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Automatic Physical Design of Large Wire-Wrap Digital Systems

L. Curtis Widdoes Jr.

December, 19S0

Computer Science Department
Stanford University

Stanford, California 94305

ABSTRACT

A system is described which automatically performs the detailed physical design of
a wire-wrap digital system, given a completed logical design, chip placement, and
user-specification of the particular component technology and wire-wrap package to be
used. The system approximately optimizes measures of the manufacturability, reliability,
and performance level of the physical design, as defined by parameters provided by the
user.

The system’s models of the wire-wrap environment and component technologies
are surveyed, and itsmapr algorithms for physical design are discussed in detail. These
models and algorithms are novel in that they are detailed enough to allow the complete
highquality physical design of large, high-performance central-processing units.
Furthermore, they are designed to be easily adapted by the user for specific design
efforts.

The performance of the algorithms is illustrated by an example from the physical ,
design of a high-performance central-processing unit, the S-1 Mark IA The short
physical-design cycle which the system makes possible has permitted frequent iterations
of the complete Iogicallphysical design process, allowing feedback about the physical
design to be used in design optimization and timing verification.

KEYWORDS: Computer-aided design, design optimization, digital design languages,
digital system design, ECL, emitter-coupled logic, hierarchical design, physical design,
S-1 Project, SCALD, timing verification, wire list generation, wire-wrap systems, wiring
design.
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Chapter I

INTRODUCTION

L1 Pursmse of this Investigation

Wi*wrap [11 is an important and widely accepted [2] technology for

implementing both prototype and limited-production digital systems. Wire-wrap is easy

to design with, it is capable of providing reasonably high digital-system performance

levels, it is not prohibitively expensive, it is easily changed, and it is reliable [Br62,

D076, E159,GD79z GD79b, Gr61, Ma54, Ma74, MR53, MW78b, R0711

The importance of wire-wrap as a prototyping technology can be expected to

increase greatly as very large scale integration (VLSI) llfe801 of logic circuitry matures.

As the complexity of VLSI designs increases, it becomes increasingly important to verify

the correct logical operation of such circuits in an essentially mechanical fashion. As a

-1-
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mechanical verification tool, software simulation is so slow that it precludes the detection

of errors which only rarely manifest themselves in actual operation. However, a

hardware prototype (which obviously must correspond logically in an obvious and

certifiable way to the VLSI design being verified) may allow the I@cal design to be

exercised much more extensively, revealing more subtle logical-design errors [MW77].

Wir-wrap is a natural choice for the prototyping technology, since a wir~wrap system

can be quickly constructed, and after construction it can be probed as necessary to

discover and explore the design error% it may then easily be changed to correct the

problems [31.

Because wire-wrap is a relatively unconstraining technology from an

implementation point of view, the logic can be designed largely independently of

partitioning and other packaging consideration hence the design of wire-wrap digital

systems is normally divided into two phases Io@”caldesign and /Jhysical&sign ~W78a,

MW78bl. During the logical-design phase, the interconnections between logical elements

are defined, while simply assuming that some correct physical design exists. During the

physical-design phase, a particular wire-wrap implementation is designed which

correctly implements the now-fixed logical design. This two-phase process may need to

be iterated before the machine is bulk, in order to correct for actual interdependencies

between the logical and physical designs which were neglected in this model.

Because of the large number of operations involved in the physical design of a

large digital system [4], and because multiple physical-design iterations may be necessary

in order to correct timing errors, automatic physical design is essential to make complete
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timing verification of such a system ~W80a, MW80b] a practical reality timing

verification provides a guarantee that the system will perform reliably and reproducibly

under all variations of data and programs. The system reported here, the SCALD

(Structured Computer Aided Logic Design) Packager, has actually been used on a

regular basis to iterate the physical design of the S-1 Mark IIA processor [S179],

producing a complete set of interconnection delays for the SCALD Timing Verifier,

which then provides the designer with the information required to correct all timing

errors.

In turn, practical timing verification makes the use of hardware prototypes

(including wire-wrap prototypes) much more attractive. The timing of a hardware

prototype is generally quite different from the timing of the object machine, hence

building a hardware prototype has in the past involved debugging two rather unrelated

sets of timing problems i.e., that of the prototype, and that of the ob~t machine. Given

practical timing verification, the human effort involved in discovering these timing

errors is greatly reduced.

Therefore, one purpose of this research is to develop and evaluate a compkte,

practical set of computer algorithms which can be used to quickly and automatically

produce highquality wire-wrap physical designs (exclusive of mmponent placement),

and which is sufficiently flexible to handle the wide range of different wire-wrap and

component technologies currently employed, in particular, extending to the largest and

most complex wire-wrap digital systems (e.g., the S-1 Mark IIA).
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But this research also is intended as an example of how high-level hierarchical

logic design with timing verification, such as that supported by the SCALD Logical

Design Subsystem llkfW78Z MW80Z MW80b, S 178, S 179], can be extended all the way

down to detailed physical implementation; although we have chosen wire-wrap as the

specific technology to be studied, this case study is important independent of the value of

wire-wrap as an implementation technology.

Furthermore, this research serves as a case study of a particular physical design

efforg the detailed statistics presented about the S-1 Mark ILA physical design are useful

data for the designers of computer-aided-design systems which support implementation

in other technologies.

Finally, many of the specific algorithms presented here are applicable across a

wide range of implementation technologies, including VLSI ones and those involving

integrated circuits mounted on printed-circuit boards.
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L2 Introduction to Wire-WraD Technolozv

Solderless wrapped-wire connections were developed shortly after World War II

for use with telephone relays lKe52, MR53, Ma541. This type of connection is now

known as “wire-wrap,” a term which was introduced by Gardner-Denver Company, the

first major supplier of tools for this technology.

Wir-wrap connections and the associated technology have gained widespread

acceptance for the implementation of digital systems, where they are used primarily for

interconnecting integrated circuit packages in prototype and limited-production systems,

and for interconnecting the edge fingers of printed-circuit boards [Br62, D076, E159,

GD79% GD79b, Gr61, Ma54, Ma74, MR53, MW78b, R0711 The mapr advantage of

wire-wrap over printed+ircuit technology is that the wire-wrap wires carI cross each

other (since they are insulated), hence there is no need to perform the complex process of

routing wires to avoid crossovers. The maw disadvantage is that it is more expensive in

volume production. Wire-wrap technology has been standardized for U.S. military use

(in MIL-STD-1130B) and for commercial use (by the Electronic Industries Association,

in EIA RS-280B). Several similar interconnection technologies employing insulated wire

have recently been developed, e.g., stitchweld [M0761, and multiwire [C1761 and much of

the research and analysis presented in this dissertation relates to those technologies as

well.

Wire-wrap technology has a wide range of forms for various applications, but

because this dissertation is concerned with a system for the automatic physical design of
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large, high-performance, wire-wrap digital systems, we will focus here on wire-wrap

technology as it is typically used for interconnecting integrated-circuit packages in such

systems, e.g., in the S-1 Mark I and S-1 Mark 11A processors [MW78b, S 177, S 178,

s 1791. High-performance wire-wrap

component technologies [Do%, Fa77] have

packaging technology and the associated

matured only during the past decade.

A wire-wrap connection is a gas-tight electrical connection consisting of a helix of

continuous, solid, uninsulated wire tightly wrapped around a pin having sharp edges, as

shown in Figure 1.2-1. The connection is held together by cold welding of the wire to

the edges of the pin, against elastic stresses in the pin and wire. Such a connection is

ordinarily created by a precision tool having a hollow, wire-loaded wrapping bit which

slips over the pin, and which can easily be removed after the wire

twisted around the pin by the rotation of the bit. Although a wire

such a connection cannot be reused, a pin can be reused many

has been rapidly

unwrapped from

times (except in

ultra-high-reliability applications~ thus the technology is well suited for prototype

implementations. A wide variety of terminal sizes and wire gauges are supported by the

wire-wrap industry; AWG-30 wire wrapped around a 0.025-inch square-cross-section

pin is standard, and all connections in the S-1 Mark I and S-1 Mark IIA processors are

of that type.

-6-
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Figure 1.2-1

A Wire-Wrap Connection

At least one end of a wire-wrap pin has sharp corners at which the multiple

(qpically 12-25) g=-tight bonds between the wrapped wire and the pins are formed, and

is plated with a soft metal which is highly resistant to corrosion (e.g., tin or gold). The

wrapping is performed on the tail of the pin, which is typically only long enough to

contain either two or three wrapped ends of wires (“wrapsw~the remainder of the pin is

devoted to other connection functions. The most commonly used type of wire-wrap pin

is straigh~ and the head of the pin contains a socket which accepts a single component

kad; different styles of pins are manufactured for other applications.

Straight wire-wrap pins are mounted firmly in a board,

socket pattern$ the component is plugged in on one side of the

and are arranged in

board, and wraps are

made on the other side. The pins can be positioned as close to each other as 0.1 inches

(the standard for the leads of integrated-circuit DIPs), hence the density of sockets

attainable on a wirc+wrap board is limited only by the size of the components used.
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The custom-designed wire-wrap boards used in the S-1 Mark 11A are the largest

boards manufactured by Augat Corporation, the leading supplier of wire-wrap boards.

One of these boards, the S-1 Mark IIA ECL-1OK board, contains 24,700 wire-wrap pins

in an area approximately 23 inches square, and can simultaneously accept 600 standard

16-pin DIPs, 600 8-pin SIPS, 1200 twin-lead capacitors, and 110 25-pair cables.

Another of these boards, the S-1 Mark 11A ECL-IOOK Board, contains 24,675

wire-wrap pins in the same are% and can accept 325 0.4-inch-wide 24-pin DIPs, 650

7-pin SIPS, 650 twin-lead capacitors, and 110 25-pair cables. Figure 1.2-2 shows one

socket of the S-1 Mark IIA ECL- 10K board, viewed from the component side, and

Figure 1.2-3showsthe entire board.

Some wire-wrap boards contain a mix of different socket patterns, and some

contain a ‘universal” pattern, intended to handle most standard components.

Nevertheless, the shapes of some components may not be accommodated by the fixed

pattern of wire-wrap pins on a board. For example, the S-1 Mark IIA ECL-1OK board

contains a fixed array of 16-pin-DIP and 8-pin-SIP sockets and thus will not directly

accept a 24-pin DIP. In this case, it is necessary to mount the component on a suitable

adaptor, and plug the adaptor into the board. Multiple components may be mounted on

an adaptor, and interconnections may be made between them using printed-circuit traces

on the adaptor. Figure 1.2-4 shows a portion of the component side of a stuffed S-1

Mark I ECL-1OK board which happens to bear several adaptors for mounting single

24-pin DIPs

A wire-wrap board typically contains two or more power planes, as well as
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locations for bypass capacitors [Fa771 For example, the S-1 Mark HA ECL- 10K boards

contain three power planes VCC on the component side, VTT in the middle, and VEE

on the wire-wrap side. When the board is manufactured, specific pins of each socket are

dedicated to power planes by soldering to readily accommodate standard chip power and

ground lead connections. After the logic design and component placement is complete,

any additional pin may be dedicated to the component-side WCC) pl~e by installation

of a solder clip.

In ECL wire-wrap system$ transmission lines of some type must be used for long

segments, both in order to reduce inter-wire crosstalk, and in order to reduce impedance

discontinuities to acceptable levels ~160, De70]. Although many forms of

wire-wrappable transmission line are available, including twisted-pair, twisted-triplet,

shielded-twisted-pair, and coaxial, the most popular is twisted-pair [5]. Twisted-pair

consists of a pair of single, insulated wires which are twisted togethefi typically, one side

is wrapped to pins dedicated to VCC, and the other side is wrapped to signal pins. In

order to allow the use of twisted-pair on ECL wire-wrap boards, a large number of

wire-wrap pins must be provided which are dedicated to the Vcc Plsm% the S-1 Mwk

IIA ECL-1OK board provides at least 10 shield pins per 16-pin-DIP socket, and the S- 1

Mark IIA ECL- 100K board provides one shield pin for each non-power pin of each

24-pin-DIP socket.

and

our

Fully automatic wire-wrapping machines are now available which can cut, strip,

apply single wires to an arbitrary pattern of wire-wrap pins on a O.I-inch grid. In

experience, such machines are capable of applying about 800 wires per hour, at a
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cost of about $0.1 per wire. All single wires in the S-1 Mark I were applied using such

fully automatic wire-wrap machines, controlled by output from the SCALD System.

Semi-automatic wire-wrapping machines are available which position a wire-wrap

tool to the correct pin, position the bit of the tool to the right level on the pin, and

automatically wrap the wire, but which require an operator to choose the wire and insert

it into the bit. Semi-automatic wire-wrap machines were

twisted-pair of the S-1 Mark I, at an average rate of about

and at a cost of about $0.3 per twisted-pair.

used for applying all the

40 twisted-pairs per hour,

Although all twisted-pairs for the S-1 Mark I were manually cut and stripped,

they could be cut and stripped by a fully automatic machine directly from rolls of

continuous pre-twisted wire, if the wrapping were to be done today. Semi-automatic

machines have recently become available which are designed especially for wrapping

twisted-pairs. These machines have two bits, and can thus simultaneously wrap both the

signal side and shield side of a twisted-pair, as long as the spacing between the signal

pin and shield pin is the same as the fixed spacing (0.2 inches) between the two bits of

the machine.

The tails of the wire-wrap pins form a maze through which most of the wires

must be routed. Single wires can be easily routed orthogonally through a dense grid of

pins, even passing between pins only 0.1 inches apart, and with difficulty they can be

threaded diagonally through such

which apply single wires are not

a grid. However, since the fully automatic machines

capable of diagonal routing, such wires are usually
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routed orthogonally. Twisted-pairs cannot easily pass between pins spaced 0.1 inches

apart, especially if the pins are wrapped. Thus, twisted-pairs are usually either routed

in channels which contain no wire-wrap-pin tails, or left to hang loosely out of the mat

and the maze of pins. Figure 1.2-5 shows part of a wrapped S-1 Mark I ECL-1OK

board; the twisted-pairs on this board were wrapped in either of these two ways, at the

operator’s discretion.

Wherever a wire bends around a wire-wrap pin, the sharp edge of the pin tends

to cut through the insulation and short to the conductor inside. Cut-through insulation

failures are often intermittent ones, and are therefore extremely difficult to diagnose and

eliminate. They can also develop over a long period of time, as the insulation gradually

cold-flows away from the pin’s sharp edge. In our experience, cut-through is the single

most significant problem with wire-wrap technology in high-performance applications.

Special high-strength insulations [61 have been developed to minimize the cut-through

problem, but insulations which are hard enough to resist cut-through are also stripped

by auto-wire-wrap systems only rather unreliably, since avoidance of wire-nicking is also

required. We have found that an acceptable defense against cut-through insulation

involves both the use of a medium-high-strength insulation and the minimization of the

amount of twisted-pair wire which is forced to lie in the maze of pins

In ECL systems, single wires routed near each other over a long distance may

crosstalk to an unacceptable extent [71. In TTL systems, crosstalk is less of a problem;

ECL gate delays are comparable to ECL edge speeds, while TTL gate delays, being

much longer than fast (e.g., Schottky) TTL edge times, intrinsically smooth out the
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crosstalk noise and prevent it from propagating. Furthermore, single wires do not

perform well as uniform transmission lines at high frequency, since their long-length

impedance level varies depending upon their distance from the ground plane [81.

Shielded wires such as twisted-pairs are the most widely accepted solution for controlling

crosstalk, and additionally provide good impedance control.

However, the use of too many twisted-pairs will cause a thick wire mat tc

accumulate. A thick wire mat makes the underlying pins difficult to access, hence it

slows down the application and removal of wires and increases the manufacturing and

maintenance costs [9]. More seriously, in our experience, the problems of cut-through

insulation, broken wires, and bits of wire inadvertently imbedded in the mat during

wrapping are all negligible when using only single wires, but can become the dominant

cause of failure of a large digital system if the density of twisted-pairs is not carefully

controlled. Figure 1.2-6 shows one of the most thickly matted S-1 Mark I ECL- IOK

boards which carries approximately 1200 twisted-pairs.
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This socketis viewedfromthe component side looking into the pins, which are spaced

(at c-t) at 0.1 inches. The leftmost column of pins accepts one S-resistor SIP, with
v== and VTT kad& To@her, the second mlumn from the left and the fourth fronr

the ~ -t a Is-pin DIP. The third column is dedicated V== pins. This socket

patternisarrayedregularly over the entire board.

Figure 1.2-2

One Socket of an S-1 Mark HA ECL-IOK Board
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This board is viewed from the curnponent side. 600 DIF sockets are arrayed regularly
over the board, spaced at 0.6 inches horizontally, and LOinches vertically. 110 50-pin
connector sockets are arranged around the edges of the board.

F@e 1.2-3

The S-1 Mark IIA ECL-IOK Board
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This board is stuffed with ECL-1OK K-pin DIPs and ECL-1OK 24-pin DIPs. Each

24-pin DIP is mounted on an adaptor which carries traces connecting the DIP leads to
wire-wrap pins beneath the adaptor. Adjacent to each 16-pin DIP, oriented vertically,

is a 6-resistor SIP, mntaining an internal bypass capacitor. Above each 16-pin DIP,

oriented horizontally, are two additional bypass capacitors, one for each voltage supplied
to it and its associated SIP.

Figure 1.2-4

Closeup of a Stuffed S-1 Mark I ECL-1OK Board
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This IO-socket area of an S-1 Mark I ECL-1OK board is viewd from the pin side. It
contains only a moderate mat of twisted-pairs, relative to other boards in the S-1 Mark I
processor. These twisted-pairs were routed at the operator’s discretion, and thus
occasionally do not follow orthogonal channels. The single wires are not easily visible in
this picture.

FigrJre 1.2-5

Closeup of a Wrapped S-1 Mark 1 ECL-1OK Board
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This board, one of the most thickly matted in the S-1 Mark I processor, carries
approximately 1200 twisted-pairs. In some areas of this board, as much as an hour may
be rquired to replace a single wire.

Figure 1.2-S

A Thickly Matted S-1 Mark I ECL-1OK Board
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L3

An abbreviated history of the development and use of the SCALD System in the

context of the S-1 Prow is now presented, to aid in understanding the context and

course of this investigation. Development and exercise of the SCALD System has been

one major thrust of the S-1 Prow at the

which I commenced with Tom McWilliams

1975 [S176, S 177, S178, S179, Wi79a].

Lawrence Livermore National Laboratory

and Lowell Wood during the Summer of

During the Project’s first six months, Tom McWilliams

original S-1 Uniprocessor instruction-set architecture and

architecture, and began designing the S-1 Mark I Uniprocessor.

and I developed the

S-1 Multiprocessor -

We used the drawing

system (SUDS [He7Zl) which was available on the DEC

equipment at the Stanford Artificial Intelligence Laboratory

PDP- 10 and associated

(SAIL) for editing bgic

drawings. We would edit logic-design drawings interactively with SUDS for about three

hours early every morning, when the SAIL system was minimally loaded. At the

conclusion of the interactive editing period, we would produce a complete set of revised

prints on SAIL’s KA-10-driven xero~aphic printer/plotter (a Xerox XGP), and do

design work for the rest of the day from this set of 8.5” x 1la hardcopy. The interactive

editing time was ordinarily spent simply entering the corrections and extensions which

we had accumulated during the previous day’s design work.

As we designed the S-1 Mark I processor, we also developed a language (the

SCALD Logic Design Language), for expressing the design hierarchically. Although we
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intended to write the compiler (i.e.,the Macro Expander) for this language later, when it

would be more fully understood, we felt that we understood it well enough by the

Summer of 1976 to have a Summer Research Assistant commence writing the Wire

Lister, which was to produce wir~wrap wire lists from a compiled (Macro

Expander-processed) design. The Wire Lister seemed like a straightforward program; it

would simply input an expanded design, and output a wire list. It would be little more

than a traveling-salesman solver, in this early conception, and could easily be finished in

a month. Unfortunately, the actual problem was much more demanding than a Summer

Research Assistant could be expected to handle, and

During that Summer of 1976,we made good

very little progress was made.

progress on the S-1 Mark I design,

and by Fall we were ready to set aside the logic design temporarily in order to

concentrate on implementing the SCALD I System, i.e., the complete set of programs

which would specify in detail the

drawings which we had created.

started the Wire Lister.

implementation of the S-1 Mark I from the design

Tom began work on the Macro Expander, and I

Since the S-1 Mark I design had becomemuch too big to be compiled on the DEC

PDP-10 at SAIL (primarily due to memory-capacity limitations), we developed SCALD

Ion the IBM 370/ 168 computers at the Stanford Linear Accelerator Center (SLAC). We

finished the bulk of SCALD I roughly six months later, in the Spring of 1977, although

modules were added after that. Both programs turned out to be more demanding than

expected; the Macro Expander was about 8,!300lines of Pascal code, and the Wire Lister

was about 12,000 lines of Pascal code Our or@al understanding of the Wire Lister
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turned out to be naiv% the traveling-salesman solver was a very small part of the

program. Because we were designing a large ECL- 10K machine, the Wire Lister needed

to be able to handle essentially all of the physical design automatically, and therefore

had to understand in detail many different aspects of the implementation besides the

shape of electrical networks, e.g., it had to understand all relevant aspects of wire types,

wire levels, terminator resistors, shield pins, connectors, adaptors, and tran~mission lines.

