7 UCRI- 100671
o PREPRINT

A Tutorial on Soflware
Reliabilily Engincering

J. Dennis Lawrence

This Paper was Prepared for Submittal to
Computer !leasurement Group Annual ileeting

Reno, ilevada
December 11-15, 1989

Nay 12, 1989

This is a preprint of a paper intended for publication in a journal or procecdings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represerts that
its use would not infringe privately owned rights. Reference herein to any
- specific commercial products, process, or- service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement recommendation, or favoring of the United States
Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

A Tutorial on Software Reliability Engineering
CMG '89

J. Dennis Lawrence
Lawrence Livermore National Laboratory

ABSTRACT!

Computer systems are increasingly being required to operate free from externally-
detected failures. This is particularly true in the case of large distributed real-time and
transaction-processing systems in application areas such as transportation, medicine,
defense, finance, marketing and communications. There are many similarities in
approaches and techniques between performance analysis and reliability analysis, so the
local Performance Expert is a natural person to approach for help with reliability problems.

This tutorial will provide an introduction to Reliability Engineering, primarily as it
applies to software development. It consists of four parts. The first part defines some
important terms, and describes some ways to classify faults and failures. The second por-
tion describes various kinds of activities that can be carried out during the life cycle of the
application system, especially those that will be of interest to the Reliability Expert. The
fourth section discusses various techniques for achieving software fault tolerance. Finally,
we discuss a few modeling techniques and the problems of accurate data collection.

1. INTRODUCTION

Since the first computer program was written, the programming activity has been
dominated by the problem of constructing reliable software that satisfies the user's require-
ments while meeting cost and schedule constraints. In recent years, and into the foresee-
able future, this emphasis on reliability will become even more important to our profession.
There are many reasons for this increasing importance [1]. (1) The volume of computer
systems being developed is growing at an increasing pace. (2) Applications are becoming
ever more visible to the general public —- that is, your customers — as interactive systems
proliferate and computer control enters the most common everyday appliances. (3) The
complexity of applications is growing at an increasing rate. (4) In many areas, the risks to
life, health, property and wealth when software fails is increasing. Many new applications
involve several of these areas at the same time, compounding the problem. International
banking, air traffic control and many military systems are examples of this.

There are interesting analogies between engineering software to meet reliability
objectives and engineering software to meet performance objectives. The same general
types of activities are involved, and the same sorts of skills are required. In both cases, the
analyst should work with the software development team throughout the project life cvcle.
Measurement data must be collected, evaluated and analyzed. Models must be constructed

IThis work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore
National Laboratory under contract No. W—7405—Eng—48.

%1 4/20/89 A Tutorial on Software Reliability Engineering Page 2
CMG '89 Annual Conference

and validated. There are similar problems relating to project costs, schedules and man-
power. In both cases, education of management, users and computer professionals is
required.

On a detailed level, there are (of course) many differences. These similarities and
differences are explored in this tutorial.

To begin with [2, 3], the reliability of a computer system is determined by several
different phases. First, we try to keep faults out of the system. Second, since some faults
will escape this effort, we try to identify and eliminate them. Third, since neither design
nor test is perfect, and since some new faults will occur during operation due to operational
or environmental faults, we attempt to cope with them once they appear. There is a useful
analogy here to the security of (say) a bank. We try to keep most robbers out; stop those
that get in the door; and recover the loot from those that get away. We are also forced to
recognize that there are some successful robbers, who escape to enjoy the proceeds.

Fault Avoidance is concerned with keeping faults out of the system in the first place.
It will involve selecting techniques and technologies which will help eliminate faults during
the analysis, design and implementation of a system. This includes such activities as the
selection of high quality reliable hardware and the use of formal conservative system design
tactics. Good management practices are essential to achieving fault avoidance.

Fault Removal techniques are necessary to eliminate any faults which have survived
the fault avoidance phase. Testing is the usual technique. Testing principles and proce-
dures are well known, and will receive little elaboration here.

Fault Tolerance is the last line of defense. The intent is to incorporate techniques
that permit the system to detect faults and avoid failures, or to detect faults and recover
from the resulting errors, or at least warn the user that errors exist in the system.

Graceful Failure. In spite of our best efforts, computer systems will fail. When this
happens, we want to keep the cost acceptable, and restore the system to operational status
within a pre-specified period of time. Of course, what cost is "acceptable" is situation-
dependent. A routine batch reporting run can accept a much more abrupt termination
than a railway control system.

