

Unfortunately, as discussed previously, for large digital systems, it is essential to
process logical signals sequentially, and for some decisions therefore to be
order-dependent. Therefore, wherever the Packager makes a decision which could be
affected by the logical-signal processing order, it must consider the old physical state of
the prototype, and guard against making non-essential changes. For example, since
terminators are assigned sequentially, the Packager must guard against the possibility
that a mere change in the order of the input (eg., one caused by simply renaming a
logical signal in the source drawings) will cause any net to be assigned a different

terminator.

The Packager guards against this type of needless change by reading the old
physical state of the prototype before each packaging run, and producing a file which
describes the state, but is sorted so as to be in exactly the order needed when processing the
new list of logical signals. Thus, as each new logical signal is processed, the part of the
old physical state which is relevant to that logical signal can be considered, and the new

nets can be designed to incorporate as much of that old physical state as is practical.

This capability does not preclude the installation of changes without running the
entire SCALD System. In case a change is made without running the SCALD System,
then eventually it is accurately edited into the file which aescribes the old state of the
prototype, the corresponding changes are made to the source drawings, and the SCALD
System is run again. If the SCALD System produces an empty change list, then the state

file and the drawings correspond exactly, otherwise, there has been some error in

~152-

documenting the change. In this way, changes to the prototype can be accumulated for a

single SCALD System run.
The capability to manage engineering changes as discussed above was installed in

the SCALD I Physical Design Subsystem, and played a major role in the rapid

commissioning of the S-1 Mark I processor.

~153-

Chapter IV

CONCLUSIONS

4.1 Experience

The SCALD II Packager, before the installation of the capability to support
changes after construction, consists of 30,000 lines (containing 0.6 million non-blank
characters) of Pascal code, and was implemented by the author, working alone, in a

period of 9 months.

Implementation of the SCALD II Packager provided a forceful lesson in software
engineering; of the 30,000 lines of Pascal code in the completed system, the seven major
algorithms described in this dissertation (i, the real nucleus of the system) and their
associated data structures (exclusive of general utility functions) together consist of only

8300 lines, or 11% of the totall We estimate that the relative magnitude of the human

~154-

effort required to write that code is comparable. All of the rest of the code simply
provides general utility functions, does bookkeeping, deals with the human interface, or
manages any of the large number of mundane details not discussed in this dissertation,

but which must be considered in a real physical-design system.

The Packager executed for a total of 73 S-1 Mark I CPU minutes in processing
the S-1 Mark IIA 4108-Chip Example, which contained 11308 nets. The major portion
of this time was spent as follows: 81 seconds to read and process the definitions of the
S-1 Mark IIA ECL-10K board and ECL-100K board, 118 seconds to read and process
the component-placement specification produced by the Layout Program, 100 seconds to
read and process the specification of terminator-resistor locations, and 65 minutes (i.e, an
average of 0.345 seconds per net) to procéss the list of logical signals. The time required
to process the board definitions scales linearly with the total number of wire-wrap pins
on the boards defined, and the remaining time scales roughly linearly with the number

of logical signals in the design.

Table 4.1-1 shows how the 0.345 seconds per net was distributed among the
algorithms discussed in this dissertation. It is notable that 40.9% of the time required to

process a net was spent outside of the execution of these algorithms, in managing

packaging details.

-155-

Percentage
of Average Net

Algorithm Processing Time
Assignment of Inputs to Versi
Determination oprhains rons 23:3 %
Assignment of Cable Wires 1.3
Assignment of Terminators 4.4
Assignment of Wire Types 24.5
Assignment of Shield Pins 0.5
Estimation of Interconnection Delays < 0.1
{Other) 46.9

Table 4.1-1

Breakdown of Average Net Processing Time

The internal representations used by the Packager are designed so that very large
machines (e.g, the S-1 Mark IIA processor, which contains approximately 1.5 million
wire-wrap pins and uses two different board types) can be packaged using memories of
reasonable size (ie, 16 megabytes required to generate detailed packaging instructions
for the S-1 Mark IIA). They are also designed so that memory requirements scale
roughly with the size and complexity of the object machine (eg., the S-1 Mark IIA

4108-Chip Example required nearly 8 megabytes).