After finishing the primary development of SCALD I, we returned to the logic

design of the S-1 Mark I. We continued to edit interactively at SAIL in the mornings,

and to design for the rest of the day using that morning’s hardcopy. When we needed to

run SCALD 1, typically immediately after interactive editing, we would write out a text

form of the drawings onto magnetic tape, drive the magnetic tapes to SLAC, run

SCALD I there, collect the output Iistings, and then drive back to SAIL. Over the next

four months, as the logic design neared completion, we worked more often at SLAC, and

began developing the last few pieces of SCALD I. At this point, the logic design of the

S-1 Mark I design consisted of roughly 300 8.5-inch-by-1 l-inch, relatively sparsely

populated drawings, and expanded to about 5300 ECL-1OK integrated arcuits. We had

used a total of about 30 hours of KL-10 CPU time in interactive editing of the S-1

Mark I processor design over the one-year period of concentrated work on it.

Tom added to the Macro Expander the capability to read a hand-specified

component placemen~ then began specifying such placement for the S-1 Mark I

implementation. I continued programming, because we found that we had overlooked

some of mapr tinctions of the Physical Design Subsystem. First, I upgraded and
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installed a 2000-line Pascal transmission-line physical simulation program that a

Summer Research Assistant had written, so that we could simulate the signal waveforms

on the interconnection nets in the S-1 Mark I. Then I wrote a 5000-line Pascal program

designed to allow us to make changes in the high-level drawings, and which could

automatically produce a wiring-change list. Finally, I wrote a 3000-line Pascal program

to write the magnetic tapes which would allow us to automatically check the wiring of a

board. At this point, which concluded its development, the entire SCALD I System

consisted of about 30,000 lines of Pascal code; the Physical Design Subsystem had grown

to 22,000 lines of Pascal code, and had required a total of approximately 12 man-months

to implement. Approximately 30 hours of 370/168 time had been used in SCALD I

development.

By this time, in the early Fall of 1977, Tom had completed all aspects of the S-1

Mark I component placemen~ we had massaged the errors out of the SCALD I System,

and we produced the final S-1 Mark I wire list. About 40 minutes of 370/168 time were

required to generate this list and all associated documentation, starting with the high

level drawings being input to the Macro Expander. (The EBOX, the

instruction-executing unit of the Mark I, completed layout first, and was sent out for

wire-wrapping in late Summer.) Except for the subsequent addition of some minor

features to the Physical Design Subsystem, the SCALD I System was finished.

During the next year, additional personnel joined the S-1 Pro~g and

participated in the debugging of the S-1 Mark I and the installation of an operating

system which allowed use of the Mark I as a production computing system. The lastof
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the 12 large wire-wrap

the wire-wrap vendor

January 19?8, and the

mid-July, following a

boards constituting the Mark I processor was received back from

(the Datatex Corporation of Houston, Texas) at the end of

Mark I executed its first multi-hundred line Pascal program in

debugging period in which Jeff Rubin and Mike Farmwald

participated crucially. The first version of its single-user operating system commenced

service in Summer 1978 also.

Debugging the S-1 Mark I provided us with a practical education about the

manufacturing problems associated with high-performance wire-wrap machines. On

some boards, wires were very difficult to add or remove [9]. The wire mat contained

buried bare fragments of wire which had been generated and inadvertently dropped into

it during manufacturing these would slowly migrate to contact with wire-wrap pins and

the underlying VEE plane, causing intermittent shorts. Many wires were brought too

tightly into contact with wire-wrap pins because of the thickness of the mat, and would

cut through to pins (sometimes intermittently) or simply break. We resolved to improve

the algorithms in the SCALD Physical Design Subsystem in order to reduce the

wire-mat thickness on the boards of the S-1 Mark IIA.

Following the debugging of the S-1 Mark I, the S-1 Mark IIA design effort

commenced. Smn, the SCALD II Logic Design Language was developed from the

original (SCALD I) Logic Design Language base by adding the constructs which we

were finding to be necessary or highly desirable when designing the S-1 Mark HA.

Tom wrote the SCALD II Macro Expander (consisting of 4000 lines of Pascal code)

without the component-placement module which had existed in the SCALD I Macro
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Expander. Jeff Rubin wrote the Layout Program (consisting of 7000 lines of Pascal

code), which replaced that module, but was also capable of automatically optimizing

component placement within designer-specified constraints.

During the implementation of SCALD I, Tom and I had discussed two mapr

areas which seemed to merit further development formalization of the timing notation

used in the S-1 Mark I logic drawings, and generalization of the Physical Design

Subsystem to accommodate a wide range of user-described component technologies and

wire-wrap packaging systems. Given the size and complexity of the S-1 Mark IIA

design, these improvements were important ones. At this point, therefore, Tom

commenced development of the SCALD Timing Verifier (consisting of 6000 lines of

Pascal code), which involved both a formal timing notation, as well as a system to

understand and check the new formalism L’MW80ZMW80bJ and I began to develop a

more general and higher quality version of the SCALD I Physical Design Subsystem,

i.e., the SCALD II Packager.

Because the SCALD I Physical Design Subsystem was so intimately tied to the

specific package used for the S-1 Mark I, the SCALD 11Packager had to be developed

from scratch. The SCALD 11 Packager turned out to be about twice as difficult to

create as the original Wire Lister in the SCALD I Physical Design Subsystem; without

either a wire-change or a board-check package, it amounted to 30,000 lines of Pascal

code, and required nine months to complete. The increased difficulty arose not only

from the greater generality, but also from the much greater level of detail necessary in

the models and algorithms in order to handle the more complex technology of the S-1
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Mark 11A.

Thus, the SCALD II System now consists of nearly 50,000 lines of Pascal code. It

has been greatly generalized and improved, relative to the SCALD I System, primarily

by the extension of the SCALD Logic Design Language, addition of automatic

component placement, addition of timing verification, and generalization of the

Packager. We are currently beginning to run the entire SCALD II System together for

the first time on the S-1 Mark I, processing the S-1 Mark IIA design. This dissertation

is based on our experience with the SCALD II Packager in processing a substantial

portion of the S-1 Mark IIA design.
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M Previous hMXWCheS

There has been no work published in the open literature on an integrated solution

to the large number of separate problems involved in the automatic physical design of

large, high-performance, wire-wrap digital systems, primarily, we suspect, because the

cost-to-create and the value-in-use of reasonably general purpose systems have each

been sufficiently great that such systems have been developed and used only behind

corporate proprietary screens. In addition, wire-wrap implementation systems intended

for iterative use during the design process have hitherto been infeasible due to lack of a

mating front end (e.g., the SCALD Logical Design Subsystem), and to severe shortages of

the computing and memory capacities required to reasonably support the frequent,

full-scale exercise of such systems. However, given the elimination of these deficiencies

and the increased importance of wire-wrap as a modern prototyping technology, and

taking note of recent developments in wire-wrap packaging and component technologies

which make it practical to wire-wrap high-performance digital systems, we believe that

wire-wrap h currently a potentially very fruitful area for research.

There have been a large number of wire-wrap systems implemented without

accompanying descriptions in the open literature (e.g., the w progr~ Ne721 and the

ROUTE program [MC781). The systems that have been described in the open literature

CMUl Ba*, Frq% HoZ Ka64] do not have the flexibility to exploit the full range of

wire-wrap packaging technologies available today, and do not model the wire-wrap

environment in the detail necessary for designing large, high-performance, digital

systems They are thus inadequate in two crucial respects.
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There has been no work published in the open literature regarding the integration

of a wire-wrap packaging system with timing verification or a high-level logic-design

language such as the SCALD Logic Design Language. In fact, the first practical

implementation of timing verification [MW80Z M W80bl has only recently appeared in

the literature, and SCALD-like languages have only recently begun to be be used in real

hardware design.

Nor has there been any work published in the open literature which presents

detailed statistics about the physical design of a large, high-performance, wire-wrap

digital system such as the S-1 Mark 11A processor. This particular deficiency is very

significant to anyonecontemplating or executing the design of such systems.

However, there has been published work on some isolated aspects of the total

problem, as discussedbelow.

The problem of assignment of inputs to different versions of signals with large

fanout (Section 3.1)can be reduced to one of cluster analysis in two dimensions. Cluster

analysis in general has received a great deal of attention; [Ha751 and Mn731 provide

good surveys of the field. Practical cluster analysis consists of a large body of

cluster-forming techniques. D4a75] categorizes these techniques into sorting, switching,

joining, splitting, adding, and searching. Sorting techniques partition the objects on the

basis of their positions in a sorted list. Switching techniques start with an initial

partition, and exchange objects to improve the partition. Joining techniques begin with
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single-ob~ct clusters and join clusters until a suitable partition is found. Splitting

techniques begin with a one-cluster partition, and split clusters until a suitable partition

is found. Adding techniques add individual ob~ts to existing clusters. Searching

techniques enumerate all feasible clusters. Unfortunately, in the version-assignment

problem discussed below, clusters must ultimately be evaluated by how well they form

chains, clusters have a maximum-size limitation, and balance between clusters is

importan~ therefore, the algorithms

However, the algorithm developed

techniques and adding techniques.

which have been previously

for the SCALD 11 System

There has been a great deal of work on net-formation

reported are unsuitable.

draws on both sorting

methods which are not

applicable to the wire-wrap environment. [Br721 discusses techniques for routing wires

on printed-circuit boards. [H0661 and ~057] discuss techniques which are not limited to

chain networks. [Ku75] and [Na761 discuss techniques for environments with peculiar

constraints.

Our environment demands the formation of nets which are chtins (Section 3.2).

The problem of determining minimum-cost chains is equivalent to the

traveling-salesman problem, upon which a great deal of work has been done. CBe621,

llIe701 [He711, [Li65], [Li731, and [R0741 discuss specific algorithms, and D?e77] and

Dk66] survey a number of different techniques. These techniques can be categorized as

approximate methods and optimal methods. The approximate methods are quite fast

(e.g., CLi731 presents a method which is 0!N2)), and usually produce nearly optimal

solutions. We do not demand optimali~, however, previous approximate methods cannot



easily be generalized to produce minimum-delay chains (or chains which minimize a

function of both cost and delay). Compared with the simple dynamic-programming

method [Be62] on which we base our algorithm, the more advanced optimal methods

require complex operations, and hence are slower in execution for relatively small

numbers of nodes. Furthermore, these optimal methods cannot easily be generalized.

Finally, most algorithms for this problem demand that the cost matrix be symmetric, yet

we would like an algorithm which allows an asymmetric cost matrix, so that constraints

can be easily handled.

[Hi671 presents a good overview of dynamic programming, which is the basis for

both our chaining algorithm and our wire-type-assignment algorithm. The only specific

work related to wire-type assignment in our context is Dl1601,which discusses an ad hoc

algorithm that depends upon the existence of a fixed set of wire types, does not take wire

mat into consideration, and does not deal with constraints on legal assignments.

There has been a great deal of work E172, De70, Me69, Wi79, Ya631 on the

modeling of transmission lines, but the simulation methods suggested by such models are

tm slow to use in estimating interconnection delays, and they do not easily allow

bounding such delays. Our delay-estimation technique is very fast in execution, and can

be parametrized by the user to produce conservative yet reasonable delay bounds.

There has been some work on the management of engineering changes (e.g.,

lMa801), but no discussion of the problem of integrating the management of engineering

changes with automatic physical design such as that supported by the SCALD System.
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Chapter II

OVERVIEW AND CONTEXT OF THE ALGORITHMS
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2.1 The SCALD Svstem

The SCALD Packager is a component in the SCALD (Structured

Computer-Aided Logic Design) System [MW78% MW78b, MW80& MW80b, S178,

S179]. Figure 2.1-1 shows the structure of the SCALD System.

At the top level, the SUDS Graphics Editor [He7Z, S 179] is used to input and edit

a high-level graphical representation (i.e., a SCALD Logic D@gn Language

representation) of the logical design of a digital system (the obj~ctnvzchine).This logical

representation is ordinarily structured for maximum understandability, and need not be

greatly affected by the intended physical structure of the ob~ct machine. The SUDS

Graphics Editor as it is used in the SCALD System is independent of the packagingand

component technologies of the object machine.

At the next level, the Macro Expander expands the SCALD Logic Design

Language representation of the ob~ machine, detects syntactic errors, and outputs

documentation for use in the design process. By design, the Macro Expander is also

independent of the packaging and component technologies of the object machine.

The Layout Program inputs both the expanded logical design and a set of

placement constraints generated by the designer, assigns each component in the

expanded logical design to a physical position (i.e., a board and a location on the board)

so as to approximately optimize the placement within the constraints, and outputs a list

of logical signals. A logical stgnd is simply a setof physical signal%which are in turn

-80-



sets of physical nodes (e.g., inputs and outputs), such that all nodes in each set are

connected in the logical design. Because the list of logical signals for a large machine is

very long (about 18 million characters for the S-1 Mark IIA processor), it must be

processed

relatively

machine,

sequentially by later phases of the SCALD System. The Layout Program is

independent of the packaging and component technologies of the object

but is constrained to view the package as a set of two-dimensional boards

containing components.

The Packager inputs the sorted logical-signal list and a set of packaging

constraints spedfied by the designer, completes the physical design, and outputs

instructions for the wire-wrap implementation of the machine, as well as a list of

estimated interconnection delays for input to the Timing Verifier. The Packager deals

with logical signals sequentially, and outputs documentation about the logical signals in

the same fashion. This sequentiality constraint is essential to allow the construction of

machines as large as the S-1 Mark HA, and has important consequences for the types of

algorithms that can be used for the packaging process. The Packager assumes that the

object machine is being implemented on a set of two-dimensional wire-wrap boards

connected by cables and backplan% but the details of the component technologies used,

the board geometries, the tradeoffs involved in the assignment of wire types, and other

specifics about the particular implementation are all specified by the designer in simple

input files.

The Timing Verifier inputs both the expanded logical design, and the

intermmnection delays, and checks for dining errors in the complete logical/physical
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design. In order to correct such errors, the designer usually modifies either the logical

design or the component placement. The Timing Verifier is relatively

technology-independent, although it deals only with synchronous digital systems, and in

its current implementation depends upon signals having symmetrical rising and falling

edges.

The SCALD System thus constitutes a complete design system for wire-wrap

machines using any (wire-wrappable) component technologies. It extends from the

creation and editing of the high-level drawings which describe the logical design down

to the algorithms which determine the details of the implementation. The SCALD

System can be used without change to design any wire-wrap digital system, and only the

Packager needs to be revised in order to design a digital system which uses a different

packaging technology. The amount of code in the Packager which would be retained in

such a revision would depend upon the similarity of the new packaging technology to

wire-wrap; most of the Packager would be retained in upgrading to printed-circuit

capability, and many of the bookkeeping and reporting functions would be retained even

in a upgrade to include nMOS VLSI capability.
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2.2 The SCALD PackaPer

The SCALD System is roughly analogous to a high-level-language compiler

systew the SUDS Graphics Editor corresponds to the text editor, the Macro Expander

corresponds to the compiler (which generates intermediate code), the Layout Program

corresponds to the intermediate-code optimizer, and the Packager corresponds to the

code generator. In this analogy, the Packager corresponds to a table-driven code

generato~ it generates machines of a wide range of user-specified packaging and

component technologies, just as a table-driven code generator generates programs for a

wide range of user-specified instruction-set architectures.

Given user specifications of the component and packaging technologies to be

employed, the Packager is responsible for making all the decisions involved in the

physical design, exclusive of decisions about component placement. As a first priority,

the Packager attempts to create a physical design which is free of electrical problems

such as excessive voltage-wave reflections and inter-wire crosstalk, and which does not

require completion by manual effort. As a second priority, the Packager attempts to

optimize the obpct machine’s manufacturability and performance. To accomplish this

optimization, the Packager contains a great deal of built-in expertise about the general

wire-wrap environment, and relies on many externally defined parameters which

characterize a specific wire-wrap package and set of components.
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2.2.1 User Stmcification of Technology

A simple set of languages understood by the Packager allows the user to define the

specific cabinet, boards, Sctcke@cables, adaptors, components, and wire types to be used,

and to control the Packager algorithms. These languages are general enough to allow

specification of the full range of commercially available component and wire-wrap

technologies, and include enough detail to allow the Packager to deal adequately with

high-performance digital systems.

The cabinet is defined as a setof boardq each board is just a board name and a

board type. The boards in a cabinet definition have no explicit relative positions or

orientations; they are connected together only by cables of user-specified lengths and

positions. Boards are organized into named pages within the cabinet definition in order

to give the Packager a basis for formatting the various summary reports generatedfor a

machine with many boards.

A board type consists essentially of a list of sockets, each of which has an arbitrary

string name, position, and socket type. In order to simplify the specification of

parameters and reporting formats which apply to groups of sockets within a board, the

sockets of a board type are organized into arbitrary partitions called areas (e.g., the

main-DIP-socket are% or the top-connectors area). Each area definition includes

parameters which are used for board-dependent terminator-resistor and shield-pin

searches within the are% and defines formats for reporting the results of those searches.

Within an are% the board-definition language supports iteration, allowing easy
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definition of regular socketarrays.

A socket fype consistsprimarily of a list of the names, positions, and properties of

the wire-wrap pins within the socket type. Wire-wrap pins can be of various types and

levels. A wire-wrap pin can be permanently dedicated to a power plane, or can be

solder-clippable to a power plan~ when components are plugged into the board by the

Packager, correct use of dedicated power pins is checked, and solder clips are specified

for installation as appropriate. A wire-wrap pin which is dedicated to ground (and thus

is available to be used for the shield side of shielded wires) can be reserved for shielding

wires connecting to a particular signal pin; this feature is important to support modern

dual-bit semi-automatic twisted-pair wire-wrap machines which require the signal pin

and shield pin to be located at a fixed spacing.

Some wire-wrap digital systems require the use of channeled wire (i.e., wire which

lies completely within mapr channels on the board), especially for relatively bulky wire

types such as twisted-pair. Hence, each socket has associated with it a set of via point%

the Packager determines the length of each channeled wire using the assumptions that

such a wire must pass through a via point of each of the sockets to which it connects,

must be routed orthogonally between the via points, and must be routed orthogonally

from each via point to the appropriate wire-wrap pin within the socket Thus, as long

as there exists an orthogonal series of connected channels between each pair of via

points, and between each wirt+wrap pin of a socket and every via point of that socket,

then all channeled wires are guaranteed to be long enough to lie completely within

channels. We have found that this model of channels is quite general (most boards
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contain a regular orthogonal network of mapr channels), yet is easy to specify and is

computationally quite efficient for determining wire lengths.

The hterconnections between boards are specified using the cables language. In

this language, cable types are dehed by specifying the shapes of the cable connectors,

and the number, type, position, and electrical properties of all the wires in the cable.

The language also allows cables of any specified length to be plugged into any defined

sockets. Thus, for example, any DIP socket in a board of DIP sockets can accept a cable,

as long as the cable type has a connector of the appropriate type to fit the DIP socket.

This flexibility is important for handling general wire-wrap systems, in which cables are

often plugged into standard sockets.

The use of adu~tors to mate special components to a fixed socket pattern is very

common in wire-wrap systems. For example, a standard 24-pin DIP will typically plug

into a board containing a fixed array of 16-pin DIP sockets through an adaptor which

covers three sockets and uses some pins of each. The adaptor concept is also useful for

specifying the different ways in which a given component can plug into a socket without

using a real adaptor, for example, in specifying the ways that a 14-pin DIP can plug

into a 16-pin-DIP socket.

The adaptor-definition input language is usd to describe each aduptor type. An

adaptor is modeled as having a substrate which covers a two-dimensional area on the

component side of the wire-wrap board, with conductive traces on it which connect

component pins either to other component pins on the substrate, to wirt+wrap pins on
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the board, or to both. Multiple components may be mounted on a single adapto~ thus

‘polylithic components” can be constructed with traces on the adaptor connecting

components mounted on it. Terminator resistors may also be mounted on an adaptor,

and will be used to terminate signals on the adaptor when possible. We have found that

allowing adaptors to carry terminator resistors is important, since a adaptor typically

covers several locations on the board which otherwise would have contained

terminator-resistor packages.

The definition of each component type includes a list of the adaptor types which

can be used with the component, the default adaptor to use for each board type, the pin

names of the component, and the important electrical properties of each pin (e.g., pin

type, leakage current, lumped capacitance, and output transition time). The definition

also specifies how the component pins map to nodes on the adaptor.