2. TERMINOLOGY
2.1. Some Basic Definitions
2.1.1. Definitions

The failure of a computer system involves three separate events, which may be
widely separated in time. First, something basic goes wrong; a wire breaks. or a bug is
coded into a program. At some later time (which may vary, depending on the cause of the
problem, from microseconds to years), this results in an incorrect internal state of the
application system. At an even later time, the problem becomes visible to the user of the
system (which may be another program, a mechanical or electronic device, or a human
being). There are three words that are generally used for these events: fault. error and
failure. Unfortunately, there is no agreement on which word should be used for which type
of event. For this tutorial, I will use the following definitions [3, 4, 5].

" 4/20/89 A Tutorial on Software Reliability Engineering Page 3
CMG '89 Annual Conference :

A fault is a deviation of the behavior of a system from the authoritative specification
of its behavior. A hardware fault is a physical change in hardware that causes the system
to change its behavior in an undesirable way. A sofiware fault is a mistake (bug) in the
code. A procedural fault consists of a mistake by a person in carrying out some procedure.
An environmental fault is a deviation from expected behavior of the world outside the com-
puter system; electric power interruption is an example.

An error is an incorrect state of hardware, software or data resulting from failures of
components, software bug, physical interference from the environment, operator mistake,
or incorrect design. An error is, therefore, that part of the system state which is liable to
lead to failure. Upon occurrence, a fault creates a latent error, which becomes effective
when it is activated, leading to a failure.

A failure is the external manifestation of an error within a program or data structure.
That is, a failure is the external effect of the error, as seen by a (human or physical device)
user, or by another program.

2.1.2. Reliability Measures

It is best, of course, if measures can be given in quantifiable terms. We shall use the
following (4, 5]:

The reliability, R(t), of a device or system is the conditional probability that the
device or system has survived the interval [0, ¢, given that it was operating at time 0.

Reliability is often given in terms of the failure rate, \(t) = - %ﬂ(ﬁ, or the mean time

o o]
to failure, mitf = f R(1) dt.
0

Two terms in the above definition deserve some comment. In practice, it is not
always easy to get users to agree on what constitutes a system failure. However, in order
to calculate reliability over time, a consistent definition is necessary. What that definition
is probably matters less than the act of choosing one and sticking to it. Survival, then, is
the absence of failure, and may (if you so choose) include periods of degraded service.
Since reliability is a function of time, a careful choice of time periods must also be made
and not changed. Possibilities include clock (elapsed) time, CPU time and instruction
count.

The availability, A(t), of a device or system is the probability that the device or sys-
tem is operational at the instant of time ¢ For nonrepairable systems, availability and
reliability are equal. For repairable systems, they are not.

The maintainability, M(t), of a device or system is the conditional probability that
the device or system will be restored to operational effectiveness by time ¢, given that it
was not functioning at time 0. Maintainability is often given in terms of the repair rate.

_ _din(1=MQ)
wt) = - T .

The safety, S(t), of a device or system is the conditional probability that the device
or system has not encountered a catastrophic failure by time f. given that there was no
catastrophic failure at time 0. Sometimes safety and reliability are in conflict: increasing
one may result in decreasing the other. This is not considered further here.

—

1 4/20/89 A Tutorial on Software Reliability Engineering Page 1

CMG '89 Annual Conference

2.2. Some Types of Faults

2.2.1.

The Persistence of Faults
Any fault falls into one of the following three classes [6]:

A design fault is a fault that can be corrected only by redesign. Most software fauits
are design faults.

An operational fault is a fault where some portion of the system breaks during the
operation of a device or system. The breakage must be repaired in order to return
the system to an operational state.

A transient fault is a fault that does cause a system error, but is no longer present
when the system is restarted. An example is communication line noise. In computer
systems, up to half of all failures are transient, or appear transient.

A system is constructed according to some specification. If the system fails, but still

meets the specification, then the specification was wrong. This is a design fault. If, how-
ever, the system ceases to meet the specification and fails, then the underlying fault is an
operational fault. A broken wire is an example. If the specification is correct, but the
system fails momentarily and then recovers on its own, the fault is transient.

2.2.2. The Source of Faults

Sources can be classified into a number of classes; ten are given here. For each one,

we describe the source briefly, and mention which types of persistence are possible.

A hardware fault is a fault in a hardware component, and can be of any of the three
persistence types. For application systems, however, we rarely encounter hardware
design faults. Transient hardware faults are very frequent.

A software fault is a bug in a program. In theory, all such are design faults.

An input data fault is a mistake in the input. It could be a design fault (connecting a
sensor to the wrong device is an example) or an operational fault (if a user supplies
the wrong data).

A permanent state fault is a fault in state data that is recorded on non-volatile
storage media (such as disk). Both design and operational faults are possible.

A temporary state fault is a fault in state data that is recorded on volatile media
(such as main memory). Both design and operational faults are possible.

A topological fault is a fault caused by a mistake in system structure, not with the
component parts. All such faults are design faults.