~156-

4.2 Contributions

This dissertation has described a system for automatic wire-wrap physical design
of large digital systems, exclusive of component placement. The system consists of a
complete, practical set of computer algorithms which can be used to quickly and
automatically produce high-quality physical designs, and which are sufficiently flexible
that they can handle the wide range of different wire-wrap and component technologies
currently widely employed including in particular the largest and most complex
wire-wrap digital systems. The first generation of the system described (SCALD I) has
been evaluated in actual operation during the design, implementation, and debugging of
the S-1 Mark I processor, and the second generation (SCALD II) has been evaluated in
actual operation during the design and initial phases of implementation of the S-1 Mark

IIA processor.

Wire-wrap is already an important prototyping technology, and can be expected to
gain in importance as the need for high-performance simulation of VLSI logic designs
increases. This dissertation contains the first detailed description of a complete ‘system
for wire-wrap physical design. Moreover, the partitioning of the wire-wrap problem
presented here is directly applicable to other discrete-wire prototyping technologies. The
Packager program listing and associated input files included in microfiche form inside
the back cover of this dissertation substantially enhance the ability of the digital design
community to implement in wire-wrap, as they make a comprehensive package of

debugged, performance-evaluated software available for study.

-157-

High-level languages for logic design can be expected to become increasingly
importé.nt as larger digital systems become potentially feasible from an implementation
viewpoint. This is the first investigation of how high-level, hierarchical logic design
with timing verification can be extended all the way down to detailed physical
implementation, and is relevant to the analogous tasks in other implementation

technologies, including the VLSI ones.

The detailed system operation and performance statistics and analysis presented in
this dissertation about the S-1 Mark IIA physical design are useful to the designers of
other computer-aided-design systems; they constitute the first detailed study and
comprehensive data which address the physical design of a large, high-performance,

wire-wrap machine.

Finally, the specific algorithms discussed here, particularly those for forming
chains and assigning wire types, are of general interest, as are the data presented about

the performance of these algorithms in packaging a real digital logic system.

-158-

4.3 Future Research

The most important area requiring future research is the extension of this work to
other implementation technologies. For example, it would be of great value to have
physical-design tools with this level of capability for the printed-circuit, gate-array, or

VYLSI domains.

Secondly, crosstalk management is in need of further study. In particular, it would
be useful to investigate more capable algorithms for managing the physical routes of
wires so as to minimize crosstalk, and for assigning wire types on the basis of the actual
physical proximity of nets. It seems likely that timing verification could play a major
role in crosstalk management, both for the wire-wrap and for the printed—circuit

domains, by identifying the time intervals during which signals may be changing.

There are also a number of minor areas which are candidates for additional

research, as follows:

In the area of assignment of inputs to versions, more work is needed on
version-assignment algorithms which lead to distributed chains, rather than clustered
ones, since sometimes the only reflection-free partition requires the use of distributed

chains.

In the area of chaining, additional research is needed on algorithms which

minimize reflections or chain skew, rather than optimizing length or delay. Further study

-159-

of algorithms which correctly handle nets with multiple outputs is also needed.
Additional research is needed on algorithms which take into account the positions of
segments in order to control the thickness of the wire mat, and more study is needed of
fast heuristic algorithms with the generality of Algorithm C3, but which allow chaining

a larger number of nodes.

In the area of cabling, further investigation of algorithms for automatically

determining cable positions is in order.
Finally, in the area of wire-type assignment, more effort is needed on algorithms

which take into account local deviations from the average wire-mat density, and ones

which could thereby smooth out thebpeaks of the wire-mat distribution.

-160-

[A160]

[An78]

[Bag6]

[Be62]

[Be68]

[B172]

[(Br72]

(Bré2]

Chapter V

REFERENCES

Altman, G. W,, DeCampo, L. A, and Warburton, C. R., “Automation of
Computer Panel Wiring,” AIEE Transactions on Communications and
Electronics, Vol. 79 (1960), pp. 118-125.

Anderberg, M. R, Cluster Analysis for Applications, Academic Press, 1973.
Balharrie, D. M., “The Preparation of Wiring Tables and Schedules by
Computer,” Proc. British Computer Conference, Eastbourne, May, 1966, pp.
156-171.

Beltman, R., “Dynamic Programming Treatment of the Travelling Salesman
Problem,” Journal of the ACM, Vol. 9 (1962), pp. 61-63.

Bellmore, M., and Nemhauser, G. L., “The Traveling Salesman Problem: a
Survey,” Operations Research, Vol. 16, No. 3 (May-June, 1968), pp. 538-558.

Blood, W. R, MECL System Design Handbook, Motorola Semiconductor
Products Inc., December, 1972.