Many different wire types are used in a high-performance wire-wrap digital

system, and the detailed properties of each wire type are specified with the wire-type

definition language. In particular, this language is used to define the impedance,

per-unit-length propagation delay, per-unit length inter-wire crosstalk contribution, and

per-unit-length wire-mat contribution of each wire type. These parameters of wire types

are necessary and sufficient to allow the Packager to evaluate the tradeoffs between

different packaging decisions when working with commonly available wire types such as

single wires, twisted-pairs, twisted triplets, shielded-twisted pairs, and coaxial wires, and

commonly available cables such as twisted-pair cable and coaxial cable.
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Most Packager algorithms are highly parameterized to allow the user to tailor their

operation to a specific environment. Many of these parameters are specified in the input

files discussed above, but in addition the Packager reads a list of miscellaneous

parameters for each different user-defined net type (where the net type is determined by

the electrical types of nodes in the neg e.g., a net might be ECL- lOOK, ECL- IOK,

LSTTL, or so forth). These parameters are used to control algorithms such as wire-type

assignment for which the operation of the algorithm needs to vary, depending upon the

type of net.

———



2.2.2

have

Context of the Algorithms

When the packaging process begins, the logical design and component placement

already been fixed. The logical design specifies the logical interconnections, and

the component placement specifies the physical positions of components. Hence, when the

packaging process begins, the processed design consists of a list of sets of logically

interconnected nodes having fixed physical positions (perhaps spanning multiple boards).

The operation of the Packager primarily involves determining the details of the wiring

of these logical signals.

The Packager first reads the input files which define the cabinet, boards, sockets,

cables, adaptors, components, wire types, and net types (see Section 2.2.1), and creates

internal data structures to represent those definitions. The Packager then reads and

stores a file which specifies the configuration of cables in the ob~ct machine, and a file

which assigns cable wires to special inter-board signals selected for hand-assignment

(e.g., interfaces to external logic). A signal is allowed to span more than two boards, thus

multiple cable wires may be assigned to a single logical signal. Next, the Packager reads

a list of the physical positions of all the components in the ob~ct machine, and simulates

plugging the components into the specified locations using the appropriate adaptors,

checking for errors such as overlapping adaptors, multiple leads plugging into a single

wire-wrap pin, signal leads plugging into power pins, and no power connection available

for a power lead. The placement of terminator resistors and other components not

included in the logical design is specified manually using an iterative language in a

separate file. This iterative placement language is sufficiently powerful that all the
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terminator resistors in the S-1 Mark HA can be placed with ten short text lines.

Terminator resistors are plugged into boards like any other components, but the

wire-wrap pins into which they plug are marked as being available to terminate signals.

Finally, the Packager processes the logical-signal list. Because a l~ge digital

system may have several tens to a few hundreds of thousands of logical signals, the

processing of the logical signals is sequential and single-pass, i.e., each logical signal is

filly processed on the first pass and is then written ouc there is no possibility of

changing the wiring due to the processing of another logical signal. We have found that

in large wire-wrap systems such as the S-1 Mark I and S-1 Mark IIA, the benefits

obtainable by non-sequential or multi-pass processing of the logical signals (e.g., better

terminator-resistor allocation) are not significant. On the other hand, a packager for a

more constraining packaging technology (e.g., printed-circuit boards) could not afford to

neglect the interactions (e.g., crossovers on a signal layer) between different logical

signals.

The functions that the Packager performs on a single logical signal consist of

partitioning the logical signal into sets of nodes which will actually be electrically

interconnected and then, for each such electrical network, finding the “best”

interconnection pattern, finding the cable wires to use between boards, assigning

terminator resistors determining the wire type and level for each wire segment, assigning

shield pins to shielded Segmens estimating interconnection delays, checking for

design-rule violations and generating appropriate documentation. These functions are

overviewed below; detailed discussion is contained in the following chapter.
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In order to simplify buffering, the SCALD Logic Design Language extensively

supports the use of multiple-version 20#”ca2signah (i.e.,logical signals in which multiple

outputs are generated by identical components having identical inputs, and hence have

the same value over all time). Before designing the physical interconnection networks,

the logical signals must be partitioned into nets. Each net will ultimately be electrically

interconnected, and must contain only one of the equivalent outputs. We have found

that multiple-version logical signals are heavily used when designing large digital

systems using the SCALD Logic Design Languagw hence, automatic partitioning is

important. In doing this partitioning, the Packager attempts to

delay while keeping the magnitude and duration of signal

within acceptable limits. Automatic partitioning of logical

minimize interconnection

voltage-wave reflections

signals into nets is an

important problem in general, since all currently practical digital technologies have

fanout which is limited, and since high-level logic-design languages such as SCALD

make it difficult to specify the partitioning explicitly in the logic drawings. This

problem has not been considered previously because high-level logic-design languages

such as SCALD have only recently become available.

After partitioning a logical signal into nets which must be electrically

interconnected, the Packager continues by processing each net separately. The Packager

first designs the interconnection pattern of the net. Since various factors (see Section S.2)

limit consideration to chain networks, determination of the interconnection pattern

amounts to ordering the nodes of the chain. In ordering the nodes, the Packager

approximately minimizes a user-parameterized funchon combining interconnection delay
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with a measure of the wire-mat buildup. This algorithm is novel not only in that its

behavior can be controlled by the user to range from minimizing interconnection delay

to minimizing wire mat, but also in that it is capable of minimizing interconnection delay

at all. It is applicable to any technology in which interconnection networks are limited to

chains (for example, stitchweld, multiwire, or ECL circuitry on printed-circuit boards),

and is especially important in technologies such as wire-wrap, in which the thickness of

the wire mat can cause severe implementation and reliability problems.

In a large wire-wrap digital system such as the S-1 Mark II& the wire-wrap

boards are connected with tens of thousands of cable wires. (The Packager does not

attempt to automatically assign the positions of cables, but does provide the feedback

necessary to allow the designer to specify the positions of cables in an input file.) In the

SCALD System, any net is allowed to span multiple boards hence, after the

interconnection order for a chain has been determined, cable wires must be assigned for

those segments of the chain which cross between boards. In our experience, although the

manual positioning of cables is relatively easy, the manual assignment of cable wires to

specific nets is quite time-consuming, therefore, the Packager automatically assigns cable

wires (although it allows manual assignment where required, e.g., where the assignment is

predetermined by external logic). Our approach is novel in the way it supplies feedback

tn the designer about the degree of optimality of his cable position and length

specifications. The algorithm is also applicable to assignment of 110 pins of VLSI chips

or printed-circuit boards.

The highest-performance wire-wrappable digital technologies commercially
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available today

they practically

(the ECL families, [Fa771) have edge times and gate delays so small that

necessitate treating all wire-wrap interconnections as transmission lines,

i.e., ensuring that impedance discontinuities are minimal, and that each transmission line

is terminated in its characteristic impedance. Thus, after assigning cable wires to a net,

the Packager allocates one or more terminator resistors to the net (if necessary).

Terminator resistors may be located directly on the adaptors which mount components,

or they may be separately plugged into the board by means of a hand-generated input

file. The board geometry can greatly affect the number of terminator resistors locally

available for allocation (e.g., a board corner typically has a scarcity of terminators, even

if they are uniformly distributed over the board surface} hence our algorithm is

structured so that parameters in the board definition can guide it to avoid such local

depletion. This algorithm is novel in the way it avoids local depletion of terminators

(e.g., at board corners} it is applicable to any technology which requires termination of

electrical networks.

After the positions of terminator resistors (if any) are known, the Packager assigns

a wire type to each segment of the chain. In order to maintain inter-wire crosstalk and

impedance discontinuities within acceptable limits, wire-wrap digital systems using ECL

components require the use of high-quality wires such as twisted-pairs for segments of a

chain more than a few inches long. Unfortunately, if such wires are used for all

segments, the wire-mat thickness becomes a serious problem, resulting not only in high

manufacturing costs, but also in low reliability of operation. Therefore, in assigning wire

types to segments of a chain, the Packager attempts

function combining the total crosstalk contribution of

to optimize a user-parameterized

the chain with the total wire-mat



contribution of the chain, and generates reports which allow the user to tune the

parameters of the function in order that the tradeoff of crosstalk against wire-mat

thickness will be made to his satisfaction. This algorithm is a novel approach to

wire-type assignment, and is applicable to any technology in which wires of different

electrical quality have differing mechanical cost$ including nMOS VLSI, and stitchweld

with twisted-pairs.

Shielded wires such as twisted-pairs require that the shield side be connected on

each end to a voltage source. Hence, after the wire type is known for each segment of a

net, the Packager automatically allocates shield pins (if necessary) from among those

available on the board. A shield pin is used only once, except that it may be used for

both the incoming and outgoing segments connecting to a single signal pin. During

shield-pin allocation, the wire-type assignment is viewed as fixed, and is not repeated. (It

is notable that the length of a twisted-pair cannot be calculated exactly, in general, until

after shield-pin allocation, since it depends upon the exact position of each shield pin

relative to its associated signal pin.) Our algorithm is novel in the way it avoids local

depletion of shield pins (e.gv at board comers).

Timing verification using actual interconnection delays plays an important part in

the SCALD design strategy. Therefore, after the wiring of a net is fully designed, the

Packager makes estimates of the minimum and maximum interconnection delays from

any output to any input within the net, and reports those dduy 6ounds to the Timing

Verifier. SCALD II is the first instance of a physical design system being interfaced to

timing verification. To guarantee a timing-error-free design, the delay bounds need
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only be conservative, not exac~ hence our algorithm is extremely simple. On the other

hand, our algorithm is sufficiently accurate that the designer is not presented with a

large number of spurious timing errors. The basic idea that a conservative delay

estimator is much simpler than an exact delay estimator is a concept which may be

useful in other technologies in which timing verification is employed. The algorithm

itself is directly applicable to machines implemented with a wide range of digital

component and implementation technologies, including integrated circuits mounted on

printed-circuit boards.

After a net has been fully designed, the Packager checks it for various design-rule

violations (e.g., direct-current overloading, excessive signal voltage-wave reflections, no

inputs, no outputs too many outputs, excessive separation between multiple outputs, etc.).

These design-rule checks are a function of the net type and are controlled by parameters

input by the user.

It is important to supply extensive feedback to the user so that he can evaluate the

performance of the Packager’s algorithms and adjust parameters in the input files. Each

net is fully documented in an output file for reference during debugging of the obpt

machine, and many different summaries histograms, and maps are generated. Some

reporting formats are user-parameterized (e.g., board-map formats, which depend upon

user-defined board geometries). A simple language allows the user to specify the

counting of events of interest to him during packaging (e.g. plugging in an MSI chip),

and the Packager reports those counts by board. Reporting functions comprise a large

amount of the total code in the Packager, as they must for any highly automatic



packaging system.

A key element in a design strategy for prototype digital systems is the proper

support for changes after the system has been constructed. In the SCALD System, the

designer can make changes in the high-level source drawings even after the construction

of the obpct machine, and the system will determine a minimal set of changes which are

sufficient to make the existing physical machine consistent with the new logical design.

The techniques developed to close the loop from constructed system to high-level logic

drawings and derivative documentation are important in any prototyping technology.

The following chapter deals with the details of the mapr algorithms introduced

above, and presents data about the performance of those algorithms on a representative

410S-chip section of the S-1 Mark IIA design, which is described in the next section.
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23 The S-1 Mark 11A 4108-Chi~ Examr.de

The following chapter presents data derived from exercising the Packager and

evaluating its performance on a major portion of the S-1 Mark IIA processor design.

The logic in this example is mounted on 12 wire-wrap boards (11 S-1 Mark IIA

ECL- 10K boards, and 1 S-1 Mark 13A ECL-1OOK board). The boards are mounted in

a frame such that they form two parallel six-board layers, separated by approximately 4

inches. Within each layer, the boards are tightly packed in a regular

2-board-by-3-board grid. Cables are mounted on the edges of the board% and are

unrestricted with respect to which pairs of boards they can connect.

Logic on the ECL- lOOK board consists entirely of 119 24-pin DIPs (mounted

without adaptors), whereas the logic on the ECL- 10K boards consists of 3509 16-pin

DIPs (mounted without adaptors), as well as 120 ECL-1OOK 24-pin DIPs, 356

24-pin-QIT packages (both mounted on adaptors occupying 2 16-pin-DIP sockets), and

4 46-pin packages (mounted on adaptors occupying 4 16-pin-DIP sockets).

The 12 boards in this example contain 34%empty DIP sockets. Some logic (e.g.,

registers to pipeline control signals) which will ultimately be located on these boards has

not yet been placed, and the inclusion of such logic can be expected to reduce the

fraction of empty sockets to approximately 10%.

The logic in this example is part of the IBOX of the S-1 Mark IIA processor
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[S 179]; it consists primarily of the complete index-register file, data-address arithmetic,

virtual-to-real data-address map, data cache, and operand queue. It contains 1.04

million bits of high-speed ECL random-access memory in 10S7 RAM chips, in addition

to S44 ECL-1OK SS1 chips, 215S ECL-1OK MSI chips, 19 ECL- 100K SS1 chips, and

220 ECL-1OOK MSI chips.

The Layout Program produced the component-placement specification from

high-level input created by the designer. In general, the placement of the logic in the

data paths was specified exactly by the designer, whereas the placement of miscellaneous

control logic was automatically generated, given designer constraints.

The style of component placement specified by the designer was distributed within

board~ i.e., the components which operate on multiple bits of a data path were, in

general, placed in a distributed fashion across the entire length of a row or column of

sockets on a single board, instead of being clustered in one small area of the board. This

component-placement strategy tends to keep the numerous data-path wires short, thus

minimizing the wire mat, and also tends to distribute the multiple loads in control

signals, reducing voltage-waveform reflections in such.

At the next higher level, the style of component placement was

related logical functions were placed on the same board, wherever possible.

clustered, ia,

Unless otherwise noted, all of the data reported about the example were gathered

while chaining for minimum-length chains (see Section 3.2). Furthermore, during the
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collection of these dat% the wire-type-assignment parameters (see Section 3.5) were tuned

to produce a twisted-pair density which is acceptable for our purposes, but which may

be suboptimal in other systems (e.g., systems in which larger or smaller channels exist for

routing twisted-pairs).

Except as noted, the boards were fully stuffed with SIP resistor networks,

providing 6 terminator resistors per ECL- 10K DIP socket, and 10 terminator resistors

per ECL-1OOK DIP socket. All the terminators, even those not adjacent to a populated

socket, were made available for assignment by the terminator-assignment algorithm.

All the execution statistics reported were gathered by running the Packager on the

S-1 Mark I processor (which has a throughput rate approximately equivalent to that of

an IBM 370/ 168).

Many execution statistics are reported in a standard histogram formag such as that

shown in Table 2.3-1. Each event of interest causes a single cuunt to be accumulated in

one bucket of the histogram, corresponding to the value of interest. For examplg this

histogram shows the number of versions assigned in each versioning process the number

of versions is the value of interest. The entry in the leftmost column is the floor of the

bucket. The entry in the next column to the right is the number of counts accumulated

in the bucket (e.g., in this example, there were 41 events counted having not less than

three, but less than four versions). The third column shows the ratio of the count

accumulated in this bucket to the total count. The

entries in the third column, up to and including this
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fourth column shows the sum of all

bucket. The fifih column shows the



ratio of the value accumulated in this bucket to the total value. The sixth column shows

the sum of all entries in the fifth column, up to and including this bucket. The total

value accumulated, the total count accumulated, and the minimum, average, and

maximum values are shown at the bottom.
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Versions

0.0
0.0

;::

%:

U

::;

1:::
11.0
12.0

>= 13.0

Count

0
0

lj

42

1:
0
2

:
0
2
0

Count
Fraction

0.000
0.00a
0.000
0.531
0.183
0.187
0.000
0.080
0.000
0.009
0.000
0.000
0.000
0.009
0.000

Cumulative
Count

Fraction

0.000
:.00:

0:531
0.714
0.902
0.902
0.982
0.982
0.991
0.991
:.99:

1:000
1.000

677.000 = Sum of versions
224 = Sum of counts

2.000 = Minimum versions
3.022 = Average versions

12.000 = Maximum versions

Table.2.3-l

StandardHiatogram Format
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Fraction

0.000
0.000
0.000
0.352
0. 1s2
0.248
0.000
0.160
0.000
0.024
0.000
0.000
0.000
0.035
0.000

Cumulative
Versions
Fraction

0.000
0.000
0.000
0.352
0.533
0.781
0.781
0.941
0.941
0.965
0.965
:.86:

1:000
1.000
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Chapter 111

THE ALGORITHMS



S.1 ASSIGNMENT OF INPUTS TC) VERS1ONS

In the design of large digital systems for implementation in any currently practical

digital technology, it is frequently necessary to create multiple physical outputs having

the same value behavior over all time, and to use those unconnected outputs to drive a

large set of inputs. Each such output, along with the inputs that it drives, is called a

version.

Depending upon the logic family being used, the size and performance goals of the

design, and the level of support provided for versioning by his design tools, a designer

will choose to use versioning for different reasons and with different frequencies. In the

TTL logic family, versioning is often used to reduce loading due to input leakage

currents a TTL output can typically drive onIy ten TTL inputs. In the ECL- 100K logic

family, versioning is used primarily to reduce reflections, and to reduce interconnection

deiay (due to wires and capacitive loading by inputs) by providing a high branching

factor at the source of the versions.

In order to allow the designer to use versioning without proliferating logical signal

names or confusing the logical operation of the design, the SCALD Logic Design

Language allows a single logical signal to represent multiple version$ wherever the

logical signal name is used in the logical design, all versions are implicitly available.

Figure 3.1-1 illustrates how a designer using the SCALD Logic Design Language can

label different physical outputs as being versions of the same logical signal; in this case,

six versions of the signal OUTPUT are created. Figure 3.1-2 indicates how a designer
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using the SCALD Logic Design Language can replicate a macro multiple times,

connecting all the inputs together, but leaving the outputs as separate versionx in this

case, the gate macro is replicated twice (because of the %2” written inside), providing six

total versions of the logical signal

three versions of its output buried

%K” is used.

%K” (since each instantiation of the gate macro has

inside), all of which are implicitly available wherever

The completeness of the support for versioning provided by the SCALD System

and the large size and high performance goals of the S-1 Mark IIA processor design

combined to encourage the extensive use of versioning in the S-1 Mark IIA design

process. Section 3.1.2 discusses

Mark IIA 410S-Chip Example.

our experience with the use of versioning in the S-1

At some point before construction of the ob&t machine commences, assignment

must be made of inputs to versions. This version assignment needs to be a strong

function of the actual placement of components, since ignoring pIacement can result in

unacceptably large reflections and highly suboptimal interconnection delays. Automatic

component placement therefore implies the n- for automatic version assignment. Even

without automatic component placemen$ the great frequency with which versioning is

used in a high-performance digital system makes manual version assignmentimpractical.
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Figure 3.1-1

Explicit Versioning in the SCALD Logic Design Language
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Figure S.1-2

Replication in the SCALD Logic Design Language
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Most version assignment must therefore be done automatically, although the

designer can be expected to explicitly specify version assignment in exceptionally

complex or critical cases. Our algorithm receives sets of logical signals in which the

physical positions of all nodes are fixed (in f% each node corresponds to a unique

wire-wrap pin on some board} its outputs are marked with version identifiers, and all

inputs need to be assigned version identifiers. Based primarily on the physical positions

of the nodes, the algorithm proceeds to assign version identifiers to the inputs. In our

system, for simplicity, this assignment is made before any further operations on the

versions (such as determining the actual physical electrical interconnection networks), and

is not repeated for any reason.

There are two important goals of the version-assignment proces& fiist, to design

versions in which no inputs will observe excessive reflections from lumped loads within

the version, and second, to minimize the worst-case interconnection delay across all

versions.

Ultimately, each version will be electrically interconnected using a chain

interconnection network (see Section 3.2). There are two basic styles of chain in which

the waveforms observed by the inputs are always acceptable (i.e., nearly monotonic in

time, although possibly degraded in “crispness? distributed chain$ in which the

separation of the inputs is sufficiently large, relative to the rise time of the outpu4 that

the individual reflections disappear before they accumulate, and clustered chains, in

which the inputs are so close together that the individual reflections accumulate
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immediately (i.e.,over a time interval short compared to that of a gate delay).

It is easy to see that a balanced version assignment which allows tightly clustered

chains is also good from the point of view of minimizing interconnection delay, since

such a version assignment clearly tends to minimize the worst-case chain length.

Therefore clustered chains are good both from the point of view of controlling

reflections and from the vantage point of minimizing interconnection delays.

On the other hand, a balanced version assignment which properly distributes

inputs to allow the construction of distributed chains does not necessarily tend to

minimize interconnection delays. Our algorithm therefore does version assignment so as

to guarantee that clustered chains are produced.

3.L1 Detailed Description

Given a set of No output nodes, and a set of Ni input nods all with fixed

physical positions, we seek to partition the input nodes into No clusters of one or more

inputs, such that the inputs within a cluster will be physically close aiong a chain, and to

assign one output to each cluster of inputs.

In general, clustering is a difficult problem, one which has been explored in depth.
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However, we have exploited the special nature of our particular domain in

simple clustering algorithm which has been shown to work well in practice.

developing a

Since we are most concerned with the properties (e.g., compactness) of each

individual cluster, the algorithm attempts to grow each cluster up to its full size one at a

time, rather than to grow all clusters simultaneously. It first determines a tentative

maximum cluster size, which applies to all clusters to be formed from this set of inputs

and outputs, and then grows each cluster up to its natural size (but to no larger than the

maximum cluster size). If a suitable partition is not formed, then it chooses a larger

maximum cluster size and iterates the process.