An operator fault is a mistake by the operator. Any of the three types are possible.

h4/20/89 A Tutorial on Software Reliability Engineering Page 5

CMG '89 Annual Conference

A user fault differs from an operator fault only because of the different type of person
involved; operators and users can be expected to have different fault rates and distri-
butions.

An environmental fault is a fault that occurs outside the boundary of the system, but
that affects the system. Any of the three types is possible.

An unknown fault is any fault whose source class is never identified. Unfortunately,
many faults occur whose source cannot be identified.

2.3. Some Types of Failures

2.3.1. The Scope of Failures

Failures can be assigned to one of three classes, depending on the scope of their

effects [7]:

A failure is internal if it can be adequately handled by the device or process in which
the failure is detected.

A failure is limited if it cannot be so handled, but if the effects are limited to that
device or process.

A failure is pervasive if it results in failures of other devices or processes.

2.3.2. Failure Modes

Different failure modes can have different effects on a system. System specification of

performance affects the way in which component failure modes will affect the system. The
following definitions apply [5].

Sudden failure — failure that could not be anticipated by prior examination.
Gradual failure — failure that could be anticipated by prior examination.

Partial failure — failure resulting in deviations in characteristics beyond specified
limits but not such as to cause complete lack of the required function.

Complete failure — failure resulting in deviations in characteristics beyond specified
limits such as to cause complete lack of the required function. The limits referred to
in this category are special limits specified for this purpose.

Catastrophic failure — failure which is both sudden and complete.

Degradation failure — failure which is both gradual and partial.

‘7/‘20/89 A Tutorial on Software Reliability Engineering Page 6
CMG '89 Annual Conference

3. LIFE CYCLE ACTIVITIES

System reliability is a very broad concept, and includes many aspects that are
beyond the scope of this tutorial. Such activities as software engineering, testing proce-
dures, management activities and the like are, of course, very important to achieving relia-
ble computer systems. Some of these are mentioned below for completeness: however, the
emphasis is on activities that specifically address reliability.

The various life cycle stages can be treated within the paradigm of fault avoidance —
fault removal - fault tolerance — graceful failure. For example, one can look at the
Requirements Specification Phase of the life cycle as an attempt to avoid faults during
later phases. A formal review of the requirements document is intended to remove faults
from that document. An iterated life cycle, whereby one cycles back to earlier phases, is a
form of fault tolerance: when errors in the requirements specification are discovered in
later phases, a formal process will exist for correcting them, and correcting any conse-
quences in design, implementation and so on.

3.1. Requirements Specification Phase

Software reliability engineering must begin at the very beginning of the life cycle.
The actions and activities suggested here are not meant to be exhaustive, and generally
omit well-known ideas (such as, "requirements must be testable"). Notice how similar
these suggestions are to those made for software performance engineering.

o Identify imposed restrictions on boundaries among hardware, software, humans, and
the environment. That is, what is inside the system, what is outside it, and what
information is transmitted across the boundary. For reliability considerations, pay
particular attention to unexpected input, abnormal operating conditions, and other
strange environmental effects.

e Determine which portions of the computer system are repairable and which are not.
Either of these classes may be empty, of course. Additional care will be required to
achieve high levels of reliability in the nonrepairable portions of the system. An
on—-board computer in a space craft is an example; is there any mechanism for correc-
ting software faults found during the mission?

e Quantify all reliability, availability and maintainability goals. This includes goals
for hardware, software, users, and the system as a whole. The software cannot be
considered in isolation. System behavior in these respects depends on the behavior of
the components and on the topology of the system. Goals should be realistic, since
there comes a point at which further improvement in reliability requires a dispropor-
tionate increase in cost.

e Quantify fault tolerance goals. What types of system failures must be accepted, and
dealt with? What data can we not afford to lose? How much time may recovery be
allowed to take?

o Identify the means of achieving fault tolerance. Fault tolerance is achieved by some
form of redundancy. This, of course, increases the cost of the system:; some degree of
balance is generally required. Redundancy can occur in hardware, software, in%orma—
tion (data), operations, and time. In general, a mixture is necessary. Strictly
speaking, this is a design activity. However. many of the issues will involve system
users and customers; these can best be addressed as part of the requirements.

| 4/20/89 A Tutorial on Software Reliability Engineering Page 7
CMG '89 Annual Conference

o Identify operational sequences that system users are expected to carry out. Analyze
each for reliability. This is a human factors problem, and has many ramifications.
In particular, how should the system respond to incorrect sequences of commands?

o Identify each timing constraint. In each case, decide how the system will know if the
constraint has been violated. What should be done if the timing constraint has not
been met?

e Determine the implications of performance goals on fault tolerance. One way to
achieve fault tolerance is to use redundant hardware. Upon partial system failure,
degraded operation may result. Can the performance goals be met in such situa-
tions? If not, this may result in additional failures, causing a cascade into total
failure. Careful analysis is required.