Breuer, M. A, Design Automation of Digital Systems, Prentice-Hall, 1972.

Brown, R. R, and Putnam, G. F.,, “The Automation of Topological Layout,”

-161-

[C176]

[Cr76]

[De70]

[Do%6]

[E159]

[Fa?7]

[Fr78]

[GD79al

[GD79b]

[Gr61]

[Ha75]

[He?70]

[He71]

AIEE Transactions on Communications and Electronics, Vol. 81 (1962), pp.
186-139.

Clark, R.], “High Speed Logic Packaging Using Multiwire Interconnection
Technology,” Session 25, 1976 Wescon, Los Angeles, California.

Cray Research, Inc, “Cray-1 Computer System Reference Manual,”
Bloomington, Minnesota, 1976.

DeFalco, J. A, “Reflection and Crosstalk in Logic Interconnections,” IEEE
Spectrum, July, 1970, pp. 44-50.

Doucet, L. A, “Wire Wrapping High-Speed ECL Integrated Circuits,”
Session 25, 1976 Wescon, Los A ngeles, California.

Elliott, S. J., “Evaluation of Solderless Wrapped Connections for Central
Office Use,” AIEE Transactions on Communications and Electronics, Vol. 78
(1959), pp. 185-194.

Fairchild Camera and Instrument Corporation, ECL Data Book, Mountain
View, California, 1977.

Fraser, A. G, “UNIX Time-Sharing System: Circuit Design Aids” Bell
System Technical Journal, Vol. 57, No. 6., {July-August, 1978), pp. 2233-2249.

Gardner-Denver Company, “Design Guidelines for Automatic Wire-Wrap,
Grand Haven, Michigan, 1979.

Gardner-Denver Company, "Wire-Wrap Connections,” Grand Haven,
Michigan, 1979.

Grim, R. K., and Brouwer, D. P, “Wiring Terminal Panels by Machine,”
Control Engineering, Vol. 8, No. 8 (August, 1961), pp. 77-81.

Hartigan, J. A, Clustering Algorithms, John Wiley and Sons, 1975.

Held, M, and Karp, R. M, “The Traveling-Salesman Problem and
Minimum Spanning Trees” Operations Research, Vol. 18 (1970), pp.
1188-1162.

Held, M, and Karp, R. M, "The Traveling-Salesman Problem and

~-162-

[He72]

[Hi67)

(Hos6]

[Ho72]

[Ka64]

[Ke52]

[Ku75]

[Li65]

[Li78]

[Lo57]

(Ma80]

Minimum Spanning Trees: Part II” Mathematical Programming, Vol. 1
(1971), pp. 6-25.

Helliwell, R. P, *The Stanford University Drawing System,” Stanford
Artificial Intelligence Laboratory, Stanford University, Stanford, California,

1972.

Hillier, F. S, and Lieberman, G. G., Introduction to Operations Research,
Holden-Day, 1967.

Horne, N. W, “The Wiring Process of a Design Automation System for
Telephone Exchanges,” Proc. British Joint Computer Conference, Eastbourne,
May, 1966, pp. 149-155.

Horstock, N., “WRLST#$: A Computer Program for Producing and Updating
Wiring Lists,” Danish Research Centre for Applied Electronics, Copenhagen,
Rept. ECR-31, December, 1972.

Kallas, J. L., “Computer-Aided Wiring Design,” Bell Labs Record, Vol. 42,
No. 1 (November, 1964), pp. 342-349.

Keller, A. C, “A New General Purpose Relay for Telephone Switching
Systems,” AIEE Transactions, Vol. 71 (1952), pp. 413-428.

Kuh, E. S, and Ting, B. S., “The Backboard Wiring Problem: Some Results
on Single-Row Routing,” Proc. IEEE International Symposium on Circuits
and Systems, April, 1975, pp. 369-372.

Lin, S, “Computer Solutions of the Traveling Salesman Problem,” Bell
Systems Technical Journal, Vol. 44 (1965), pp. 2245-2269.

Lin, S, and Kernighan, B. W, “An Effective Heuristic Algorithm for the
Traveling-Salesman Problem,” Operations Research, Vol. 21 (1978), pp.
498-516.

Loberman, H., and Weinberger, A, “Formal Procedures for Connecting
Terminals with a Minimum Total Wire Length,” Journal of the ACM, Vol. 4
(1957), pp. 428-437.