Given a maximum cluster size, the algorithm forms each cluster separately. It

begins by picking any outpu~ and assigning to it the nearest input. It continues to add

the “best unassigned input” to the cluster in progress until no more suitable inputs

remain unassigned, or until the cluster has reached the maximum cluster size, and then

forms the remaining clusters from the remaining inputs in the same way.

Since we are actually concerned only that the inputs within a single cluster be close

along the chain which will ultimately be formed, we simply define the best unussfgned

infuf to be that unassigned input which is closest to some input already assigned to the

cluster, and an unassigned input is suitable if and only if it is within a fixed

(user-defined) chster step of some input already assigned to the cluster.

Choice of the maximum cluster size is critical. If the maximum cluster size is too
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small, then the the algorithm will fail to find any vslid partition, i.e., inputs will remain

unassigned. On the other hand, if the maximum cluster size is too large, then the

algorithm will attempt to assign too many inputs to the initial clusters, and the last

outputs to be considered will receive no input% the smaller the maximum cluster size, the

more balanced will be the clusters in a valid partition. The algorithm thus searches for

the smallest maximum cluster size which

maximum cluster size, increases it until

found, and delivers that partition.

yields a valid partition; it begins with a small

the first point at which a valid partition is

Obviously, if the maximum cluster size is less than Ni/No inputs, then a valid

partition cannot be formed. We thus begin by trying a maximum cluster size equal to

the ceiling of Ni/No, and increase the maximum cluster size in units of one input as

necessary thereafter.

By controlling the cluster step, the designer can control the tightness of clusters

produced; if the cluster step is very small, then any input must be very close to some

input already in the cluster, but if the cluster step is large, then distant inputs may be

assigned to the cluster. Of course, if the cluster step is too small, then the algorithm will

fail to find any valid partition. In the SCALD System, the designer can control the

cluster step independently for each output type so that, for example, ECL- 100K nets can

be forced to be more tightly clustered than ECL-1OK ones.

If the algorithm fails to find a valid partition, then the designer using the SCALD

System has several options for correcting the problem: the designer can create additional
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versions in the logical design,

explicitly specify the assignment

partial assignments of inputs to

he can modify the component placement, or he can

of inputs to versions. The SCALD System will accept

versions, so he also has the option of assigning only a

few “seed” inputs to control

The basic goal of

the version-assignment algorithm.

the clustering process is to reduce signal voltage-wave

reflections. Unfortunately, in real sysh?ms,not all inputs are equivalent in terms of their

contributions to reflection% a rough measure of the amount that an input contributes to

reflections is the lumped capacitance of the inpu~ which, for example, in the ECL-IOOK

family varies by about a factor of three across different pins of different part types. We

therefore found that a better minimization of worst-case reflections muld be obtained by

measuring cluster sizes in units of uverage input capacitance (where the average is taken

across all inputs of the logical signal), instead of in units of “one inpuh” we measure the

maximum cluster size in these units, and increase it by one average input capacitance on

each iteration.

Let M be the maximum cluster size for the last iteration of a successful versioning

process. Now, since each of the Ni inputs must have been assigned, since each such

assignment involved considering (on the average, in the worst case) N~2 inputs, and

since each such consideration of an input involved testing its distance from the (at most)

M other inputs in the current cluster, an upper bound on the number of operations

required to find the final valid partition is
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Ni*M/2.

Furthermore, since at most M iterations will be done, an upper bound on the total

number of operations required for one entire versioning process is just

Ni*M*/2.

Actual behavior of the algorithm is much better than this upper bound, since

typically only a few iterations need to be done before the first successful partition is

obtained. Suppose that the first iteration (with M set to the ceiling of Ni/No) is

succesful, and that Ni/No is an integer. Since, on the average, consideration of an input

for inclusion in a cluster requires less than M/2 operations the number of operations

actually performed is less than

Ni2M/4 = Ni9/(4NJ.

For a large case, e.g., Ni= 100, and No= 10, this amounts to 25,000 operations. Of course,

this work is amortized over No nets, and furthermore, in our experience, only a small

fraction of logical signals require versioning (see below).
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3.1.2 Ex~erience

In the S-1 Mark IIA 410S-Chip Example, automatic version assignmentwasdone

for 224 multiple-version logical signal% these logical signals contained 3974inputs to be

assigned, and resulted in 677 independent nets. Table 3.1.2-1 shows the distribution of

the number of versions available in multiple-version logical signals. Table 3.1.2-2shows

the distribution of the number of inputs assigned during the versioning processes.

Assignment of versions was not computationally expensive relative to the other

processing done on each net. On the average, each versioning process took 47.1 ms.

Amortized across all 1130S net$ this amounted to only 0.3%of the total time required to

process a net.
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Versions

0.0
0.0

;::
3.0
4.0

:::
7.0
8.0

1:::
11.0

.12.0
>= 13.0

Count
Count

Fraction

0.000
0.000
:.:::

0:183
0.187
0.000
0.080
0.000
0.009
0.000
0.000

::%%
0.000

Cumulative
Count

Fraction

0.000
0.000
:.@&

0:714
0.902
0.902
0.982
0.982
0.991
0.991
0.991
0.991
1.000
1.000

Versions
Fraction

0.000
0.000
0.000
0. 3S2
0.182
0.248
0.000
0.160
0.000
0.024
0.000
0.000
0.000
0.035
0.000

Cumulative
Versions
Fraction

0.000
0.000
0.000
0.352
0.533
0.781
0.781
0.941
0.941
0.965
0.965
0.965
0.965
1.000
1.000

y#OO = Sum of versions
= Sum of counts

2.000 = Minimum versions
3.022 = Average versions

12.O@O = Maximum versions

Table 3.1.2-1

NumberofVersions Available in Multiple-Version L@calSignals
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Inputs

< 0.0
@.0
2.0

2::

1%:
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0
46.0
48.0
50.0
52.0

>% 54.0

Count
Fraction

0.000
0.018
0.076
0.009
0. 04s
0.036
0.228
0.192
0.004
0.022
0.027
0.076
0.018
0.009
0.036
0.000
0.004
0.018
0.013
0.036
0.000
0.076
0.040
9.000
0.000
0.000
0.004
0.000
0.013

Cumulative
Count

Fraction

0.000
0.(318
0.094
0.103
0.147
0.183
0.411
0.603
0.607
0.629
0.656
0.732
0.750
0.759
0.795
0.795
0.799
0.817
0.830
0.866
0.866
0.942
0.982
0.982
0.982
0.982
0.987
0.987
1.000

Inputs
Fraction

0.000
0.0(31
0.013
@. 002
0.015
0.016
0.131
0.130
0.004
0.020
0.028
0.086
0.022
0.012
0.054
0.000
0.008
0.032
0.026
0.072
0.000
0.171
0.095
0.000
0.000
0.000
0.013
0.000
0.050

W7#00 = Sum of inputs
= Sum of counts

= Minimum inputs
1%! = Average inputs
90.00a = Maximum inputs

Table 3.1.2-2

NumberofInputsA ssigned in Multiple-Version LogicalSignals

Cumulative
Inputs

Fraction

0.000
0.001
0.014
:.:3:

0:047
0.178
:. :(3:

0:331
0.359
0.445
0.467
0.479

0.842
0.938
0.938
0.938
0.938
0.950
0.950
1.000



3.2 DETERMINATION OF CHAINS

Only after a logical signal has been partitioned into versions does it become

reasonable to design the actual interconnection networks. Here we consider how to

determine the interconnection network which will be used to electrically interconnect a set

of input and output nodes with known physical positions (i.e., a single version) to form a

net.

Essentially all existing wire-wrap digital systems use interconnection networks

which are chains, that is, trees with at most two edges incident to any vertex. Several

factors account for the chain-interconnection limitation. Most importantly,

high-performance digital systems require that the interconnections form nearly

reflection-free transmission lines which is difficult to accomplish if branches are present,

since a branch presents a major impedance discontinuity. Furthermore, careful selection

of wire levels for the segments of a chain (e.g., Figure 3.2-1) can guarantee that at most

three wires will need to be removed in order to replace any wire in the chain. Also,

many wire-wrap digital systems are built using two-level wire-wrap pins, which

precludes branching interconnection networks and, even in systems with three-level pins,

it is often

branching

convenient to leave the third level for additions. Finally, the benefits of

(e.g., reduced interconnection delay) can usually be obtained simply by using

multiple-version logical signals. We therefore restrict our discussion to the issue of how

to determine chain interconnection networks, i.e., how to determine the interconnection

order of the nodes.



Figure 3.2-1

Conventional Level Assignment in a Chain

We consider chains of two types, called one-urm and two-arm chains, as in Figure

3.2-2. A one-arm chain is a chain in which every output is located at one of the two

ends. A two-arm chain is a chain in which some output is not locatedat an end; such

an output is an end of two subchains, or arm$, and each arm must be properly

terminated. Two-arm chains are important for low-output-impedance technologies such

as ECL- 10K or ECL-1OOK, because outputs in those technologies can drive two

properly terminated wire-wrap transmission lines simultaneously. Two-arm chains are

also important for technologies such as TTL in which signals are normally not

terminated at all. One-arm chains are important in case the output cannot drive two

properly terminated arms.
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INPUT INPUT OUTPUT INPUT INPUT

Figure 3.2-2

One-Arm and Two-Arm Chains

There are three important measures of chain quality which might be considered in

selecting a chain: the severity of reflections, the delays from the output to various inputs,

and the effect of the associated wire on the mat thickness.

Unacceptable reflections can be caused by a poor distribution of inputs along the

chain. Our algorithm does not explicitly consider reflection thus, it may create chains

in which, for example, a tightly clustered group of inputs is located sufficiently far away

from some other input that the waveform observed by the isolated input is unacceptable.

This type of problem can be easily detected automatically after chaining, and the

designer can eliminate it either by altering the placement of the components so that the

chaining algorithm will produce an acceptable chain, or by increasing the number of



versions available so that the number of inputs per version is smaller.

The delay from an output to an input is basically the time required for the signal

to travel from the output to the input along the chain; it is typically composed mostly of

the delays of the interconnecting wires (see Section 3.7). Each input in a chain may have

a different interconnection delay, and these interconnection delays can be affected

strongly by the choice of the chain.

When using high-performance component technologies such as ECL-1OOK, the

interconnection delays are typically comparable to the component delays. Therefore,

when using those technologies it is extremely to choose chains which minimize the

maximum delay to any input, called the chain delay. Chains which minimize the chain

delay will be called minimum-deiaychains.

Chain skew, which is the difference between the maximum delay to any input and

the minimum delay to any input, is important in some designs (e.g., in the Cray- 1, built

with ECL-1OOK SS1 logic on printed-circuit boards [Cr761) because such mntrol can

allow the designer to pipeline some simple functions without using storage elements.

However, in designs using ECL-IOK and ECL-1OOK MSI and LSI arcuits, the

components themselves have such large differences between maximum and minimum

propagation delays that minimizing chain skews would not be worthwhile because the

chain skew typically amounts to only a small fraction of the total skew in a logic path.

Furthermore, in cases where control over chain skew is important (which are detected by

timing verification), the designer can alter the placement of components or add versions.



Our algorithm therefore does not consider chain skew.

For simplicity, we consider all nets to have exactly one output. The chaining

algorithm we discuss can be applied to multiple-output nets, but will produce

less-optimal chains for those nets, because it will consider only one of the outputs to be

the source for delay calculations. Although

connect outputs together, multiple-output

suboptimality of the chaining algorithm on

important, and in the rare case that it affects

will reveal the problem for manual correction.

it is acceptable in some technologies to

nets are relatively rar~ hence, the

multiple-output nets is not statistically

a timing-critical path, timing verification

In addition, because of reflections caused

by load-sharing adjustments between the outputs, component placement must normally

ensure that multiple outputs are all within a small area, hence only a small amount of

suboptimality is introduced by considering only one output.

Minimization of wire-mat thickness is an important problem in

wire-wrap digital systems because those systems normally require

high-performance

extensive use of

twisted-pair or other shielded wire. Experience with the S-1 Mark I processor showed

that a thick wire mat can cause a large number of manufacturing problems, such as bare

fragments of wire being imbedded in the mm wires being broken by mechanical stresses,

and wire insulation being cut-through. Also, a thick wire mat greatly increases the

difficuky of replacing wires after the machine has been constructed.

In our judgement, the severity of the wire-mat problem on a given board is

strongly mrrelated with the total length of wire or] the board. The physical-design
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process is unable to affect the number of chains on a board, since that is fixed by the

logical design and component placement, but can impact the mat by affecting the average

length of chains. Unfortunately, the problem of minimizing chain lengths is complicated

by the fact that there is often a strong tradeoff between chain delay and chain length.

Figure 3.2-3 illustrates a case in which a small increase in chain length would reduce the

chain delay by about a factor of two if two-arm chains are allowed. Figure 3.2-4

exhibits a case in which a small increase in chain delay would reduce the chain length

by about a factor of two. As shown in Figure 3.!2.2-1, cases similar to these are

statistically important.

The severity of the wire-mat problem is also related, of course, to the positions of

the segments of the chains on the board. However, the segment positions are largely

constrained during component placement (i.e., some wire must connect to each node of

the chain, and the node positions are fixed), so it is plausible that the wire-mat

reduction that can be obtained by consideration of segment positions during chaining is

kss than that which can be obtained by minimizing their total length. Furthermore, we

have not been able to find a reasonably efficient chaining algorithm which considers

segment positions. Thus, we ignore the effect of segment positions within this algorithm.

The choice of which wire type to use for each segment of a chain also strongly

affects the wire mat. However, when dealing with wire types in real machines,

minimizing the chain length does not usually restrict later assignment of wire types to

segments (see Chapter %5), but actually increases the range of possible wire-type

assignments (since, in general, two nearby nodes can be wired together with any wire
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type that two distant nodes can be, and often with additional wire types as well). Since

the chaining algorithm which we discuss here can minimize the chain length, we do not

explicitly consider wire types.

Based on these considerations, we have developed a chaining algorithm that

makes its selection by considering only the chain delay and the chain length. Limiting

consideration to these parameters still allows the algorithm to effectivelycontrol both the

chain delay and the wire mat. A desirable side-effect of the algorithm is that it is

capable of limiting consideration to only one-arm chains, if necessary.

Consider an arbitrary two-arm chain with arms AR and AL By convention, the

output (or mot) is considered to be part of each arm, and arms which contain only the

root are valid arms. Let the chain delays of the individual arms AR and AL be called

DR and DL, respectively. Let D, be the minimum of DR and DL (i.e.,the ntinimwn-urm

delay), and let D2 be the maximum of DR and DL (i.e., the maximum-arm delay). D2 is

thus the chain delay of the entire chain.
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Figure 3.2-3

Severely Suboptimal Chain Delay

INPUT INPUT INPUT

OUTPUT INPUT

Figure 3.2-4

Severely Suboptimal Chain Length

-7%



Our chaining algorithm finds the chain which minimizes an arbitrary

user-defined chaining function F(D~,D2),which is constrained to be a non-decreasing

flmction of its two variables. We call such chains minimum-F chins. For example, if

F-D% then the algorithm will find the minimum-delay chain. If F-D,, then the

algorithm will attempt to drive the delay of the minimum-delay arm to zer~ hence, it

will find some one-arm chain.

Because the delay from an output to an input along a chain is estimated by simply

adding the total enclosed wire delay to a linear function of the total enclosed node

capacitance (see Section 3.7), and since the two arms of a chain enclose all the node

capacitance of the chain, then, if we assume that all wire types have equal propagation

delays, we have the fortunate result that the chain length, L, is a linear fimction of

D ~+D2 for any given set of nodes, i.e.,

J-= dD1+D$ - &

where a and (3are positive constants. So, if F=D ,+DZ then the algimithm will find the

chain with minimum length.

Simple linear combinations of these basic functions produce behaviors which are

combinations of these basic behaviors. For example, if F=aD ~+Da where a is a large

positive constant, then the algorithm will find the one-arm chain which minimizes the

chain delay.
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In the SCALD System, each different net type can have a different default

chaining function, F, which is used for chaining all nets of that type. Thus, for example,

differential signals can be chained using a function which can produce only one-arm

chains, while non-differential sign ah are chained using a less-restrictive function.

Furthermore, any specific logical signal can have a special chaining function, different

from the default chaining function; these special chaining functions are input to the

Packager by means of a separate text file which lists the logical signal names and their

associated special chaining functions.

Inclusion in the chaining algorithm of the specific range of behaviors described is

intended to support two new modes of physical design which depend upon timing

verification as a key component.

In the first new mode of physical design, the designer starts by doing a complete

packaging run with the default chaining function set to produce minimum-delay chains.

The designer then does timing verification using the actual chain delays calculated in

the packaging run. Since all chains are minimum-delay chains, any errors detected by

timing verification must be removed by altering the logical design and the component

placement. After iterating the process involving logical design, component placement,

packaging, and timing verification until the design is free of timing errors using

minimum-delay chains, the designer begins to work on reducing the wire mm he

increases the dependence of the chaining function on the chain length (L). As he

increases the dependence on L, the chaining algorithm begins to trade off chain delay
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against wire mat, chain delays increase, and timing verification begins to detect new

errors. The new errors can be corrected by altering the logical design and component

placement, by flagging timing-critical logical signals to be chained for minimum delay, or

both. The designer continues to increase the chaining-function dependence on L and to

correct the resulting timing errors until he makes the very high-level decision that the

anticipated improvement in the wire mat during the next iteration is not worth the

design effort and possible system cycle-time degradation due to the next iteration’s

increasing of chain delays.

In the second new mode of physical design, the designer starts by doing a complete

packaging run with the default chaining function set to produce minimum-length chains.

This run produces a package with minimal wire mat. The designer then does timing

verification using the actual chain delays calculated in the packaging run. In order to

remove the errors detected during timing verification, the designer may alter the logical

design and the component placement, or flag timing-critical logical signals to be chained

for minimum delay, or both. The designer continues to iterate this process, adding

timing-critical logical signals to the list of logical signals to be chained for minimum

delay, until the design is timing-error free. Since all non-timing-critical logical signals

are then minimum-length chains, the wire mat is minimized in this approach.

Both of these new modes of physical design depend upon a packaging system

which can rapidly determine all the the details of a physical design, without the necessity

of manual completion of the packaging work. Only such a system can allow the designer

to quickly iterate the complete logical design, component placement, and physical design
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to optimize packaging under the global constraint of complete freedom from timing

errors.

3.2.1 Detailed Description

To structure discussion of the algorithm, we will first consider the problem of

finding a chain of minimum cost, where the cost of a chain is the sum of the costs of all

the segments in the chain, e.g., the sum of the lengths of wires used to connect nodes in

the chain. This problem is equivalent to the traveling salesman problem, and has been

explored in depth. After developing a dynamic-programming solution to the

minimum-cost-chain problem, we will extend it to find minimum-F chains, and finally

we will refine the result to find minimum-F chains more quickly.

3.2.1.1 Algorithm Cl - Minimum-Cost Chains

Suppose that the version to be chained contains N nod% named Ni, lsisN,

including all the inputs and the output. Assume that we are given an NxN cost matrix

C such that C(i,j) is the (non-negative) cost to connect node Ni to node Nf and C(i,i) is

zero for all i.
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Although the cost matrix might simply contain real wire lengths, and would then

be symmetri~ the algorithm we develop here does not demand that it be symmetric.

Non-symmetric infinite entries in the cost matrix can be useful for constraining nodes

(e.g., inputs with built-in terminators) to be at the ends of chains. Non-symmetric cost

matrices can also be useful for incorporating capacitive delays, as we shall see below.

In the following, we use Pascal set notation. Let S be any set of node numbers.

Let S* be the full set of node numbers. Let X[i,SI be the minimum cost of a chain

starting with node Ni, and including exactly nodes N such that j~S. X[i,S] thus does
t

not depend upon the order of the nodes in S, or upon which node is on the other end of

the chain. X[i$l is undefined if ie.

Suppose that we know the cost X[i$] for each set S having no more than k

elements, and for all iES. Now, let S’ be a set having k+ 1 elements. Then it is easy to

compute any cost X[j$’1 we simply try connecting Nj to each possible end node Ni, such

that ie(S’-[jl), and select the one mnnection which minimizes the total cost of the new

chain. The key to this approach is that the total cost of the larger chain is the sum of

the costof the new connection and the cost of the smaller chain. Formally, to compute

X[j,S’1for any given jeS’, we set

X[j$’1 = miniC(St_Um(C(j,i)+X[i,S’-[jll).

We trivially know the minimum costs of all one-node chains (k=1), i.e.,
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XU,[ill = C(iJ.

Therefore, we can compute the minimum costs of all 2-node chains (k=2), and, by

induction, the minimum costs of N-node chains, X[i,S*]. Minimizing X[i$*] over all i

yields X*, the minimum cost of all chains independent of which nodes are endpoints. It

is possible for X* to be infinite indicating that no chain of finite cost exists. (In the

subsequent discussion, we will sssume that some finite-cost chain exists.) When

computing (3.2-l), if we record an i which minimizes that expression in a backtracking

array B[j,S’1, then we can trivially construct an actual minimum-cost chain

corresponding to any particular X[j$’].