3.2. Software Design Phase

Software reliability should be designed into the system. Any attempt to retrofit
reliability into a system is a very costly and imperfect procedure. One aspect of any
design, of course, is to ensure that each requirement can be met. Reliability requirements
are no different from any others in this respect. When the design is complete, you should
be able to demonstrate how each requirement is satisfied by the design.

e Analyze each requirement for reliability. What types of faults can cause the require-
ment not to be met? What will be the scope of any failure? What kind of failure
modes may occur, and how can the less desirable modes be avoided?

¢ When drawing information models (such as entity relationship diagrams [8]), consider
what redundant information should be included in order to help achieve recovery and
performance goals.

e Many authors recommend that data flow diagrams (DFD) not include error paths.
(See [9], for example.) This is a bad idea when dealing with systems with high relia-
bility requirements; error and recovery paths may well end up as the major portion of
the diagram. This must be considered as part of design. There are two basic reasons
for this. First, error detection and handling may well occupy the larger portion of
the DFD. Second, it may well be necessary to change the order of processing to
achieve fault tolerance.

Similar comments apply to control flow diagrams and state transition diagrams.

e If checkpoint, logging and recovery techniques are to be used, the details must be
carefully worked out. What part of the system state will be saved during the check-
point? Where — on the same system or a remote system? Where will transaction
logs be placed? Careful analysis has been done regarding transaction commitment in
the context of database systems; much of this will apply to application systems. In
particular, choosing the checkpoint frequency can be complex [10].

e All input should be checked for validity, to the fullest extent possible. This cannot
be done, of course, unless it is known how to determine if the input is valid. This
information may be hard to acquire.

7/20/89 A Tutorial on Software Reliability Engineering Page 3
CMG '89 Annual Conference

e When performing any sort of communication (process-to-process, CPU to disk, pro-
cess-to-terminal, ...), the program will need to know if the recipient fails to receive
the message. This involves some form of (positive or negative) acknowledgement
from the recipient, as well as time-outs to detect cases when the recipient cannot be
reached.

o How will reliability be measured during test and operation? What will be measured?
This needs to be worked out at the design phase so that the measurement process can
be planned out in advance of need.

e All failures detected by the system should be recorded in a failure log, for later analy-
sis. That is, the code should be thoroughly instrumented. The capture, recording
and analysis of failure records needs to be thought out. For example, the log should
be on a CPU other than the one containing the program in question — how can this
be done? How will failures not detected by the program (such as power failure) be
entered into the log?

e Each element of the system design needs to be analyzed for reliability. The lists
given in Sections 2.2 and 2.3 can be helpful. Where can faults arise that may affect
this design element? How persistent can they be expected to be? Recovering from a
transient communication fault will normally be quite different from recovering from a
topological design fault. How will the program cope with these differences? What
sorts of faults will be ignored, on the grounds that the expense of handling them
cannot be justified by the frequency and severity of their occurrences? How can the
scope of failures caused by a particular fault be limited?

e It may well be advisable to create a formal reliability model of the system. Modeling
techniques include reliability block diagrams, fault trees, Markov models, Petri net
models, reliability growth models, and others. This is discussed later in the tutorial.

e System reliability can frequently be increased by the use of redundant I/O devices
and redundant communication paths. The cost of this redundancy will have to be
balanced against the cost of system failure. The latter is equal to the actual cost of a
failure multiplied by the failure rate and the operational lifetime.

o If the application system controls devices over a wide geographic area, measures
should be taken to prevent failures in one portion of the system from propagating to
other areas. The term "wide" is system-dependent in this context. It may be possi-
ble to logically or physically isolate the area that is in trouble, and continue to con-
trol other areas. At worst, this should permit graceful shut-down of the other areas.
The principle is: a local failure should not cause a total system failure.

e Some portions of software are usually more important than others. Failure of a less
important task should not impact the existence of more important tasks (although it
may influence what they do — recover from the failure, for example).

e It may be possible to have a monitor task, whose purpose is to periodically send
messages to all other tasks. These will look for such messages from time to time.
When one arrives, the recipient will return a message verifying its status. If no reply
is received by the monitor after a period of time, the recipient is deemed dead (or in
a loop); it is killed and restarted. This may have implications in other portions of
the system, as well. The monitor may reside on a remote node, and may be duplexed
on several remote nodes, for redundancy.

4/20/89 A Tutorial on Software Reliability Engineering Page 9
CMG '89 Annual Conference

e If a portion of the computer control becomes impossible because of conditions in the
environment, the affected areas and functions should be detached from system con-
trol, so that other areas and functions can continue to operate. Once these conditions
are corrected, computer control should be resumed in a "smooth" manner; this last
word obviously needs to be quantified.