Mallmann, F. P.,, “The Management of Engineering Changes Using the
Primus System,” Proc. I7th Design Automation Conference, Minneapolis,

-163-

[Mab4]

[Ma74]
[MC78]
[Me80]

[MR53]
(MW77]
[MW178a]
(MW 78b]
[MW80al
[MW80b]

[Mes9]

Minnesota, June, 1980, pp. 348-361.

Mason, W. P, and Anderson, O. L, “Stress Systems in the Solderless
Wrapped Connection and Their Performance,” Bell System Technical
Journal, Vol. 33 (1954), pp. 1093-1110.

Mason,]. F., “Report on Breadboards,” Electronic Design, Vol. 22, No. 8
(April 12, 1974), pp. 30-40.

McCreight, E, “ROUTE Program Logic Manual,” Xerox PARC Internal
Report, June, 1978.

Mead, C, and Conway, L., Introduction to VLS! Systems, Addison-Wesley,
1980.

McRae, J. W, Mallina, R. F., Mason, W. P, Osmer, T. F,, and Van Horn, R.
H,, “Solderless Wrapped Connections,” Bell System Technical Journal, Vol. 32
(1958), pp. 523-591. '

McWiltiams, T. M., Fuller, S H., and Sherwood, W. H,, “Using LSI Processor
Bit-Slices to Build a PDP-11 — A Case Study in Microcomputer Design,”
Proc. National Computer Conference, Houston, Texas, 1977, pp. 243-253.

McWilliams, T. M, and Widdoes, L. C, “SCALD: Structured
Computer-Aided Logic Design,” Proc. of the 15th Design Automation
Conference, Las Vegas, Nevada, June, 1978, pp. 271-277.

McWilliams, T. M., and Widdoes, L. C, *“The SCALD Physical Design
Subsystem,” Proc. 15th Design Automation Conference, Las Vegas, Nevada,
June, 1978, pp. 278-284.

McWilliams, T. M., “Verification of Timing Constraints on Large Digital
Systems,” Ph.D. Dissertation, Computer Science Department, Stanford
University, Stanford, California, May, 1980.

McWilliams, T. M, *Verification of Timing Constraints on Large Digital
Systems,” Proc. of the I7th Design Automation conference, Minneapolis,

Minnesota, June, 1980, pp. 139-147.

Metzger, G., Vabre,], Transmission Lines with Pulse Excitation, Academic
Press, 1969.

-164-

[Mo76]

[Na76]

[Re77]

[Ro71]

[Ro74]

[Ru73]

[s176)]

[s177]

[S178]

[s179]

Moore, D., “High Speed Logic Packaging Using Stitchweld Interconnection
Technology,” Session 25, 1976 Wescon, Los Angeles, California.

Nakahara, H,, Burr, R. P, and Burr,]J. B, “Interconnection Routing for
Muttiwire Circuit Boards,” Proc. IEEE International Symposium on Circuits
and Systems, Munich, Germany, April, 1976, pp. 646-649.

Reingold, E. M. Nievergelt,], and Deo, N., Combinatorial Algorithms,
Prentice Hall, 1977.

Rostky, G., “Focus on Packaging,” Electronic Design, Vol. 19, No. 16 (August
5, 1971), pp. 36-47.

Rosenkrantz, R. E., Stearns, R. E, and Lewis, P. M, “Approximate
Algorithms for the Traveling Salesperson Problem,” Proc. 15th Symposium on
Switching and Automata T heory, New Orleans, October, 1974, pp. 33-42.

" Ruehli, A.E., “Electrical Considerations in the Computer-Aided Design of

Logic Circuit Interconnections,” Proc. 10th Design Automation Workshop,
June, 1973, pp. 262-266.

McWilliams, T. M., Widdoes, L. C, and Wood, L. L, “The Preliminary
Design of An Advanced Programmable Digital Filter Network For Large
Passive Acoustic ASW Systems,” Prepared for The Naval Systems Division,
Office of Naval Research, September 30, 1976. (UCID-17299).

McWilliams, T. M., Widdoes, L. C.,, and Wood, L. L., "Advanced Digital
Processor Technology Base Development for Navy Applications: The S-1
Project” Prepared for The Naval Systems Division, Office of Naval
Research, September 30, 1977. (UCID-17705).

S-1 Project Staff, “Advanced Digital Computing Technology Base
Development for Navy Applications: The S-1 Project,” Prepared for the
Naval Systems Division, Office of Naval Research, September 30, 1978.
(UCID-18038).