If for some node N@C[e,il is infinite for all i#e, and C[i,el is finite for all i#e, then

the minimum-cost chain must contain Ne at an end. Thus special nodes (e.g., outputs)

can easily be constrained to be at the ends of the chain, if desired. Indeed, both ends

can be simultaneously constrained.

For a particular set S containing k elements, the computation of (3.2-1) for all jeS

involves k(k- 1) operations. Since the k elements are chosen out of N possible elements,

the total number of operations required to compute the minimum-cost chain is

;()k(k-1) : = N(N-1)#-2.

k=2

(3.2-2)
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This algorithm requires enough memory to store integer costs X[i$] and node

names B[i,Sl for all lsisN and SSS *. This memory requirement is O(N2N) memory

elements of sufficient size to represent an entire node name or integer cost. Additional

memory is required to store auxiliary constant tables for rapid enumeration of the sets

and of the elements of those sets. This additional memory requirement is O(N2N)

memory elements of sufficient size to represent an entire setof nodes.

This algorithm is a dynamic-programming solution to the minimum-cast-chain

problem, as in [Be62]. One advantage that our algorithm has over other approaches is

that the inner loop is extremely simple, and can therefore execute quickly; it involves

only one deletion of an element from a set, one integer addition, and one integer

comparison. But the major advantage that our algorithm has over other approaches,

e.g., [Li731, is that it can be generalized to minimize the flmction F without significant

additional computing.

%2.1.2 Algorithm C2 - Minimum-F Chains

Section 3.7 describes a delay estimator which uses as its estimate of the delay from

the output of a chain to an input in the chain simply the total enclosed wire delay, plus

the total enclosed capacitive delay, i.~,



DW + aCL + p,

where DW is the sum of the propagation delays of the individual wires between the

output and the input, CL is the total lumped capacitance of the nodes between the

output and the input, inclusive, and a and /3 are positive constants. This simple model

of delay suggests a modification of Algorithm C 1 which will produce minimum-F chains

instead of minimum-cost chains. No previous chaining algorithms are known which

produce either minimum-delay chains or minimum-F chains.

Let DWE,jl be the wire delay between nodes Ni and N$ and let CL[i] be the

lumped capacitance of node Nf Now, suppose that the cost matrix, C, is initialized as

follows

(i# j) C[i,jl - DW[i,jl + aCL[i]

(i= j) C[i,j] = aCL[j] + p

Note that, in general, this initialization resuhs in a non-symmetric cost matrix.

Call the output (i.e., the root of a potential two-arm chain) Nr. To compute

minimum-F chains, we first execute Algorithm C 1 using the cost matrix initialized as

described above. After execution of Algorithm C 1, each entry X[r,$] (=$) iS simply the

delay of the minimum-delay arm extending from Nr, and containing exactly the nodes

with numbers in S. Of course, this minimum-delay arm can be trivially constructed as

described above.
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Since we have guaranteed that the function F(D ~,D2)is a non-decreasing function

of its two variables (respectively the minimum-arm delay and maximum-arm delay of

the chain with root Nr), we know that minimum-delay arms extending from Nr will

minimize F. Furthermore, initializing the cost matrix C[i,j] in the way described above

has conveniently produced all the minimum-delay arms which could possibly extend

from Nr. Hence, all that remains to be done in order to find the chains with root Nr

which minimize F is to enumerate all the possible pairs of arms extending from Nr, and

choose the pair which minimizes F.

There are 2N-1 possible subsets of nodes to choose for the first arm, and any

choice for the first arm completely determines the second arm. Therefore, a simple

post-processing pass over the results of Algorithm Cl in order to minimize F requires

N-l operat~ons, each involving one calculation of F. Actually, only about half this

number of operations are required, since the arms are indistinguishable. The entire

computational cost of Algorithm C2 is thus dominated by the cost of computing the

minimum-delay chains, given in (32-2).
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$2.1.3 Algorithm C3

Noting that the

- Quicker Minimum-F Chains

final stage of Algorithm C2, which enumerates all possible pairs of

arms extending from the root Nr, does not ever reference any entries X[i$l such that i#r,

leads to an algorithm for computing minimum-F chains which is twice as fast as

Algorithm C2.

This algorithm proceeds exactly like Algorithm C2 except that, during the

imbedded execution of Algorithm C 1, it simply avoids computing the superfluous entries

in the X array. The first step is to compute all X[i$] such that i#r and rs. This

initial computation is equivalent to Algorithm C 1 operating on the full set of nodes

reduced by one (namely, Nr). The second step in the reduced computation is to calculate

all X[r$+[rll (such that re, and S non-empty) using the results of the first step as

follows

X[r$+[rll = min=(C(r,i)+X[i,Sl).

Counting the empty set for simplicity, there are &l sets to consider. Since the

average number of elements in those sets is (N-1)12, this second step requires (N-1)#-2

operations. Hmce, the total number of operations involved in this reduced version of

Algorithm C 1 is just
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(N-l)(N-@-3+(N-l)2 N-2 - N(N-1)2N-3.

3.2.1.4 Estimating Wire Lengths

The algorithms discussed above depend upon knowledge of the length of wire

which would be needed to connect any pair of nodes. Unfortunately, both cable-wire

assignment (Section 3.3) and wire-type assignment (Section 3.5) must be completed before

the true lengths of wires connecting nodes are known, but neither can be accomplished

before chaining is complete. It is therefore necessary to estimate the wire lengths before

chaining, and to determine true wire lengths after chaining.

On-board wire lengths are relatively easy to estimate. For such wires, we use the

orthogonal distance between the nodes if the nodes are close together, since such nodes

are likely to be connected with orthogonally-routed wire, and we use the shortest-path

distance between the nodes if the nodes are far apart, since such nodes are likely to be

connected with point-to-point-routed wire. The user is permitted to define the threshold

for crossover between these two distance metrics.

In order to estimate

a subset of the available

the wire length between nodes on different boards, we sample

cable wires connecting the appropriate boards, and use the



cable wire which yields the shortest total wire “length” to connect the nodes. The subset

of cable wires to be sampled consists simply of special archetypal cable wires flagged by

the designer in the cable definition the designer chooses the wires to flag so that the

total wire length for a signal which uses any non-flagged wire in the cable will be not

much different than the total wire length for the same signal using some flagged wire.

This method of sampling cable wires greatly reduces the execution time of the

algorithm, relative to that required by a true optimal algorithm (i.e., one which would

sample every cable wire), since typically only a few cable wires within each cable need to

be flagged by the designer in order to obtain highly representative

Nevertheless, the designer has the option of producing solutions which are as

he requires, simply by flagging ever more representative wires in each cable,

sampling.

optimal as

The %ngth: L, of an inter-board segment is a userdefined function of the length

of cable wire in the segment, as well as of the length of the connecting segments on the

ends of the cable wire. We restrict this function to be of the form

L=a+(lLc+L& (!!2-3)

where Lc is the length of cable wire in the segment, Lb is the total length of on-board

wire in the connecting segments on the ends of the cable wire, and a and /3 are positive

Cunstants.

Thus the designer can emphasize or cieemphasize cable wires in the chaining
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algorithm, as he chooses. If a is very large, then the chaining algorithm will tend to

minimize the number of cable wires used in a chain; this behavior is important if cable

wires are a scarce resource. Similarly, if ~ is small, then the chaining algorithm will tend

to minimize on-bawd wire length at the expense of additional cable-wire length; this

behavior is important in case the designer wishes to remove wire mat from the boards at

the expense of cable-wire length. Of course, only if a=O and (3=1 will the chaining

algorithm behave exactly as described in Section 3.2.1.3

S.2.2 Experience

For simplicity, in the current Packager implementation, we restricted the chaining

function to be of the form

where a and p are constants.

The basis for developing Algorithm C9 was the claim that chain delay could be

traded off against wire mat. The total length of twisted-pair used (or the average length

of twisted pair per n% since the number of nets is constant) is a plausible measure of

wire mat. Figure 3.22-1 shows the relationship between the average chain delay and the



average twisted-pair length per net in the S-1 Mark IIA 4108-Chip Example the first

reduction of 7% in average chain delay (relative to the minimum-length-chains case)

costs about 9% in additional twisted-pair length per net. The same figure shows the

average chain delay as a function of the average chain length; the first reduction of 75?

in average chain delay costs about 4.6%in additional average chain length.

We found that consideration of the capacitive component of chain delay (as

outlined above) resulted in a small reduction in chain delay% the average chain delay

(when chaining for minimum-delay chains) was reduced by 3.1%,from 2.378 ns to 2.304

ns.

Although Algorithm C3 is exponential in the number of nodes to be chained, it

has a very fast inner loop. We found it to be quite practical, because our design rules

prohibit large (i.e., more than 11 nodes) nets in any case, in order to minimize reflection

problems.

h all, 10245 chains of two or more nodes were formed in the $1 M~k ~

4108-Chip Example, and these chains had 4.34 nodes each, on the average. Table

3.2.2-1 shows the distribution of the number of nodes per chain.

We found that determining chains using Algorithm C3 required a significant, but

not overwhelming, portion of the total time required to process nets. On the average,

determining a chain required 96.5 m$ or 28.0%of the total time required to process a net.

The largest chain formed, having 11 node% required 1.48 seconds. Since this example
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included a large number of maximally loaded RAM address lines, the distribution is

skewed toward chains with 11 nodes.

Although it would be reasonable to augment this chaining algorithm by a fast

heuristic minimum-length algorithm to handle large nets we have demonstrated that the

generality of Algorithm C3 is available at reasonable cost for small net~ which

predominate in high-performance digital wire-wrap systems
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Nodes

0.0
0.0

$::
3.0
4.0
5.0
6.0
7.0
8.0

1%:
11.0

>= 12.0

Count

0
0

405!
1904
831
985
510
271
165
137
373

1015
0

Count
Fraction

0.000
0.000
0.000
0.396
0.186
0.081
0.096
0.050
Q. 026
0.016
0.013
0.036
0.099
0.000

Cumul:::::

Fraction

0.000
0.000
0. @0@
0.396
0.582
0.663
0.759
0.809
0.835
0.851
0.865
0.901
1.000
1.000

f4444~.000 = Sum of nodes
= Sum of counts

2.OW = Minimum nodes
4.341 = Average nodes

11.000= Maximum nodes

Table 3.2.2-1

NumberofNodes in Chains
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Nodes
Fraction

0.000
0.000
0.000
0.182
0.128
0.075
0.111
:.06;

0:030
0.028
0.084
0.251
0.000

Cumulative
Nodes

Fraction

0.000
O.m
0.000
0.182
0.311
0.385
0.496
0.565
0.608
0.637
0.665
0.749
1.000
1.000



3.S ASSIGNMENT OF CABLE WIRES

In order to permit the logical design of a digital system to proceed relatively

independently of packaging considerations when desired, the SCALD System allows nets

to span multiple boards. Boards are connected by cables, the positions and lengths of

which are defined by the designer before packaging begins. Each cable contains one or

more cabie wires (which may, in fact, be paired wires, such as twisted-pair or coaxial

wire), and each cable wire connects a wire-wrap pin on one board with a wire-wrap pin

on another board. At some point in the packaging process, it becomes necessary to

determine exactly which cable wires will be used in the nets which span multiple boards.

For large digital systems such as the S-1 Mark IIA processor, manual assignment

of cable wires would be inconsistent with the goal of rapid physical-design turnaround.

In fact, during the final stages of the physical design of the much smaller S-1 Mark I,

manual assignment of cable wires was initially attempted because it was felt that a

manual assignment would be of higher quality than an automatic assignment. The

single manual assignment done for the S-1 Mark I required several man-weeks, and was

of such low quality that it was discarded and replaced by an automatic assignment

before the machine was wrapped.

On the other hand, some manual assignment of cable wires must be permitted in

order to support the use of cables which have predefine signal positions (e.g., to connect

to existing hardware). The SCALD System allows both manual and automatic

assignmen~ performing automatic assignment only for those nets which do not have
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manual assignments.

Before chaining,

task, since it would not

automatic assignment of cable wires would be a very difficult

be known exactly which nodes of a net would ultimately need to

be mnnected. However, after chaining has been completed, assignment of cable wires

amounts simply to assigning

between boards, and splicing

on-board wire at each end

a cable wire to each segment of the chain which crosses

it into the existing chain by using a connecting segment of

of the cable wire. As long as the inter-node distance

estimates used in the chaining algorithm were accurate approximations to the actual

inter-node distances, then the modified chain will obviously be nearly optimal, relative to

what could be obtained by perfect inter-node distance estimates.

3.3.1 Detailed DescrisXion

Our algorithm for assignment of a single cable wire operates on a pair of nodes,

assumed to be on different boards it attempts to find the lowest-cost path between the

nodes which involves at most one cable-wire segment.

We do not attempt to solve the difficult problem of finding a path through

multiple boards, involving multiple cable wires, but assume that any inter-board segment

of a chain can be wired using a single cable wire. In our experience, providing direct

-92-



cable wires wherever necessary is just as technically feasible and economical as its

alternative, i.e., wiring some inter-board segments through a third board, even for

systems in which cable wires are in places extremely scarce, such as the S-1 Mark I.

This algorithm first selects a best cable in the same way that the chaining

algorithm selects a best cable (see Section 3.2.1.4} it computes L (via Equation !3.2-3)only

for the specially flagged archetypal cable wires within each cable connecting the

appropriate two boards, and chooses a cable which minimizes L. After choosing a cable,

the algorithm simply computes L for every wire within that cable, and selects a wire

which minimizes L.

Unfortunately, if cable wires are a scarce resource, then this simple algorithm is

likely to suffer from bunching, i.e., a number of (possibly related) nets will choose cable

wires which are near each other, due to the arbitrary order in which cable wires are

sampled, even though a large number of equivalent cable wires might be available.

These bunched nets then tend to block large contiguous cable areas from being used

subsequently by other nets which may not have a large range of quivalent choices. In

the the S-1 Mark I physical design, we observed that bunching was a significant

problem, and corrected it by randomizing the choice of cable wire, whenever multiple,

nearly equivalent choices were available. Bunching was not observed to be a problem in

the S-1 Mark IIA 410S-Chip Example, due to the substantially larger number of cable

wires available.
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%8.2 Guiding Cable Placement

The algorithm which assigns cable wires is simple only because we assume that the

positions and lengths of cables have been fully specified by the designer. In fact, the

problem of determining good cable positions and lengths involves a great deal of

intelligence, and was considered too difficult to be included in this present investigation,

since our goal was a practical and implementable system. For example, determining good

cable positions and lengths involves integrating knowledge about the shape of the

cabinet, the constraints of cable-ways, the connectivity of the machine, and the timing

constraints of signals.

Fortunately, it is quite easy for the designer to determine good cable positions and

their corresponding lengths. For example, the initial cabling for the S-1 Mark HA

4108-Chip Example, involving 482 cables, took only about six hours to determine and

manually specify using the Packager’s iterative cable-specification language, and

required only 193 lines of text to specify. Furthermore, it is our experience that cable

positions do not need to be frequently changed; in fact, they need to be changed less

frequently than the associated component placemen~ and it is far easier to alter them

than it is change the placement of components.

However, it is difficult for the designer to assign good cable positions without
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feedback from the design system about the number of segments which span each board

pair. On the other hand, the system cannot report the number of segments spanning

each board pair without creating chains, and cannot create chains without knowing the

positions and lengths of the cables.

We have addressed this deadlock by providing a form of feedback to the designer

which can help him in assigning cable positions, and which does not depend upon

chaining. For each board pair, we mmpute the minimum and maximum number of

cable wires which will be required to connect the boards, assuming that no chain will

cross between the same pair of boards more than once, but which is otherwise

independent of chaining. To compute this minimum and maximum, we update the

minimum and maximum counters for each net, before chaining, as follows If a net

contains nodes on only one board, then the net will require no cable wires, so we make

no change to the counters. If a net contains nodes on only two boards, then the net will

require exactly one cable wire connecting the two boards, so we count one cable wire for

that board pair in both the minimum and the maximum counters. If a net contains

nodes on three or more boards, then the net may or may not require one cable wire

between any specific pair of boards among them, so we count one cable wire in the

maximum counter for each possible pair of boards, and we do not change any minimum

counter.

These minimum and maximum requirements are reported to the designer, even

before any cable positions have been specified. If the designer plugs in enough cables

bebwn each board pair to supply the maximum requiremen~ then he is guaranteed
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that the system will be able to find enough cable wires on the next pass. Since, in typical

systems, most nets involve only one or two boards, the minimum and maximum

requirements are usually quite close and supplying the maximum requirement is not

incrementally difficult, given that the minimum requirement must be provided anyway.

Even if enough cables are plugged in to satisfy the maximum cable-wire

requirement between each board pair, the positions of the cables may be suboptimal, and

thus the chains which the system designs may be distorted and lengthened. It is

therefore necessary for the system to provide appropriate feedback for the designer to

indicate that the cable positions are suboptimal, so that they may be improved.

In order for the system to determine that cable positions are suboptimal, it

obviously must have some knowledge about the full range of possib/e cable positions and

the corresponding cable lengths. This is very similar to the problem of determining

physical cable positions and lengths, and is very difficult to solve without designer

assistance. We therefore simply allow the designer to speci~ this information in a

convenient language, i.e., by allowing him to plug in virtual cubles.

A virtual cable effectively

other relevant connector sockets.

d&lnes the distance from

Virtual cables can overlap

one connector socket to all

arbitrarily, allowing a large

number of virtual cables to plug into a single connector socket. The system forms chains

using the virtual cables, but assigns cable wires using the physical cables. For each

assigned cable wire, the additional length required in order to use a physical cable,

relative to that predicted by using a virtual cab!~ is reported to the designer. Xfthe
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differences are large, then the physical cables may be pmrly positioned, and the designer

may choose to reposition them for the next pass. If the differences are small, then the

designer can feel confident that the physical cables are well positioned, relative to the

“optimal” possibilities represented by the virtual cables.

S.%8 Experience

The S-1 Mark IIA 4108-Chip Example consisted of 12 boards, and required a

total of 1814 cable wires (i.e., 1814 paired cable wires). Figure 3.3.3-1 shows the number

of cable wires which were actually used to connect each pair of boards.

A very small percentage of nets required cable wires, and of nets that required

cable wires, most required only one. Figure 3.3.3-1 shows the number of cable wires

required for nets.

We found that the amount of time spent assigning cable wires was not very large

compared with the total amount of time required to process a net. A total of 1814 cable

wires were automatically assigned (i.e., none were manually assigned), and each

assignment required 28.1 ms, on the average. Amortized across all 11308 nets, this

amounted to only 1.3%of the total time required to process a net.
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Cable Wires Used to Connect Board Pairs
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CumulgJ~;~
Count

Wires Count Fraction Fraction

< 0.0 0.000 0.000
:.: W&: 0.853 0.853

0.132 0.985
2:0 160 0.014 1.000
3.0 5 0.000 1.000

>= 4.0 0 0.000 1.000

1814.000 = Sum of wires
11213 = Sum of oounts

0.000 = Minimum vires
0.162 = Average wires
3.000 = Maximum wires

Table 3.3.3-1

Number of Cable Wires in Nets

-99-

Wires
Fraotion

O.wcl
0.000
0.815
0.176
0.008
0.000

Cumulative
Vi res

Fraotion

0.000
0.000
0.815
0.992
1.000
1.000



S.4 ~SSICNMENT OF TERMINATORS

In high-performance digital systems using ECL technology, it is necessary to

terminate every chain interconnection network in order to prevent signal distortion due

to reflections, as well as to maintain the proper DC signal levels. Depending upon the

position of the output in the chain, and the edge speed of the technology being used,

either one or both chain ends may need to be terminated.

The S-1 Mark I and S-1 Mark 11A processors use parallel resistive terminations

exclusively. (Some digital systems use series resistive terminations in place of or in

addition to parallel resistive terminations, and some digital systems use active

terminations.) We will consider only parallel resistive terminations her~ however, our

assignment algorithm for parallel resistive terminators would apply with little change to

other termination styles.

After the ends of a chain have been determined, it is reasonable to mnsider the

terminators. For each end of a chain, the Packager determines whether a terminator is

necessary and selects a resistance value by means of a simple, user-parameterized

algorithm. This algorithm takes into account the wire length to the most distant output,

and the loading due to nearby inputs. The parameters can be different for each net

type, so that, for example, the user can allow longer unterminated arms on ECL-1OK

nets than on ECL- 100K nets.

This section considers only the problem of how to find a terminator, after it has
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been determined that one is required, and what its type and value is. In order to reduce

inter-wire crosstalk and wire mat, it is desirable to locate each terminator as close as

possible to the end of the chain which it terminates. Because the design of the

wirewrap board cannot depend upon the unpredictable locations of the ends of chains,

typical wire-wrap systems provide a large number of terminators distributed uniformly

over the boards (plugged into special sockets~ this strategy makes it likely that a

terminator can be connected to either end of a chain simply by wrapping a short wire

from the end of the chain to the appropriate wire-wrap pin.