3.3. Implementation Phase

During the coding phase, scheduling requirements or plain laziness may cause the
reliability plans to be disregarded. This should, of course, be avoided. This is a manage-
ment problem, and is beyond the scope of the tutorial.

3.4. Test Phase

Testing is intended to remove faults from the system before they become visible to
the user. At this point, the data collection techniques planned out during the design phase
will need to be in place, and will need to be used. Reliability growth models can be used to
help decide how much testing is needed (when testing can be terminated) and to provide an
indication of the expected reliability during operation.

3.5. Operation Phase

Once the system is in operation, the primary need from a reliability viewpoint is
continued monitoring. This is where the failure log becomes important. Over time, as
bugs are fixed and the system is changed to cope with changing business conditions, the
software becomes increasingly difficult to maintain. Eventually, it reaches a stage where
further repair or enhancement becomes ineffective; at this point, the software should be
rewritten. By continuing to monitor failures, and to calculate the reliability of the system,
it may be possible to discover when reliability begins to decrease in time for adequate plan-
ning for a replacement system.

4. FAULT TOLERANCE TECHNIQUES
4.1. General Aspects of Recovery

A fault tolerant computer system must be capable of recovering from failures (by
definition). Since the failure is just a symptom of one or more underlying faults, which
caused one or more errors, this recovery process must deal with these factors. Before
giving design suggestions, let us examine this process.

4.1.1. Error Treatment

_ There are three aspects to coping with errors once a failure has occurred: error detec-
tion. damage assessment and recovery.

Error Detection. The success of all fault tolerance techniques is critically dependent
upon the etfectiveness of detecting errors. This activity is highly system dependent, so it is
difficult to give general rules, except in the case of interface checks. The following sugges-
tions are offered in [2). |

4/20/89 A Tutorial on Software Reliability Engineering Page 10
CMG '89 Annual Conference

e Replication Checks. It may be possible to duplicate a system action. The use of
triply-redundant hardware [6] is an example. A calculation is carried out by at least
three separate computers, and the results compared. If one results differs from the
other two, that computer is assumed to have failed.

e Timing Checks. If timing constraints are involved in system actions, it is useful to
check that they are satisfied. For process-to-process communications. for example, a
time-out mechanism is frequently used.

e Reversal Checks. A module is a function from inputs to outputs. If this function is
1-1 (has an inverse), it may be possible to reproduce the inputs from the outputs,
and compare the result to the original inputs.

e Coding Checks. Parity checks, checksums, cyclic redundancy codes, and the like can
be used to detect data corruption. This is particularly important for communication
lines and permanent file storage.

¢ Reasonableness Checks. In many cases, the results of a calculation must fall within a
certain range in order to be valid. While such checks cannot guarantee correct
results, they can certainly reduce the probability of undetected failures.

e Structural Checks. In a network of cooperating processes, it is frequently useful to
perform periodic checks to see which processes are still running. Similarly, a periodic
check on structural integrity is a good idea for complex data structures — a large
distributed database, for example.

Damage Assessment. Once an error has been detected, it is necessary to discover the
full extent of the damage. Calculations carried out using a latent error can spread the
damage quite widely. Design techniques can be used to confine the effect of an error, and
are therefore quite useful. One method is to carefully control the flow of information
among the various components of the system. Note that these methods are almost impos-
sible to retrofit to a system; this issue must be considered at the design stage.

Error Recovery. The final step is to eliminate all errors from the system state. This
is done by some form of error recovery action. Two general approaches are available.

e Forward Error Recovery. In a few cases, a sufficient amount of correct state is avail-
able to permit the errors to be eliminated. This is, of course, quite system depen-
dent. If a calculation was performed on incorrect input (spreading the damage), and
the correct input can be recovered, the calculation can simply be redone. Forward
error recovery can be quite cost effective when it is possible.

o Backward Error Recovery. If forward error recovery is not possible. one must restore
the system to a prior state which is known to be correct. There are three general
categories of such techniques, and they are usually used in combination.

- Checfkpointing. All (or a part) of the correct system state is saved, usually in a
disk file.

= Audit Trails. All changes that are made to the system state are kept in a trans-
action log. If the system fails, it can be reset to the latest checkpoint (or to the
initial correct state), and the audit trail can be used to bring the system state

4/20/89 A Tutorial on Software Reliability Engineering Page 11
CMG '89 Annual Conference

forward to a correct current state. This technique is f_reqt_lently used in database
management systems [11] and can also be quite effective in application systems.
Careful planning is necessary.