S-1 Project Staff, “FY79 Annual Report: The S-1 Project,” Prepared for
The Naval System Division, Office of Naval Research; The Command and
Control Division, Naval Electronics Systems Command; and The Command,
Control, Communication, and Inteiligence Program Office, Naval Material

~165-

[Wi79a]

(Wi79b]

[Ya63]

Command, September 30, 1979. (UCID-18619).

Widdoes, L. C, “The S-1 Project: Developing High-Performance Digital
Computers,” Energy and Technology Review, Lawrence Livermore National
Laboratory, Livermore, California, September, 1979, pp. 1-15. (Also
Proceedings COMPCON, San Francisco, California, February, 1980, pp.
282-291.)

Wilson, E. A, “Simulating the Delay in Logic Networks for Large,
High-Speed Computers,” Proc. National Computer Conference, New York,
New York, June, 1979, pp. 19-28.

Yao, F. C, "Analysis of Signal Transmission in Ultra High Speed

Transistorized Digital Computers,” IEEE Transactions on Electronic
Computers, August, 1963, pp. 372-382.

~166-

(1]

[2]

(1

(4]

Chapter VI

FOOTNOTES

“Wire-wrap” is a trademark of the Gardner-Denver Company, Grand
Haven, Michigan. '

Augat Corporation, of Attleboro, Massachusetts, a leading manufacturer of
wire-wrap boards and related products, delivered 0.1 million wire-wrap
boards in 1979, with an aggregate value of $25 million; this represents
approximately 30% of the total market. Datatex Corporation, of Houston,
Texas, applied 40 million wires during 1979, and Data Connections, West,
Inc, of Woodland Hills, California, applied 48 million wires during 1979.
There are over 1500 fully automatic wire-wrap machines installed in the
United States, with an aggregate wire-wrapping capacity of approximately 5
billion wires per year; at 5000 wires per S-1 Mark I processor board, this is
the equivalent of 1 million S-1 Mark I processor boards, or 83,000 S-1 Mark
I processors.

In addition to the S-1 Mark ILA processor [S179] itself, a current example of
such a wire-wrap prototyping strategy exists in the Micro-Bridge Project at
the Hewlett-Packard Computer Research Laboratories, in Palo Alto,
California, where a VLSI logic design is being prototyped in ECL-100K on
multiple S-1 Mark IIA ECL-100K wire-wrap boards.

For example, the S-1 Mark IIA processor contains roughly 0.5 million
wire-wrap wires, each requiring numerous operations during the

-167-

physical-design process.

[5] Approximately 5% of the total wire-wrap wires applied by Datatex
Corporation of Houston, Texas, and Data Connections, West, Inc, of
Woodland Hills, California, during 1979 were twisted-pairs, for combined
crosstalk and impedance control.

[6] For example, Kapton, and Milene, both offered by W. L. Gore, and
Associates, Newport Beach, California.

7 In typical applications, the ECL-100K logic family [Fa77] has about 0.1 V of
DC noise margin, and gate delays on the order of | ns. In one laboratory
experiment, we induced crosstalk having a voltage-waveform peak of 0.5 V,
and a duration of 8 ns at half-amplitude, in a 12-inch single wire by driving
four 12-inch single wires ad jacent to it for its entire length with ECL-100K
outputs. Crosstalk of this magnitude is sufficient to propagate indefinitely
through a series of ECL-100K gates, or to spuriously clock an edge-triggered
device. We observed that the peak of the crosstalk voltage waveform was
reduced to about 0.1 V, and its duration at half-amplitude to about 5 ns, by
converting the driving wires to twisted-pair.

(8] In laboratory experiments, we observed that the characteristic impedance of
standard Milene-insulated single wire manufactured by W. L. Gore, and
Associates, Newport Beach, California, (nominally 19.5-mil outside diameter,
including insulation) varied from 50 ohms to 300 ohms, depending upon its
distance from the ground plane of an S-1 Mark IIA ECL-10K board. The
characteristic impedance of twisted-pair made of the same wire (using
approximately 4 twists per inch) varied from 80 ohms to 100 ohms,
depending upon its distance from the ground plane.

[9] In our experience with the S-1 Mark I processor, changing a single wire in

the most thickly matted region of some boards required as much as a full
hour.

U.S. Government Printing Office: 1981/10--789-~002/4008 -168-