The problem of terminator assignment is thus simply one of choosing the closest

available terminator, given the fixed end of a chain. Although locating the closest

unused terminator is relatively simpl% the number of terminators required in a large

digital system precludes manual assignment.

In our experience, it is extremely difficult to do a good job of assigning

terminators if they are scarce, because such assignment requires global knowledge of the

positions of the ends of all the logicaI signals on a board. On the other hand, we have

found that it is very easy to do a good Job of assigning terminators if they are plentiful

(see Figure 3.4.2-2). In both the S-1 Mark I and the S-1 Mar:- IIA designs, supplying

the necessarysurplus terminators added negligibly to the cost of the ob~ machine.
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3.4.1 Detailed Descxbtion

Our algorithm for terminator assignment therefore depends upon the availability

of plentiful terminator it does not attempt to use global information about the positions

of all chains, but assigns one terminator at a time. The basic algorithm is trivial; we

simply sample each wire-wrap pin of the board, in order of increasing distance measured

orthogonally from the end of the chain to be terminated, until a terminator of the right

value is located. The first such terminator found is used.

Unfortunately, our experience in the S-1 Mark I and S-1 Mark HA physical

designs has shown that even on a board which has a uniformly distributed supply of

terminators which is plentiful on the average over the entire board, this simple

assignment algorithm may perform poorly in the corners, because the comers have a

reduced local-average density of available terminators. In fact, the basic algorithm

would perform poorly in any area where the local-average density of terminators was not

always completely adequate, and the corners of our boards are only one example.

We have modified the basic algorithm based on our experience with this problem.

The designer is permitted to divide a board definition into areas, and to define a point

in each area which is a “center poin~ for terminator assignment. The modified

algorithm still selects the closest terminator to the end of the chain being terminated, but
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if several terminators are located at the same distance from the end of the chain, then

the one is assigned which is closest to the center point of the area in which the end of

the chain is located. (Several terminators are likely to be located at the same distance

from the end of the chain, since wire-wrap pins are on a fixed grid.) Hence, if the

center point is located in the geometric center of a rectangular are% then the assignment

is drawn inward, away from the corners, resulting in a higher effective local-average

density of terminators in the comers.

3.4.2 Experience

In the S-1 Mark IIA 4106-Chip Example, 6 terminators were provided per 16-pin

socket on the 11 ECL- 10K boards, and 10 terminators were provided per 24-pin socket

on the one ECL- lOOK board.

The designer is permitted to define as many areas and “center points” as a board

requires; some very complex boards may require more than one. However, for the

uniform, rectangular boards of the S-1 Mark IIA, we used only one center point (the

geometric center) for the main socket area

The parameters controlling the chaining algorithm have a significant effect on

how many terminators are required; chaining for minimum delay increases the number
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of two-arm chains and hence increases the number of terminators required. If we

~nsider only the 25148 terminators associated with populated sockets as being

“available” (since in the Example, there are large areas stuffed with terminator SIPS, but

not with integrated-circuit DIPs), then when chaining for minimum-length chains, only

52% of the available terminators were assigned to nets, and when chaining for

minimum-delay chains, 63% of the available terminators were assigned. Figure 3.4.2-1

shows the terminator-assignment pattern for a typical ECL-1OK board, when chaining

for minimum-length chains.

We found that local depletion of terminators occurs rapidly as the density of

available terminators approaches the density required. We also found that negligible

gains in the orthogonal distances to assigned terminators are produced by increasing the

available terminator density above about 1.6 times the density required. Figure 3.4.2-2

shows the effect of the available terminator density on the distribution of orthogonal

distances to assigned terminators, using our centered assignment algorithm and chaining

for minimum-length chains.

We found that the time required for the assignment of terminators using this

algorithm was quite small, relative to the total amount of time required to process a net.

On the average, chaining for minimum-length chains, 13.1 ms were required to find a

single terminator, and this represented only 3.8%of the total time required to process a

net. On the average, 15.1 ms were required to find all terminators for a net, and this

represented only 4.4%of the total time required to process a net.
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In this pattern, the character “*” represents an available (unassigned) terminator, a space
represents an assigned terminator, and the character “O” represents a position at which
no terminator exists (i.e., a location covered by an adaptor). All 600 sockets are
represented as a regular array of 2-character-by-3-character rectangles.

Figure 3.4.2-1

Terminator Assignment Pattern
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S.5 ASSIGNMENT OF WIRE TYPES

In order to reduce inter-wire crosstalk and impedance discontinuities to acceptable

levels, designers of high-performance wire-wrap digital systems using ECL components

normally use high-quality kinds of wire (typically twisted-pair, twisted-triplet,

shielded-twisted-pair, or coaxial) instead of single wire for segments of chains more than

a few inches long. However, not only are high-quality kinds of wire much more

expensive to apply than ordinary single wires but, if used excessively, they can cause

extreme wire-mat buildup and result in unreliability due to the numerous manufacturing

and operational problems caused by a thick wire mat.

After chaining has been completed, and cable wires and terminators have been

assigned, the details of the individual segments can be considered. Wire-type assignment

consists of determining for each segment in a net both the kind of wire to apply, and at

what physical level on the wire-wrap pin both ends of the wire will be applied. Because

it is convenient to consider both together, we call the combined wire kind and wire level

simply the wire ty#w.

The S-1 Mark IIA physical design uses nine different wire type% shown in

3.5-1. The prefix in the wire-type name indicates the wire level, with level 1

closest to the board.

Table

being

Single wire (wire types L 1.SWXY and L2.SWXY) is applied by fully-automatic

wire-wrap machines, is the least expensive to apply, and contributes the least to the mag
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it is applied on either level 1 or level 2 and is routed orthogonally,

Untwisted-pair wire (wire types L 1.UWXY and L2.UWXY) is simply wire which

needs to have two conductors (e.g., in a differential net, or adjacent to a shielded-pair

cable wire), but is tm short to be twisted; it actually consists of two single wires, which

are both positioned at level 1 or level 2 and are

Twisted-pair has better impedance and

does single wire.

twisted-pair which

only on levels 2

XY-twisted-pair (wire

routed orthogonally.

inter-wire crosstalk characteristics than

types L2.TWXY and L3.TWXY) is

is routed orthogonally in channels (between via points} it is wrapped

and 3. Point-to-point-twisted-pair (wire types L2.TWPP and

L3.TWPP) is routed in a straight line between the nodes it connects, and contains

enough slack to hang somewhat lmsely out of the region populated by the wire-wrap

pinx it is used for long wires to remove wire bulk from the channels.

Wire type WPCBLW is woven-pair cable wire used to interconnect board$ a

cable contains 25 pairs.

In genera~ the various wire types used on a board must be applied in some

particular order (i.e., in wire-wrap steps), because of operational constraints in the

wire-wrapping process having to do with wire-wrap machine tolerances, mat buildup,

and wire-level conflicts. For example, all lower-level wires on a board are usually

applied before any

wires are applied

higher-level wires are. Furthermore,

using a fully automatic wire-wrap
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tolerances on the positions of pins. Since the application of twisted-pair using a

semi-automatic machine invariably mis-aligns some pins beyond the tolerances of the

fully automatic machine, all single wires must be applied before any twisted-pairs are.

Table 3.5-1 shows the order of application used for the wire types of the S-1 Mark HA.

Within a wire type, application order is not important in the context of this discussion.

UiroTypo

L1.SUXY
L2. SUXY
L1. UUXY
L2. UUXY
L2.TUXY
L3. TUXY
L2. TUPP
L3. TUPP
IJPCBLU

UIro-lhp
stop

1
1
1

i
3
4
5

Descr Ipt ion

Low l-l sing In uiro routod orthogona I Iy
LOVOI-2 singls nira routed orthogonal Iy
Lovol-l untu istad-pa ir uiro routod orthogona I [y
LovoI-2 unt~ istod-pa ir uIra routad orthogona I Ig
LavaI-2 tu istod-pa ir uira routad orthogona I Iy
LovaI-3 tuistad-pa ir uIra routad orthogona I Ig
Laval-2 t~istad-pair b!iro routod point-to-point
Loval-3 tuiotod-pair Nlro routad point-to-point
Uovan-pa ir cabla uira

Table 3.5-1

Wire Types Used in the S-1 Mark IIA Processor

Any wire-type assignment chosen must be physically realizable, in the sense that if

segments W* and W2 are adjacent, and W, is applied in an earlier wire-wrap step than

W2, then W ~ must be at a lower wire level than Wz Also, no adjacent wires can be at

the same level. Furthermore, the level of each wire must be no greater than the level of

the wire-wrap pins to which it connects. These constraints explain why the wire types
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used in the S-1 Mark IIA place twistd-pairs at levels two and three instead of the

traditional levels one and two, and why the S-1 Mark IIA boards contain !3-Ievel

wire-wrap pin% wherever a single wire at level two is adjacent to a twisted-pair, the

twisted-pair cannot be placed at level one because it must be applied after the single

wire.

Another constraint on the wire-type assignment is that if some node of a chain

has no shield pin available nearby, then any segments adjacent to that node cannot be of

a shielded wire-type (see Section 3.6). This constraint is particularly important on boards

such as the ECL- 100K board used in the S-1 Mark IIA, where every shield pin is

dedicated to some signal pin, and no free shield pins exist.

Still another constraint on the wire-type assignment is that any segment adjacent

to a shielded cable wire must also be shielded. This constraint guarantees that the shield

side of the cable wire will be connected to the shield plane on both ends, and can be

ignored if the shield side of the cable wire is permanently connected to the shield plane.

A final constraint on the wire-type assignment is that a differential net must

contain shielded wires throughou~ the true signal connects to one side of the shielded

wires, and the complementary signal connects to the other side of the shielded wires.

After all these constraints have been taken into consideration, a good wire-type

assignment must attempt to control both inter-wire crosstalk and wire-mat thickness.

Because of the difficulty of predicting the exact amount of inter-wire crosstalk in a net,
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and of predicting the exact amount of wire mat at any point of the board, our algorithm

is based on averages of inter-wire crosstalk and wire mat across an entire board, and on

the contributions of any given wire-type assignment to these averages, i.ea the crosstalk

contribution and wire-mat contribution of a wire-type assignment. We have found that

control of the average crosstalk and wire mat gives adequate control of the worst case

crosstalk and wire mat as well.

To flwther complicate the

the S-1 Mark I and S-1 Mark

problem of wire-type assignment, our experience with

IIA processors has shown that when a skilled human

assigns wire types in a way to effectively manage both the inter-wire crosstalk and wire

mat thickness the assignment of a wire type to any segment in a given net depends upon

the assignment of wire types to the other segments in the net.

Therefore, our algorithm simply attempts to mimic the behavior of a person doing

wire-type assignment, and provides the appropriate input parameters and feedback so

that the designer can evaluate and tune the performance of the algorithm. Nevertheless,

the algorithm does have a formal core (described below) which could be interfaced to

different heuristics than were actually used in this investigation.

A novel feature of the algorithm discussed here (and of the models of wire types

upon which it depends) is that it does not depend on the existence of any particular set

of wire ty~ in the SCALD System, wire types are designed to be easily redefined by

the user. For example the user might define a set of wire types consisting of only

twisted-pair and coaxial wire, and he could easily tune the wire-type-assignment
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parameters so these wire types would be well-assigned, according to his own standards.

%5.1 Detailed Description

Assume that, given the positions of the nodes on the end of a segment, and given

the wire type of the segment, we can compute the length of any segment. In general, a

simple, wire-type-specific algorithm is required to compute segment lengths for each wire

type. For example, a special algorithm computes the length of channeled twisted-pair by

searching for a path through channels.

After cable-wire assignment and terminator assignment, each net may have gained

nodes, but they will still form a chain. There are a great many possible assignments of

wire types to a typical chain. For example, if each segment might be assigned any of

eight wire types, then there are 2% possible assignments of wires types to a 12-segment

chain.

Of course, some of these assignments are obviously illegal, because they violate one

or more of the constraints on wire-type assignments. For example any assignment is

illegal which contains adjacent segments violating the application-order constraint.

However, it is infeasible even to investigate all legal wire-type assignment% even if they

could be generated in isolation.

-112-



But the information contained in a complete assignment is far more than we could

possibly evaluate in a practical algorithm which considers inter-wire crosstalk and wire

mat. Certainly a skilled human does not consider the differences between all legal

assignments in doing manual wire-type

Our algorithm is

human-equivalent crosstalk

each legal assignment only a

therefore

assignment.

based on the important assumption that

and wire-mat control can be obtained by considering for

measure of the total crosstalk contribution and a measure of

the total wire-mat contribution for the chain, and by ignoring the order of segments

within the chain, and the positions of segments on the board. (In fact, considering the

positions of relevant nearby segments other than those in the current net would be

difficult since nets are necessarily processed sequentially.) In particular, the total measure

of crosstalk contribution by which this determination is made is taken to be the sum of

the crosstalk contribution for each segment, and similarly for the total measure of

wire-mat contribution.

Thus our algorithm does not take into account local deviations from the average

wire-mat density. However, we believe that a wire-type-assignment algorithm which did

so, and could thereby smooth out the peaks of the wire-mat distribution, would be quite

useful.

Under this assumption, any wire type is completely characterized by its crosstalk

contribution as a function of wire length, along with its wire-mat contribution as a
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ftmction of wire length, for the purposes of this algorithm; the SCALD System allows

the user to specify these functions for each wire type. It is important to note that, since

the wire-type-assignment algorithm deals only with these abstractions of wire types, it is

independent of any specific set of wire types.

Our assumption has been confirmed by observing human performance at

wire-type assignment. During manual wire-type assignment, a skilled human invariably

first computes two parameters of a legal assignment: the crosstalk contribution, and the

wire-rhat contribution. He then either accepts the assignment or re~s itbased on those

measures. Our assumption has also been confirmed by manual examination of the

automatic wire-type assignments after tuning of the algorithm’s parameters.

Thus, there is reason to believe that crosstaIk contribution and wire-mat

contribution can each be considered to be additive on a segment-by-segment basis,

independent of the order of segments. This assumption makes the wire-type assignment

problem amenable to a dynamic-programming solution.
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3.5.1.1 Algorithm WT1 - The Formal Core

Suppose that we are assigning wire types to the N~ segments of a chain. Starting

at one end of the chain, we will build partial assignment% proceeding segment by

segment. Let the length of a wire of type w assigned to segment i be Lw(i~.

We

wire-mat

define a wire-mat-contribution function for each wire type such that the

contribution of a segment of length L and type w is MW(L). Hence, the

wire-mat contribution resulting from assigning a wire of type w to segment i is just

MJLW(i)). The total wire-mat contribution of a chain will be the sum of the wire-mat

contributions of the individual segments of the chain.

function for each wire type such that theWe define a crosstalk-contribution

crosstalk contribution of a segment of length L and type w is XJL). Hence, the

crosstalk contribution resulting from assigning a wire of type w to segment i is just

Xw(Lw(i)). The total crosstalk contribution of a chain will be the the sum of the

crosstalk contributions of the individual segments of the chain.

We define a maximum total crosstalk contribution, Xmu; we will automatically

m~ any assignment having total crosstalk contribution greater than XmU. Dividing

the range from O to Xmu into NX equal crosstalk inrervah, we assume that the value of
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the function X is a crosstalk-interval index, calculated by rounding. For now, we assume

that NX is large enough so that rounding errors are negligibl~ we return to verify this

assumption.

We define a (symmetric) adjacency matrix, A[w1,w21, such that if w, and W2are

wire types, then A[w *,w21is true if and only if a wire of type w~ can legally be adjacent

to a wire of type Wz

We define an array, W[i], lsisN$ such that W[i] is the set of all legal wire types

for segment i, considering all constraints on the wire-type assignment except adjacency

constraints. For example if the net under consideration is a differential net, then every

element of W would be a set containing only shielded segments, and if some wire-wrap

pins in the chain were only two-level pin~ then the corresponding elements of W would

contain only wires with level no greater than two.

Consider an array C[i,w,xl where i is a segment number, w is a wire type, and x is

the index of a crosstalk interval. We will show how to compute the values of the array

C such that C[i,w,x] is the lowest attainable total wire-mat contribution of the wire-type

assignment extending from segment 1 to segment i, inclusive, such that segment i is

assigned wire-type w, and the total crosstalk contribution of the assignment lies within

the crosstalk interval x. The elements of C are defined to be infinite if no such

assignment exists.

We begin by setting all elements C[ZW,X]to infinity. Then, we compute the values
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of the elements of C corresponding to segment

set

1. Specifically, for each wire type, w, we

C[l,W,XW(LW(l))I= MW(LW(l)).

Now, for each i’=i+1, we simply compute the elements of C corresponding to

segment i’ on the basis of the elements of C corresponding to segment i. Specifically, to

compute C[i’,w’,x’]for a particular wire type w’ and crosstalk-interval x’, we let

x =x’ - Xwt(LwJi’)). (3.3-1)

Now, let S be the set of all wire types, w, such that A[w’,wl is true and weW[i’1. If S is

empty, then we let C[i’,w’~’] be CID,otherwise we compute as follows:

(x z O) C[i’,w’,x’l= minwJMw4Lw4i’))+C[i,w,x])

(x < O) C[i’,w’,x’l= ~

(3.3-2a)

(3.3-2b)

Minimizing CINSW,XI over all wire types yields C*[xl, the minimal wire-mat

mntribution for any legal assignment of all N~ segments having a total crosstalk

contribution in crosstalk interval x. It is possible for any or all of the elements of C* to

be infinite, indicating that no such legal assignment exists. (In the subsequent discussion,

we will assume that some legal assignment exists.) If, during the computation of (3.%2),

we record a w which minimizes that expression in a backtr~ing ~ray Bh’,w’tx’l then

we can trivially construct an actual wire-type assignment corresponding to any particular
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element C*[xl.

It is remarkable that the complexity of computing the optimal assignment for all

crosstalk intervals is linear in the number of segments. If there are NW wire types, then

computation of (3.S-2) requires NW operation$ thus, the entire computation of C*[x] for

all x requires N~NXNW2 operations. The memory requirement is linear in N& N~, and

‘x

The power of this technique derives from the fact that it considers only a finite

number of crosstalk interval% it cannot distinguish between partial assignments which

have different crosstalk contributions but, because of rounding error, fall within a single

crosstalk interval. In fact, if the crosstalk interval is computed by rounding, then the

computation of (3.3-1) can introduce an error as large as half the crosstalk intervat i.e.,

the assignment corresponding to C[ l,w,xI might actually have a crosstalk contribution as

large as X+E, where c is half the crosstalk interval, and the assignment corresponding to

C*h] might really have a crosstalk contribution in error by as much as N~E.
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3.5.1.2 Algorithm WT2 - Heuristics

Algorithm WT 1 computes, for each of NX crosstalk intervals, the legal wire-type

assignment which minimizes the wire-mat contribution. We still must select the best

assignment from these NX candidates. We have developed a heuristic algorithm which

mimics human behavior at this task.

Let A and B be two candidate complete wire-type assignments for the N~

segments of the chain. Let WA and XA be the total wire-mat contribution and total

crosstalk contribution of legal assignment A, respectively, and similarly for legal

assignment B. We say that A is better than B if and only if A has a smaller wire-mat

contribution than B, and A has a greater crosstalk contribution than B, and the decrease

in wire-mat contribution is more than a positive, user-defined factor times the increase

in crosstalk contribution, i.e.,

WB-W* > (XA-XB) s F(XA),

where F is an arbitrary, positive, user-defined function of crosstalk contribution. If F is

constant, then the algorithm always trades off crosstalk contribution at the same rate

against wire-mat contribution. If F increases with crosstalk contribution, then the

algorithm resists adding to the crosstalk contribution of the best assignment more
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strongly as the crosstalk contribution increases; it does so by requiring a larger

wiremat-contribution payoff to justify a unit increase in crosstalk contribution.

3.5.2 Experience

Evidence from actual operation indicates that rounding errors were not a

significant problem. We measured the rounding error in the crosstalk contribution of

each selected assignment by subtracting its actual crosstalk contribution from its rounded

crosstalk contribution (i.e., the crosstalk contribution corresponding to its crosstalk

interval in the C array). Table 3.5.2-1 shows the distribution of rounding errors, as a

fraction of the crosstalk interval (for NX=40).

h actual operation, constraints on wire-type assignment reduce the number of

wire-type pairs which need to be investigated for each segment. Also, since the C array

is very sparse for the first few segments, the algorithm can be optimized not to explore

sub-arrays containing only infinite values. Furthermore, the algorithm often finds x<O

in the computation of (3.3-2). Because of these considerations, we found that for NX=40

and NW=9, the algorithm performed only 131.5 comparisons (i.e., the primitive operation

inside of 3.3-2a) per segment, averaged over all nets in the S-1 Mark IIA 4108-Chip

Example, instead of the the upper bound of (40)(9)(9)= 3240.
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We found that assigning wire types required a significant, but not overwhelming,

portion of the total time required to process nets. On the average, assigning wire types

to a net required 84.5 ms, or 24.5% of the total time required to process a net. The

largest chain, having 16 segments, required 338 ms.