= Recovery Cache. Instead of logging every change to a system, it is possible to
incrementally copy only those portions of the system state which are changed.
The system can be restored only to the latest incremental copy, unless an audit
trail is also kept. Without the audit trail, all transactions since the latest incre-
mental copy are lost. In some cases, this is quite sufficient.

e Error Compensation. This technique is possible if the erroneous state contains
enough redundancy to enable the delivery of an error-free service from the erroneous
(internal) state.

4.1.2. Fault Treatment

It may or may not be possible to continue operation after error recovery. Unless the
fault was transient, however, it must be treated sooner or later. Nelson and Carroll [12]
suggest four stages to fault treatment.

1. Fault Location and Confinement. One begins by isolating the fault by means of
diagnostic checking (or some other technique). Whether or not the fault is immedi-
ately repaired after it has been located, it is generally wise to limit its effects as much
as possible, so that the remainder of the system can be protected. Where high availa-
bility is required, the component containing the fault may be replaced so that opera-
tion may continue; in such cases, the next two steps take place off-line.

2. Fault Diagnosis. Once the fault has been isolated, it will be necessary to uncover the
exact cause. This could be a hardware operational fault, a software bug, a human
mistake, or something else. The technique to use, of course, depends on the source of
the fault.

3. System Repair and Reconfiguration. If there is sufficient redundancy, this can take
place during (possibly degraded) operation. Otherwise, the system may be stopped
and repaired or reconfigured.

4. Continued Service. The repaired system is restored to a working condition, and
restarted.

4.2. n—Version Programming Technique

The two principal software design techniques that have been developed for fault
tolerant programming are the Recovery Block Technique and the N-Version Programming
Technique [13]. Both use redundancy in order to recover from certain types of failures. but
in different ways.

In the n—Version Programming Technique, a program specification is given to n
different programmers (or groups of programmers), who write the programs independently.
Generally, n must be at least 3. The basic premise is that the errors programmers make
are independent: consequently, the multiple versions are unlikely to go wrong in the same
way. In execution. all versions are executed, and voting is used to select the preferred

4/20/89 A Tutorial on Software Reliability Engineering Page 12
CMG '89 Annual Conference

answer if there is disagreement. Whenever possible, different algorithms and programming
languages are used. in the belief that this will further reduce the likelihood of common
€ITors.

There are a number of problems with this approach. To begin with, the cost of pro-
gramming is multiplied, since several versions are being written. Errors in the specifica-
tion, of course, will not be detected. Additional design is required to prevent serious errors
in any of the versions from crashing the operating system, and to synchronize the different
tasks in order to compare results. Code must also be written to do the comparison.
Finally, there is some evidence that programmers do indeed make the same sorts of mis-
takes, although this point is a bit controversial. Only the last point, if it proves to be true,
is a fatal flaw, however.

4.3. Recovery Block Technique

The Recovery Block Technique uses redundancy in a different way. Here, there is
just one program, but it incorporates algorithms to redo code that proves to be in error.
The program consists of three parts. There is a primary procedure which executes the
algorithm. When it has finished, an acceptance test is executed to judge the validity of the
result. If the result is valid, that answer is passed back as the correct answer. However, if
the acceptance test judges the answer to be incorrect, an alternative routine is invoked.
This alternative will generally be simpler to code, but is likely to run slower, or use a dif-
ferent algorithm. The idea can be nested, of course.

The effect is to have a program module structured as follows:
answer = primary algorithm

if answer is valid, return (answer)

else { answer = second algorithm
if answer is valid, return (answer)
else { answer = third algorithm
}
}

Most of the time, only the first algorithm will be required. The result of failure is simply
to slow down the execution, so this technique may not always be usable.

. There is some evidence that this idea does indeed work. However, most of the criti-
cisms offered for the n—Version Programming Technique would seem to apply here as well.
in one form or another.

4/20/89 A Tutorial on Software Reliability Engineering Page 13
CMG '89 Annual Conference

5. RELIABILITY MODELING AND MEASUREMENT
5.1. Computer System Reliability

From the viewpoint of the user, reliability is a system property. Measuring and
modeling availability and reliability, therefore, needs to be done at the system level. A
model at this level includes software, hardware, people and those portions of the environ-
ment that interact with the computer system. Power failures, fire and flood are examples
of the latter.

The general approach is to recursively partition such a system into parts whose fail-
ures are independent. For example,

system = {hardware, soflware, people, environment}
hardware = {cpu's, disks, communications} _
software = {operating system, DBMS, terminal control, application}

A failure rate is calculated for each. The serial system failure rate is just the sum of the
individual failure rates:

n

’\system = z ’\parti'
i=1

This works provided (1) the system is in steady state, (2) failures of parts of the
system are truly independent, and (3) the failure of any one part will result in system fail-
ure. Redundancy is the general approach to improving reliability, particularly in hard-
ware. If a subsystem is partitioned into parts in such a way that all parts must fail before
the subsystem fails, the failure rate calculation for parallel subsystems must be used.

n
1 _ 2 1
Tgubsystem i1 j‘_parti

These results would then be used in the earlier calculation when ’\svstem is being
calculated.)

If failures of the parts are not independent, or failure rates change over time. then
Markov techniques frequently become necessary. This analysis is much harder.

General modeling of computer system failures was described briefly by the author at
the 1988 CMG Annual Meeting [14]. For additional information, see the references given
there or two recent books on computer system reliability, [15, 16].

The remainder of this section concentrates on application software reliability
measurement and modeling. To begin with, all software faults are design faults. Depen-
ding on the circumstances, such faults may be repaired immediately or at some future time.
Thus, software must be considered in two different ways.

CMG 'S9 Annual Conference

1/20/89 A Tutorial on Software Reliability Engineering Page 14 1

The first way applies primarily to software produced by a vendor and sold to custo-
mers. In this case, the software can be considered an unchanging product (between
releases, at least) by the customer. Thus, its failure rate is fixed during the lifetime of any
particular release. This application product is usually independent (in the reliability sense)
of the rest of the customer's system, and failure of the application software will result in
system failure. Thus, the conditions for the serial model introduced at the beginning of
Section 5.1 are satisfied, and the system failure rate can be easily calculated once the fail-
ure rates of the parts are known.

In-house application software generally has very different failure characteristics.
Here, bugs are fixed as soon as they are discovered. The application may also be under-
going frequent enhancements and other modifications to fit the changing needs of the com-
pany. Payroll systems are an example. In this case, the application system is really a
sequence of closely related but not identical systems, whose failure rates change over time.
Obtaining reliable statistics on failures under these circumstances can be a real problem,
since the system doesn't remaining stationary long enough to see more than a few failures.
The solution is to use a Reliability Growth Model for Software. This is discussed in Sec-
tion 3.2.

In either case, calculating reliability requires accurate data on failures. This is not
easy, but is possible. This problem is discussed in Section 5.3.

5.2. Reliability Growth Models

Let us assume we have a software system S. Failures occur at (execution) times ¢,
fr, ..., tn. After each failure, the fault that caused the failure may be fixed; thus, there is a
sequence of programs S = S, S, S, ..., Sn, where Sj represents a modification of Sj4, 1 < j
< n. (If the bug couldn't be found before another failure occurs, it could happen that S; =
Si-1.)

A technique was developed several decades ago in the aerospace industry for model-
ing hardware reliability during design and test. Such a model is called a Reliability Growth
Model. A component is tested for a period of time, during which failures occur. These
failures lead to modifications to the design or manufacture of the component; the new ver-
sion then goes back into test. This cycle is continued until design objectives are met. A
modification of this technique seems to work quite well in modeling software (which, in a
sense, never leaves the test phase).

Figure 1 shows some typical failure data, taken from [16, p. 305], of a program run-
ning in a user environment. In spite of the random fluctuations shown by the data (dots in
the figure), it seems clear that the program is getting better — the time between failures
appears to be increasing. This is confirmed by the solid curve, showing a five point moving
average.

1/20/89 A Tutorial on Software Reliability Engineering Page 15

CMG 'S9 Annual Conference

bYeoonds

Numbier ot

Execution Times (1n Seconds)

between Successive Fallures ‘
234 -7000 |

-3004) -=000 |

Actual Data Points

=200+ Five Point 73000

“aving Hverage |
i i
40004 © 14000 |
30004 .) l\ /\ 3000 |
35004 . f. -2000 |
©t ’-\) . .

/ . . ; r
. : . / \ 1 1
00 . cod e S T o)
. . e o e\ - . :
1 . : ¢ e "—/. ,.\. e 3 |
ettt NS e T L,
) 10 20 30 40 50 50 70 80 9% 100 0 i) 130 140 |

Failure Number [

Figure 1. Erecution Time between Successive
Failures of an Actual System

A reliability growth model can be used on data such as shown in the figure to predict

future failure rates from past behavior of the program. even when the program is continu-
ally changing as bugs are fixed. There are at least three important applications of an esti-
mate of future failure rates:

As a general rule. the testing phase of a software project continues until personnel or
money are exhausted. This is not exactly a scientific way to determine when to stop
testing. As an alternative, testing can continue until the predicted future failure rate
has decreased to a level specified before testing begins. Indeed. this was an original
motivation for the development of reliability growth models.

When used for this purpose, it is important to note that the testing environment is
generally quite different from the production environment. Since testing is intended
to force failures. the failure rate predicted during testing should be much higher than
the actual failure rate that will be seen in production.