Tables 3.5.2-2 through S.5.2-10 show the distribution of lengths produced by our

algorithm for each type of wire in the S-1 Mark IL4 4108-Chip Example.
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Error
Intervals

< -2.5
-2.5
-2.0
-1.5
-1.0
-0.5

0.0
0.5
1.0

;:$

>=
2.5
3.0

Count

0
1

1;2
1019
3402
4299
1594
427
283

12
3
0

Count
Fraction

0.000
0.000
0.001
:.Ol;

0:303
0.383
0.142
0.038
0.025
0.001
0.000
0.000

Cumulative
Count

Fraction

0.000
0.900
0.001
0.016
0.106
0.410
0.793
0.935
0.973
0.999
1.000
1.000
1. Ooa

Error
Fraction

0.000
0.000
0.005
0.038
0.145
0.173
0.218
0.221
0.100
0.093
0.005
0.002
0.000

5048.829 ❑ Sum of error (magnitudes)
11213 ❑ Sum of number

-2.167 = Minimum error
0.450 = Average error {magnitude)
2.867 = Maximum error

Cumulative
Error

Fraction

0.000
0.000
0.006
0.044
0.189
0.362
0.580
0.800
0.800
0.993
0.998
1.000
1.000

Table 3.5.2-1

Rounding Errorin Crosstalk Contribution of Wire-Type Assignments
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Inahes

< 0.0
0.0
0.5
1.0

Count

0

856%!
4859
~;

961
50 I
425
459
1;:

0

Count
Fraction

0.000
0.000
0.362
0.205
0.282
0.046
0.041
0.021
0.018
0.019
0.006
0.001
0.000

Cumulative
Count

Fraction

0.000
0.000
0.362
0.567
0.848
0.894
0.935
0.956
0.974
0.993
0.999
1.000
1.000

Inches
Fraction

0.000
0.000
0.200
0.171
0.326
0.067
0.071
0.045
@.045
0. 05S
0.018
0.003
0.000

35218.018 = Sum of inches
23670 = Sum of number

;.8& = Ninimum inches
= Average inches

5:000 = Maximum inches

Table 3.5.2-2

Length Distribution forLISWXY Wire
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Cumulative
Xnohes

Fraction

0.000
0.000
0.200
0.371
0.696
0.764
0.834
0.880
0.924
0.979
0.987
1.000
1.000



Inches Count

< 0.0 0
0.0
0.5 263;

3823
i:: 7448

1175
R 768
3.0 48
3.5 0>=

Count
Fraction

0.009
0.000
0.165
0.245
0.466
0.073
0.048
0.003
0.000

0.000
0.000
0.165
0.410
0.876
0.949
0.997
1.000
1.000

:444.759 = Sum of inches
= Sum of number

0.800 = Minimum inches
1.S28 = Average inches
3.000 = Maximum inches

Inohes
Fraction

0.009

::%!
0.197
0.520
0.103
0.082
0.006
0.000

Cumulative
Inohes

Fraction

0.000
0.000
0.092
0.289
0.809
0.912
0.994
1.000
1.000

Table 3.5.2-S

Length Distribution for L2.SWXY Wire
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Inohes

( 0.0
0.0
0.5
1.0

;:2
2.5
3.0
3.5

Count

0
0

1:

lE
122
150
110
143
70
12
0

Count
Fraction

0.000

::%%
0.016
0.030
0.171
0.158
0.194
0.142
0.185
0.090
0.016
0.000

Cumulative
Count

Fraction

0.000

U%
0.016
0.045
0.216
0.373
0.567
0.709
0.894
0.984

i:%%

Inohes
Fraction

0.000

::%
0.006
0.017
0.114
0.129
0.188
0.159
0.235
0.129
0.024
0.000

25s;.200 = Sum of inches
= Sum of number

1.100 = Minimum inches
3.297 = Average inches
5.000 = llaxirnvm inches

Table 3.5.2-4

Length Distribution for L1.UWXY Wire

-125-

Cumulative
Inches

Fraction

0.000

::%%
0.006
0.023
0.137
0.266
0.454
0.613
0.848
0.976
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<

>=

Count
Inohes Count Fraction

0.0 0 0.000
0.0 0 0.00a
0.5 0 O.ww
1.0

4:2
2.5
3.0

#

44
6

0.006
0.205
0.488
0. 26S
0.036

3.5 0 0.000

Cumulative
Count

Fraction

0.000
0.000
0.000
0.006
0.211
0.699
0.964
1.000
1.000

y&0t3 = Sum of inches
= Sum of number

1.400 = Minimum inches
2.245 = Average inches
3.000 = Maximum inches

Table 3.5.2-5

Length Distribution for L2.UWXY Wire
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Inches
Fraction

0.000
0.000
0.000
0.004
0.152
0.484
0.312
0.048
0.000

Cumulative
Inches

Fraction

0.000
0.000
0.000
0.004
0.155
0.640
0.952
1.000
1.000

-.



Inches
Count

Count Fraction

0.000f22 0.204
0.121

378 0.238
363 0.229
223 0.141

50 0.032
: 0.028

0.007
2 0.001

0.001
i 0.000

Cumulative
Count

Fraction

0.000
0.204
0.325
0.563
0.791
0.932
0.963
0.991
0.998
0.999

%%

Inches
Fraction

0.000
0.150
0.105
0.231
0.2s0
0.168
0.042
0.040
0.011
0.002
0.001
0.000

~$.600 = Sum of inches
= Sum of number

3.000 = Minimum inches
4.298 = Average inches
7.600 = Maximum inohes

Table 3.5.2-6

Length Distribution for L2.TWXY Wire
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Cumulative
Inches

Fraction

0.000
0.1s0
0.2S5
0.486
0.736
0.905
0.946
0.986
0.997
0.999
1.000
1.000



Count
Inches Count Fraction

< 3.0 0 0.000
3.0
3.5
4.0
4.5
5.0

:::
6.5

0.189
0.1s0
0.121
0.118
0.402
0.005
0.016
0.000

0.000
0.189
0.339
0.460
0.577
0.979
0.984
1.000
1.000

2:;;.400 = Sum of inches
= Sum of number

3.000 = Minimum inches
4.423 x Average inches
6.200 = Maximum inches

Table 3.5.2-7

Inches
Fraction

(p&

0:125
$ ;;:

0:462
0.006
0.023
0,000

Cumwh::

Fraction

0.000
0.142
0.267
0.383
0.509
0.971
0.977
1.000
1.000

Length Distribution for L3.TWXY Wire
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Inohes

< 6.0
6.0
7.0
8.0

1;::
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0

E::
22.0
23.0
24.0

>= 25.0

Count
Fraotion

0.000
0.019
0.088
0.166
0.100
0.366
0.041
0,031
:.:3;

0:003

R%
0.0s0
0.034
0.012
0.000
0.000
0.000
0.003
0.000

Cumulative
Count

Fraction

0.0(30
0.019
0. i06
0.272
0.372
0.737
0,778
0.809
0.828
0.844
0.847
0. 8S3
0.900
0.950
0.984
0.997
0.997
0.997
0.997
1.000
1.000

Inohes
Fraction

0.000
0.011
0.059
0.127
0.083
:.34;

0:034
0.023
0.020
0.004
0.009
0.072
0.082
0.059
0.022
0.000

U%
0.007
0.000

360#00 = Sum of inches
= Sum of number

= Minimum inches
1::%? = Average inches
24.O@O = Maximum inches

Table 3.5.2-8

Length Distribution for L2.TWPP Wire
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CumulatiYe
Inches

Fraotion

0.000
0.011
0.070
0.197
0.280
0.627
0.668
0.702
0. 72S
0.745
0.749
0.758
0.830
0.912
0.971
0.993
0.993
0.993
0.993
1.000
l.m



16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0

>E 24.0

Count

12:
623
785

1250
606
565
364
308
286
f;:

129
88
67
79

:;
17

;

Count
Fraction

0.000
0.022
0.108
0.136
0.216
0.105
0.098
0.063
0.053
0.049
0.037
0.023
0.022
0.015
0.012
0.014
0.014
0.010
0.003
0.000
0.000

Cumulative
Count

Fraction

0.00(3
0.022
0.129
0.265
0.482
0.586
0.684
0.747
0.800
0.850
0.887
0.911
0.933
0.948
0.860
0.973
0.987
0.997
1.000
1.000
1.000

5:;;;.200 = Sum of inches
= Sum of number

5.200 = Minimum inches
10.233 = Average inches
23.400 = Maximum inches

Inohes
Fraction

0.000
0.012
0.069
0.098
0.176
0.095
0.099
0.070
0.065
0.065
0.052
0.035
0. Q36
0.026
0.021
0.026
0.027
0.021
0.006
0.000
0.000

Cumulative
Inches

Fraction

0.000
0.012
0.081
0.179
0.355
0.451
0.550
0.620
0.685
0.749
0.802
0.837
0.873
0.899
0.920
0.945
0.973
0.993
1.000
1.000
1.000

Table S.5.2-9

Length Distribution for L3.TWPP Wire
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<

Inches

4.0
4.0
6.0

1:::
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0
56.0
38.0

Count

0

1%
0
0
0
0
0
0
0
0
0
0

31:
0

3?
0

Count
Fraction

CJ.O&

0:705
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.OWl
0.000
0.000
0.171
0.000
0.000
0.020
0.000

4

1

1

i

Cumulative
Count

Fraction

0.000
0.104
0.809
0.809
0.809
0.809
0.809
0.809
0.809
0.809
0.809
0.809
0.809
0.809
0.980
0.980
0.980
1.000
1.000

sum of inches
Sum of number

Minimum inches
Average inches
Maximum inches

Table 3.5.2-10

Length Distribution for WPCBLW Wire
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Inches
Fraction

0.000
0.048
0.408
0.000
0.OQO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.476
0.000
0.000
0.068
0.000

Cumulative
Inches

Fraction

0.000
0.048
0.4S6
0. 4S6
0.456
0.456
0.4S6
0.4%
0.456
0.456
0.456
0.456
0.456
0.456
0.932
0.932
0.932
1.000
1.000



3.6 ASSIGNMENT OF SHIELD PINS

Every shielded segment (e.g., a twisted-pair) in a non-differential net needs to

have its shield wire wrapped to a shield pin on each end. After wire-type assignment

has determined which segments are shielded, it is reasonable to consider the selection of

those shield pins.

In order to reduce the signal-shield wire spread at the end of the shielded wire

(which can contribute significantly to manufacturing cost and result in both electrical

and mechanical unreliability), it is desirable for the shield pin to be as close as possible

to the signal pin. Typical wire-wrap systems provide a large number of shield pins

distributed uniformly over the board$ this strategy makes it likely that a shield pin will

be located near any given signal pin.

Wir-wrap board designs do not always provide a dedicated nearby shield pin for

every signal pin, since usually only a small fraction of the segments on a board are

shielded. However, to handle boards with dedicated shield pins, the SCALD System

allows the designer to dedicate any particular shield pin to any signal pin when he

defines a board. Whenever a shielded segment is wrapped to such a signal pin, the

dedicated shield pin is used for the shield wire (in order to ensure that the shield pin is

available if needed, it is never used with any other signal pin).

Wherever shielded segments are adjacent in a chain, it is permissible for the

segments to share a shield pin, just as the segments share a signal pin. In this case, the
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shield wire is wrapped at the same level as the signal wire. Sharing shield pins between

non-adjacent segments is not permitted because it may lead to difficulties in removing

wires (i.e., if such sharing is permitted, then when making a logic change that requires

removing a shielded wire, it may be necessary to remove unrelated wires in order to

access the end of a lower-level shield wire on a shared shield pin).

Given a fixed signal pin which requires a shield pin nearby, and barring the

possibility that a dedicated shield pin can be used, or that a shield pin from an adjacent

segment can be used, the problem of shield-pin assignment is simply one of choosing the

closest available shield pin. Although locating the best unused shield pin is relatively

simple, the number of twisted-pair wires in a large digital system precludes manual

shield-pin assignment.

!).6.1 Detailed DescriMion

Our algorithm for shield-pin assignment is the same as for terminator assignment,

since both problems require finding a nearby wire-wrap pin, and since the problem of

depletion in “mrners” is similar. The designer is permitted to specify a “cen@r point” for

shield-pin assignment in each area of the board definition; we simply sample each

wire-wrap pin of the board, in order of increasing distance measured orthogonally from

the signal pin, and we select the one closest to the “center point” from the set of pins

-133-

.



closest to the signal pin.

3.6.2 Experience

In the S-1 Mark HA 4108-Chip

per 16-pin socket on the 11 ECL-1OK

solder clips be installed to connect other

Example, at least 10 shield pins were provided

boards. Some integrated circuits required that

pins to the shield plane, and on the average this

contributed an additional 0.6 shield pins per ECL- 10K DIP on ECL- 10K boards. On

the one ECL- 100K board, at least 21 shield pins were provided per 24-pin socket, and

every such shield pins was dedicated for use with one of the 21 non-power pins of an

integrated-circuit socket.

The parameters controlling the wire-type assignment algorithm have a significant

effect on how many shield pins are required; if the parameters cause a large number of

shielded wires to be used then, of course, a

If we consider only those non-dedicated

large number of shield pins will be

shield pins in populated sockets

required.

as being

“available,” then with the parameters set to their final values, only 27.2%of the available

shield pins were assigned.

Just as with terminators, we found that local depletion of shield pins occurs quite

rapidly as the density of available shield pins approaches the minimum density
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necessary.

The amount of computation time required for the assignment of shield pins using

this algorithm was quite small, relative to the total amount of time required to process a

net. On the average, with the wire-type-assignment parameters set to their final values,

1.6 ms were required to find a single non-dedicated, non-shared shield pin, and this

represented only 0.5%of the total time required to process a net. On the average, 1.8 ms

were required to find all non-dedicated, non-shared shield pins for a net, and this

represented only 0.5%of the total time required to process a net.

Figure 3.6.2-1 shows the distribution of orthogonal distances to assigned shield

pins on a typical board of the S-1 Mark IIA 4108-Chip Example, with the

wire-type-assignment parameters set to their final values.
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Inches

0.0
0.0
0.1
0.2

%:
0.5
0.6
0.7

:::
1.0

>= 1.1

Count

0

720:
4693

530
337
105
23

1:
0

;

Count
Fraction

@.000
0.000
0.558
0.363
0.041
0.026
0.008
0.002
0.001
0.001
0.000
0.000
0.000

Cumulative
Count

Fraction

0.000
0,000
0.558
0.921
0.962
0.988
0.997
0.998
0.999
1.000
1.000
1.000
1.000

2036.900 = Sum of inches
12919 = Sum of number

0.100 = Minimum inches
0.158 = Average inches
1.000 = Maximum inches

Inohes
Fraction

0.000
0.000
0.354
0.461
0.078
0.066
0.026
0.007
0.003
0.004
0.000
0.001
0.000

Cumulative
Inches

Fraction

0.000
0.000
0.354
0.815
0.893
0.959
0.985
0.991
0.995
0.999
0.999
1.000
1.000

Table 3.6.2-1

Shield-Pin Assignment Distanms
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S.7 )X3TIMATIOIU OF IIUTERCONNECTION DELAYS

In a high-performance digital system using ECL SS1 and MM logic,

interconnection delays are significant compared with component delays. Thus, in order

to perform accurate timing verification of such systems, it is necessary to estimate the

interconnection delays of the nets which the system designs, and to report upper and

lower bounds on those delays back to the next iteration of timing verification.

The &/ay of a chain from some output to some input is basically the time required

for the output waveform to reach the input. More formally, we define this delay to be

the amount of time elapsed from when the unloaded-output waveform would have

reached 50%of its transition to when the input node under mnsideration actuaIly reaches

50%of its transition.

The delay of a chain from some output to some input can vary greatly depending

upon the types of nodes in the chain, the order of nodes in the chain, the distances

between nodes in the chain, the wire types, and the values of the terminations.

There has been a great deal of work on the problem of accurately simulating the

behavior of electrical networks, especially networks of the simple kind with which we are

concerned; such networks can be modeled satisfactorily as one or more outputs driving a

segmented transmission line containing lumped resistive and capacitive loads ~1721

In fact, during this investigation we implemented two
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programs which performed detailed simulation of these networks in response to output

waveforms. Our first program symbolically integrated the transmission-line equations,

using heuristics to prune the solution to a manageable number of terms [MW78bl. Our

second program was a straightforward time-domain integration. Neither program

proved to be adequate for estimating interconnection delays in large digital systems.

One mapr problem with the simulation approach was that developing a solution

for a typical network required on the order of a second of S- 1 Mark I CPU time, which

was far too great to allow every network of the S-1 Mark IIA design to be analyzed

during each packaging run. However, it should be noted that simulation can be

practical for small digital systems, or for large digital systems when used only as a final

check.

A second ma~r problem was that various uncertainties in the physical parameters

of a network (for example, the per-unit-length propagation delays of the various wire

types, and the magnitudes of the lumped capacitive loads) cause the results to be

inaccurate, and automatically estimating useful bounds on the inaccuracy in such a

simulation is a difficult problem.

Fortunately, most of the information produced by detailed simulation of these

networks is superfluous for the purpose of timing verification, All the information that

is required in order to do timing verification is, first, an assurance that the waveform

observed by any input is reasonably clean (i.e., nearly monotonic in time, and having

reasonably large slope) and, secondly, upper and lower bounds on the delay from any
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output to any input. This information can be generated quite easily for chain networks.

Certifying that the waveform is clean involves simply examining the chain to see

if the lumped capacitance in any interval can cause an unacceptable reflection to occur.

If such a reflection can occur, then the net is simply flagged as an error, and the problem

must be corrected by changes in the logical design or component placement.

In the remainder of this section, we consider how to simply bound the delay of a

chain. We will assume that the network is free of severe reflections, e.g., properly

terminated.

3.7.1 Detailed DescriMion

We will first consider how to determine an upper bound on any output-to-input

delay. Because we assume that there are no severe reflections, the delay to the most

distant input in a given arm must be greater than the delay to any other input in the

same arm, and the waveforms in the two arms must be independent. Therefor% to

compute this upper bound, we need only compute the maximum delay from any output

to each of the two most distant inputs (one in each arm).

In order for the computation to be simple, we would like it to be independent of
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the distribution of the loads. There are two Iossless-transmission-line models which do

not depend upon the distribution of the loads: the distributed model assumes that the

loads are perfectly distributed along a transmission line, and the lumped model assumes

that they are all lumped at the end of a long transmission line. In both of these models,

we will assume that the transmission-line characteristics of the segments of the chain are

the same, which is

unacceptably large.

roughly required anyway by our assumption that reflections are not

Let TO be the per-unit-length propagation delay of the unloaded chain, let CO be

the per-unit-length distributed capacitance of the unloaded chain, let 20 be the

characteristic impedance of the unloaded chain, let L be the length of the chain between

the output and the load being

loads between the output and

characteristic time CLZ~2.

In the distributed model,

considered, and let CL be the total capacitance of all the

the load being mnsidered, inclusive. Define T to be the

the delay does not depend upon the shape of the driving

waveform. The delay from a given output to the most distant load in an arm is [B1721

D = TOL . (1+CLI(C+))112,

and a convenient upper bound on this delay is

D < TOL . (1 + CLl(2C&)) = TOL + CL “ (T@C~).

-14)-
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INoting that, for lossless transmission lines, T~ ~ - Z@ we can rewrite this upper bound

as

D < T& + CLZOL? = TOL + T. (3.7-1)

This upper bound is also reasonably accurate for typical values of physical

parameters in the S-1 Mark IIA 4108-Chip Example. In that case, TO is about 0.1

nslinch, ZOis about 100 ohms, and loads (typically 4 pf including the wire-wrap pin) are

distributed at an average of about one per 3 inches. Hence, CLI(COL) is typically about

1.3, and the upper bound is (typically) overly conservative by about 10%. The greatest

inaccuracy occurs for very short chains, and D approaches this upper bound

asymptotically as L increases and CL remains bounded.

In the lumped model, we might assume that the output waveform is a step

fhnction. In this case, the lumped load then behaves like a capacitor charging with

time-constant T, and reaches 50%of its transition at time

D= T++ 0.69 *T. (3.7-2)

Now, if we assume that typically about half the delay is capacitive (which is

approximately correct, in the S-1 Mark IIA 4108-Chip Example), then the upper bound

given in (3.7-1) is (typically) overly conservative by about 20%,according to this model.

The relative error goes to zero as L increase% just as it does in the distributed model.
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Of course, the output voltage waveform is not a step function, but is more closely

approximated by an exponential of the form

where VO and K are constants. In

VO(l - e-t/K),

the lumped model, if the output voltage wave has

this form, then the delay in (3.7-2) is attained only for lIK>sT, or for K>zT. For K-T,

the waveform at the lumped load is

V(t) = Vo( 1- e-tlT - (t/T)e-tiT).

Solving V(t) = V~2 numerically, and subtracting from that solution the time required

for the driving waveform to reach its 50%point, we obtain the delay for the lumped

model, i.e.,

D = TOL + 0.99 ● T,

which, coincidentally, is remarkably close to the delay for the distributed model.

Therefore, in both the distributed and lumped models, a good upper bound on the

delay is of the form

TOL + aCL,
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where a is a constant.

Of course, the approximations that we have made become invalid for very short

chains, very large

within the region

these parameters.

lumped loads, or mis-matched transmission-line characteristics. Even

of validity, the value of the “best” constant a varies, depending upon

Therefore, in the SCALD System, the designer is allowed to specify a,

as well as another additive constan~ (1,for each net type, so that he can adjust the delay

estimator to agree well with laboratory experiments in the domain of interest to him. He

is also allowed to specify upper and lower bounds on per-unit-length propagation delay

for each wire type. To find the upper-bound of the delay of a chain, we find the

maximum (for the most distant input in each arm, based upon each output) of

DW+aCL+&

where DW is the sum of the mmimum prop@on delays of wires between the output

and the input, CL is the total lumped cap~t~ce between the outPut ~d the inPutD

inclusive, ad a and (1are constants.

Since the two arms of a chain enclose all the nodes of the chain, and thus all of its

lumped capacitance, this method of estimating delay leads to the fortunate result that the

chain length is a linear function of the sum of the arm delays independent of the order

of the nodes in the chain. (We also made use of this result in creating minimum-delay

chains in Section $.2).
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A reasonable lower bound on the delay from any output to any input is trivial to

generate: we use simply the minimum of any minimum wire delay between an output

and an adjacent input.

$.~.2 Experience

In the laboratory, we measured actual chain delays in special chains having both

lumped and distributed inputs, both near an ECL-1OOK output and far from the output.

For these cases, we found that a = (100 ohms)12 = 0.050 nslpf, and (3 = 0.25 always

yielded reasonable but conservative chain-delay estimates.

The capacitive component of chain delay proved to be significant, relative to total

chain delay, i.e., 49.3% of the chain delay, on the average. Table 3.7.2-1 shows the

fraction of the chain delay which was due to the lumped capacitance, for all nets in the

S-1 Mark IIA 4108-Chip Example (using default lead capacitances of 4 pf).

The detailed delay estimates produced by the Packager proved invaluable in

timing verification. The initial logical design was timing-verified by assuming that all

interconnections had delays in the range 0.5 to 2.0 ns, except for ones specially marked

by the designer. The first time that the Timing Verifier ran using delays estimated by

the Packager, 221 new timing errors were reported.
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Timing verification using actual estimated delays turned out to be a very effective

tool for finding problems with the placement of components. In the SCALD System, the

high-level planning of the component-placement (e.gm the development of a global

strategy, the partitioning of components into clusters, and the placement of those clusters)

is accomplished manually, and it is practically impossible for the designer to keep track

of the huge number of timing constraints which should influence the placement in a

large digital system. We found that timing verification based on estimated delays was an

ideal technique for highlighting the timing constraints which had been neglected during

component placement. We also found that the Packager’s rapid throughput rate

supported an iterative style of improving the component placement in each iteration we

would simply inteHigently perturb the component placement to correct the most serious

timing errors, and would then run the Layout Program and Packager again.

Relative to the uncertainty in the propagation delay bounds of ECL MSI

components, the typical over-conservatism of our estimator was not large. Furthermore,

timing verification is essentially just a filter for discovering situations needing further

investigation. Usually, there is an easy solution to a timing problem based on perturbing

the component placement, though in some cases the logic design may need to be changed.

Where no other easy solution is evident, and a particular set of wire delays are suspect,

then a test can be performed in the laboratory, and actual wire delays can be input into

the Timing Verifier to override those estimated delays.

Table 3.7.2-2 shows the actual minimum delays calculated for all chains in the S-1
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Mark IIA 4108-Chip Example. Table 3.7.2-3 contains the maximum delays and Table

3.7.2-4 displays the skews (all using default lead capacitances of 4 pf).
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<

Peroent

0.0
0.0

1:::
15.0

20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

>= 100.0

Count

(3
o

2:
424
449
S87
727
642
467

1%%
78!5
886
693
569

Z!3
81

0
0
0

Count
Fraction

0.000
0.000

U%
0.044
0.047
0.062
0.076
0.067
0.049
0.053
0.108
0.082
0.093
0.073
0.060
0.080
0.038
0.008
0.000
0.000
0.000

Cumulative
Count

Fraction

O.m
0.000
0.006
0.059
0.104
0.151
0.212
0.288
0.356
0.405
0.458
0.566
0.648
0.741
0.814
0.873
0.953
0.992
1.000
1.000
1.000
1.000

Percent
Fraction

0.OW
0.000
0.001
0.013
0.016
0.022
0.034
0.050
0.051
0.042
0.051
0.115
0.097
0.118
0.099
0.088
0.125
0.063
0.015
0.000
0.000
0.00@

469&E&50 = Sum of percentage
= Sum of number

7.665 = Minimum percentage
49.283 = Average percentage
89.041 = Maximum percentage

Table 3.7.2-1

Capacitive Component ofChain Delays
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Cum;::::;:

Fraction

:.O&

0:001
0.015
0.030
0.052
0.086
0.136
0.187
0.229
0.280
0.395
0.491
0.610
0.709
0.797
0.922
0.985
1.000
1.000
1.000
1.000

—



Nanosec

< 0.0
0.0
0.5
1.0

;:2

:::

::;
4.5
5.0
5.5
6.0
6.5
7.0
7.5

>. 8.0

Count

0

:;!
941
528
242
129
126
148
122
89
58
19
0

:
0

Count
Fraction

0.000
0.000
0.635
0.112
0.099
0. 05S
0.025
0.014
0.013
0.016
0.013
0.009
:.(X&

0:000
0.000
0.000
0.000

Cumulative
Count

Fraction

0.000
0. WN3
0.635
0.748
0.846
0.902
0.927
0.941
0.9S4
0.969
0.982
0.992
0.998
1.000
1.000
1.000
1.000
1.000

Sum of nanosec
Sum of number

Minimum nanosec
Average nanosec
Maximum nanosec

Table 3.7.2-2

Minimum Chain Delays
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Nanosec
Fraotion

::%3
0.342
0.117
0.134
0.098
0.0s4
0.035
0.040
0.053
0.049
0.039
0.028
0.010

::%
0.002
0.000

Cum;::::::

Fraction

0.000
0.000
0.342
0.459
0.592
0.691
0.745
0.780
0.820
0.873
0.921
0.961
0.988
0.998
0.998
0.998
1.000
1.000



>=

Nanosec

0.0
0.0
0.5
1.0

;:2
2.5
3.0

1:::
10.5
11.0
11.5

Count

0

172
1=2
1122
1203
1559
610
540
378
350
271
175
122

%
33
26
13

7

1?
17
6
1

Count
Fraction

0.000
0.000
0.184
0.128
0.118
0.126
0.163
0.064
0.057
0.040
0.037
0.028
0.018
0.013
0.008
0.003
0.003
0.003
0.001
0.001
0.000
0.001
0.002
0.001
0.000

2~&6.626 ❑

=

0.730 =
2.538 =

16.638 =

Cumulative
Count

Fraction

0.000
@. 000
0.184
0.312
0.430
Q. 556
0.720
0.784
0.840
0.880
0,917
0,945
0.963
0.976
0.984
0.988
0.991
0.994
0.995
0.996
0.996
0.997
:.:%

1:000

Sum of nanoseo
Sum of number

Minimum nanoseo
Average nanosec
Maximum nanosec

Table 3.7.2-S

Maximum Chain Delays
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Nanosec
Fraction

0.000
0.000
0.062
0.060
0.082
0.111
0.178
0.082
0.084
0.066
0.069
0.059
0.041
0.031
0.022
0.010
0.011
0.009
0.005
0.003
0.001
0.005
0.007
0.003
0.001

Cum;~~~j;~

Fraction

0.000
0.000
0.062
0.122
0.205
0.316
0.493
0.575
0.659
0.725
0.793
0.852
0.893
0.925
0.947
0.956
0.967
0.976
0.980
0.983
0.984
0.989
0.997
0.999
1.000



<

>=

Nanosec

0.0
0.0
0.5
1.0

;:;
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

::2
8.5
9.0

1:::
10.5
11.0
11.5
12.0
12.5
13.0
13.5

Count

352:
1867
1039
679

1165
383
320
168
84
93
47
30
43
22
24

6

t!

2:
0
0
0
0
0
0

i

Count
Fraction

0.000
0.370
0.196
0.109
0.071
0.122
0.040
0.034
0.018
0.009
0.010
0.005
0.003
0.005
0.002
0.003
0.001
0.000
0.000
0.001
0.003

::%%
0.000
0.000
0.000
0.000
O.ow
0.000

Cumulg:~;;

Fraction

(3.000
0,370
0.566
0.675
0.746
0.868
0.908
0.942
0.959
0.968
0.978
0.983
0.986
0.991
0.993
0.995
0.996
0.996
0.996
0.997
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1=.966 = Sum of nanoseo
= Sum of number

0.208 = Minimum nanoseu
1.285 = Average nanoseo

13.096 = Maximum nanosec

Table 3.7.2-4

Chain Skews
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Nanosec
Fraction

0.000
0.079
0.109
0.104
0.096
0.209
0.086
0.085
0.051
0.029
0.036
0.020
0.014
0.022
0.012
0.014
0.004
0.001
0.000
0.005
0.023
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000

Cumulative
Nanosec

Fraction

0.000
0.079
0.188
0.292
0.389
0.598
0.684
0.768
0.819
0.848
0.884
0.904
0.918
0.940
0.952
0.966
0.970
0.970
0.970
0.976
0.999
0.999
0.999
0.999
0.999
0.999
0.999

::=
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~8 CHANGES AFTER CONSTRUCTION

A main goal of a design system which supports creation of prototype digital

systems must be to

drawings and related

provide the support

documentation which

Most prototypes need to be altered

necessary to produce a set of final source

correspond exactly to a working prototype.

after they are constructed. The traditional

method for making changes in a wire-wrap prototype is to determine how to change the

source drawings to fix the discovered problem, then to guess at the way that the changes

would be reflected in the physical implementation, and finally to install the guesses in the

actual prototype. After numerous changes of this type, the real design consists of the

altered source drawings as well as all the notes about changes that were installed in the

physical implementation. In our experience, it is quite difficult ta maintain a perfect

correspondence between the notes and the source drawings when changes are made in

this way. As a result, it may

corresponds exactly to the first.

even be difficult to build a second prototype which

The SCALD System supports changes to a constructed prototype in a more elegant

way. A designer using the SCALD System simply changes the source drawings, then

runs the entire SCALD System again. When creating the new physical design, the

Packager inputs the previous physical state of the prototype, and outputs a list of

changes which need to be made in order to attain the new state, along with complete

documentation of the new state. If all changes are made in this way, then the final

source drawings are guaranteed to correspond exactly to the final prototype.
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Unfortunately, as discussed previously, for large digital systems, it is essential to

process logical signals sequentially, and for some decisions therefore to be

order-dependent. Therefore, wherever the Packager makes a decision which could be

affected by the logical-signal processing order, it must consider the old physical state of

the prototype, and guard against making non-essential changes. For example, since

terminators are assigned sequentially, the Packager must guard against the possibility

that a mere change in the order of the input (e.g., one caused by simply renaming a

logical signal in the source drawings) will cause any net to be assigned a different

terminator.

The Packager guards against this type of needless change by reading the old

physical state of the prototype before each packaging run, and producing a file which

describes the state, but is sorted so as to be in exactly the order needed when processing the

new list of logical signals. Thus, as each new logical signal is processed, the part of the

old physical state which is relevant to that logical signal can be considered, and the new

nets can be designed to incorporate as much of that old physical state as is practical.

This capability does not preclude the installation of changes without running the

entire SCALD System. In case a change is made without running the SCALD System,

then eventually it is accurately edited into the file which describes the old state of the

prototype, the corresponding changes are made to the source drawings and the SCALD

System is run again. If the SCALD System produces an empty change list then the state

file and the drawings correspond exactly, otherwise, there has been some error in
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documenting the change. In this way, changes to the prototype can be accumulated for a

single SCALD System run.

The capability to manage engineering changes as discussed above was installed in

the SCALD I Physical Design Subsystem, and played a major role in the rapid

commissioning of the S-1 Mark I processor.
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Chapter IV

CONCLUS1ONS

4.1 Exmrience

The SCALD II Packager, before the installation of the capability to support

changes after construction,

characters) of Pascal code,

period of 9 months.

consists of 30,000 lines (containing 0.6 million non-blank

and was implemented by the author, working alone, in a

Implementation of the SCALD II Packager provided a forceful lesson in software

engineerin~ of the 30,000 lines of Pascal code in the completed system, the seven mapr

algorithms described in this dissertation (i.e., the real nucleus of the system) and their

associated data structures (exclusive of general utility functions) together consist of only

MOOlines, or 11%of the total! We estimate that the relative magnitude of the human
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effort required to write that code is comparable. All of the rest of the code simply

provides general utility functions, does bookkeeping, deals with the human interface, or

manages any of the large number of mundane details

but which must be considered in a real physical-design

not discussed in this dissertation,

system.

The Packager executed for a total of 73 S-1 Mark I CPU minutes in processing

the S-1 Mark IIA 4108-Chip Example, which contained 11308 nets. The ma~r portion

of this time was spent as follows: 81 seconds to read and process the definitions of the

S-1 Mark IIA ECL-1OK board and ECL- lOOK board, 118 seconds to read and process

the component-placement specification produced by the Layout Program, 100 seconds to

read and process the specification of terminator-resistor locations, and 65 minutes (i.e., an

average of 0.345 seconds per net) to process the list of logical signals. The time required

to process the board definitions scales linearly with the total number of wire-wrap pins

on the boards defined, and the remaining time scales roughly linearly with the number

of logical signals in the design.

Table 4.1-1 shows how the 0.345 seconds per net was distributed among the

algorithms discussed in this dissertation. It is notable that 40.9%of the time required to

process a net was spent outside of the execution of these algorithms, in managing

packaging details.
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Algorithm

Percentage
of Average Net
Processing ‘fime

Assignment of Inputs to Versions
Determination of Chains
Assignment of Cable wires
Assignment of Terminators
Assignment of wire Ty es
Assignment of Shield i“ins
Estimation of Interconnection Delays

(Other)

0.3 %
y.:

.

2:::

40.9

Table 4.1-1

Breakdown ofAverage Net Processing Time

The internal representations used by the Packager are designed so that very large

machines (e.g., the S-1 Mark IIA processor, which contains approximately 1.5 million

wire-wrap pins and uaestwo different board types) can be packaged usingmemoriesof

reasonable size (i.e., 16 megabytes required to generate detailed packaging instructions

for the S-1 Mark IIA). They are also designed so that memory requirements scale

roughly with the size and complexity of the ob~t machine (e.g., the S-1 Mark IIA

4108-Chip Example required nearly 8 megabytes).
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4.2 Contributions

This dissertation has described a system for automatic wire-wrap physical design

of large digital systems, exclusive of component placement. The system consists of a

complete, practical set of computer algorithms which can be used to quickly and

automatically produce highquality physical designs, and which are sufficiently flexible

that they can handle the wide range of different wire-wrap and component technologies

currently widely employed including in particular the largest and most complex

wire-wrap digital systems. The first generation of the system described (SCALD I) has

been evaluated in actual operation during the design, implementation, and debugging of

the S-1 Mark I processor, and the second generation (SCALD II) has been evaluated in

actual operation during the design and initial phases of implementation of the S-1 Mark

IIA processor.

Wire-wrap is already an important prototyping technology, and can be expected to

gain in importance as the need for high-performance simulation of VLSI logic designs

increases. This dissertation contains the first detailed description of a complete system

for wire-wrap physical design. Moreover, the partitioning of the wire-wrap problem

presented here is directly applicable to other discrete-wire prototyping technologies. The

Packager program listing and associated input files included in microfiche form inside

the back cover of this dissertation substantially enhance the ability of the digital design

community to implement in wire-wrap, as they make a comprehensive package of

debugged, performance-evaluated software available for study.
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High-level languages for logic design can be expected to become increasingly

important as larger digital systems become potentially feasible from an implementation

viewpoint. This is the first investigation of how high-level, hierarchical logic design

with timing verification can be extended all the

implementation, and is relevant to the analogous

technologies, including the VLSI ones.

way down to detailed physical

tasks in other implementation

The detailed system operation and performance statistics and analysis presented in

this dissertation about the S-1 Mark IIA physical design are useful to the designers of

other computer-aided-design system% they constitute the first detailed stud y and

comprehensive data which address the physical design of a large, high-performance,

wire-wrap machine.

Finally, the specific algorithms discussed here, particularly those for forming

chains and assigning wire types, are of general interest, as are the data presented about

the performance of these algorithms in packaging a real digital logic system.
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4.3 Future Research

The most important area requiring future research is the extension of this work to

othe: implementation technologies. For example, it would be of great value to have

physical-design tools with this level of capability for the printed-circuit, gate-array, or

VLSI domains.

Secondly, crosstalk management is in need of further study. In particular, it would

be useful to investigate more capable algorithms for managing the physical routes of

wires so as to minimize crosstalk, and for assigning wire types on the basis of the actual

physical proximity of nets. It seems likely that timing verification could play a major

role in crosstalk management, both for the wire-wrap and for the printed-circuit

domains, by identifying the time intervals during which signals maybe changing.

There are also a number of minor areas which are candidates for additional

research, as follows:

In the area of assignment of inputs to versions, more work is needed on

version-assignment algorithms which lead to distributed chains, rather than clustered

ones, since sometimes the only reflection-free partition requires the use of distributed

chains.

In the area of chaining, additional research is needed on algorithms which

minimize reflections or chain skew, rather than optimizing length or delay. Further study
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of algorithms which correctly handle nets with multiple outputs is also needed.

Additional research is needed on algorithms which take into account the positions of

segments in order to control the thickness of the wire mat, and more study is needed of

fast heuristic algorithms with the generality of Algorithm C3, but which allow chaining

a larger number of nodes.

In the area of cabling, further investigation of algorithms for automatically

determining cable positions is in order.

Finally, in the area of wire-type assignment, more effort is needed on algorithms

which take into account local deviations from the average wire-mat density, and ones

which could thereby smmth out the peaks of the wire-mat distribution.
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Chapter VI

FOOTNOTES

[11

[21

[31

[41

‘Wire-wrap” is a trademark of the Gardner-Denver Company, Grand
Haven, Michigan.

Augat Corporation, of Attleboro, Massachusetts, a leading manufacturer of
wire-wrap boards and related products, delivered 0.1 million wirewrap
boards in 1979, with an aggregate value of $25 million; this represents
approximately ME?of the total market. Datatex Corporation, of Houston,
Texas, applied 40 million wires during 1979, and Data Connections, West,
Inc., of Woodland Hills, Californi% applied 48 million wires during 1979.
There are over 1500 fully automatic wire-wrap machines installed in the
United States, with an aggregate wire-wrapping capacity of approximately 5
billion wires per ye% at 5000 wires per S-1 Mark I processor board, this is
the equivalent of 1 million S-1 Mark I processor boards, or 83,000 S-1 Mark
I processors.

In addition to the S-1 Mark IIA processor [S 1791 itself, a current example of
such a wire-wrap prototyping strategy exists in the Micro-Bridge Project at
the Hewlett-Packard Computer Research Laboratories in Palo Alto,
Califomi% where a VLSI logic design is being prototype in ECL-1OOK on
multiple S-1 Mark IIA ECL- lOOKwire-wrap boards.

For example, the S-1 Mark IIA processor mntains roughly 0.5 million
wire-wrap wires, each requiring numerous opertions during the
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physical-design process.

[51 Approximately 5% of the total wire-wrap wires applied by Datatex
Corporation of Houston, Texas, and Data Connections, West, Inc., of
Woodland Hills, Californi% during 1979 were twisted-pairs, for combined
crosstalk and imped ante control.

[61 For example, Kapton, and Milene, both offered by W. L. Gore, and

Associates, Newport Beach, California.

[71 In typical applications, the ECL-1OOK logic family [Fa77] has about 0.1 V of
DC noise margin, and gate delays on the order of 1 ns. In one laboratory
experiment, we induced crosstalk having a voltage-waveform peak of 0.5 V,
and a duration of 8 ns at half-amplitude, in a 12-inch single wire by driving
four 12-inch single wires adjacent to it for its entire length with ECL- lOOK
outputs. Crosstalk of this magnitude is sufficient to propagate indefinitely

through a series of ECL- 100K gates, or to spuriously clock an edge-triggered
device. We observed that the peak of the crosstalk voltage waveform was
reduced to about 0.1 V, and its duration at half-amplitude to about 5 ns, by
converting the driving wires to twisted-pair.

[81 In laboratory experiments, we observed that the characteristic impedance of

standard Milene-insulated single wire manufactured by W. L. Gore, and
Associates, Newport Beach, California, (nominally 19.5-roil outside diameter,
including insulation) varied from 50 ohms to 300 ohms, depending upon its
distance from the ground plane of an S-1 Mark 11A ECL-1OK board. The
characteristic impedance of twisted-pair made of the same wire (using
approximately 4 twists per inch) varied from 80 ohms to 100 ohms,
depending upon ih distance from the ground plane.

[91 In our experience with the S-1 Mark I processor, changing a single wire in
the most thickly matted region of some boards required as much as a full
hour.
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