Once into production, the failure rate can be monitored. Most software is main-
tained and "enhanced" during its lifetime: monitoring failure rates can be used to
judge the quality of such efforts. The process of modifying software inevitably per-
turbs the program's structure. Eventually, this decreases qualitv to the point that
failures occur faster than they can be fixed. Monitoring the failure rate over time can

help determine this point. in time for management to make plans to replace the pro-
gram.

-

4/21/89 A Tutorial on Software Reliability Engineering Page 16
CMG '89 Annual Conference

e Some types of real world systems have (or ought to have) strict legal requirements on
failure rates. Nuclear reactor control systems are an example. If a control system is
part of the larger system, the failure rate for the entire system will require knowledge
of the failure rate of the computer portion.

A variety of reliability growth models have been developed. These vary according to
the basic assumptions of the specific model; for example, the functional form of the failure
intensity. Choice of a specific model will depend, of course, on the particular objectives of
the modeling effort. Once this is done, and failure data is collected over time, the model
can be used to calculate a point or interval estimate of the failure rate. This is done perio-
dically; say, after every tenth failure. A few of these models are discussed next. See {1, 16]
for more information.

One of the most critical modeling assumptions is the kind of time that is used. Exe-
cution time and clock (calendar) time are the usual choices. Only the former is used here.

5.2.1. Duane Model (1964)

The earliest reliability growth model was proposed by Duane in 1964 in connection
with hardware failures, and has sometimes been used successfully for predicting software
reliability. This simple model assumes that the failure rate at time ¢ can be given as

At) = a g 571,

Knowing the times ¢; that the first m failures occur permits maximum likelihood estimates
of @ and f to be calculated. If 8 < 1, reliability is improving. If § > 1, then reliability is
getting worse; more errors are being added than removed. The number of bugs that can be
expected to be found by time ¢ is given by

m(t) = ai’.

In some cases, this model has proved to be quite successful; in other cases, the reverse
has been reported.

5.2.2. Musa Model (1975)

This model begins by assuming that all software faults (bugs) are equally likelv to
occur, and are statistically independent. After each failure, the cause is determined and
the software is repaired. (The bug is fixed.) Execution does not begin again until after
this has happened; since execution time is the time parameter being used, this means (in
effect) that bug fixing happens instantaneously. It is assumed that no new bugs are added
during the repair process.

Consequently, the failure rate takes on an exponential form:
Mt) = an e,

where the software originally had n bugs and « is a parameter relating to the failure rate of
a single fault. Integrating gives the number of bugs found by time ¢:

4/21/89 A Tutorial on Software Reliability Engineering Page 17
CMG '89 Annual Conference

m(t) = n(l- e_at).

The parameters can be estimated in standard ways after a number of bugs have been
found and corrected.

This model has been reported to give good results. The primary difficulty is the
assumption that all bugs are equally likely to occur. This seems unreasonable. In practice,
some bugs seems to occur much more often than others; indeed, you would expect that the
most common bugs are seen first. This line of reasoning gives rise to the next model.

5.2.3. Littlewood Model (1981)

Suppose that the program has n faults (bugs) when testing begins. Each of these
faults will cause a failure after some period of time which is distributed exponentially and
independently from any other fault. Instantaneous debugging is assumed. We assume that
failures occur at times ¢, ts, ti. After the ith bug has been found, Littlewood gives a
failure rate of

= _(n-i) a . :
/\(t) = ,3+ t1+ t, t1<t<t1+1,

where a and [are parameters to be determined by maximum likelihood estimates. The
expected number of failures by time ¢ is given by

m(t) = (n-4) aln [g Fad]

Notice that this function is has a step after each failure; the failure rate decreases
abruptly after each bug is found. This is supposed to reflect the fact that more common
bugs are found first. Like the Musa Model, this model is reported to give good results.
5.2.4. Musa—Okumoto Model (1984)

This model (also known as the logarithmic Poisson execution time model) is like the
Littlewood model in that the failure rate function decreases exponentially with the number

of failures experienced. The basic assumptions are the same as those for the Littlewood
model. Here, we have

) = w7751

where « is the initial failure rate and 3 is a parameter. The expected number of failures by
time ¢ is given by

m(t) = 71—111 (adt+1)

Musa reports good results.

4/21/89 A Tutorial on Software Reliability Engineering Page 18
CMG 'S9 Annual Conference

5.3. Data Collection Problems

Models. of course, are of no practical use if data is not available to use in estimating
the parameters of the model. Reliability modeling is no different from performance model-
ing in this respect. except that data collection appears to be harder. There are problems
with definitions, as well as problems with the actual data collection. There is a good dis-
cussion of this in reference [1], which should be read (and absorbed) before beginning any
sort of data collection activity. Here, by way of example, [will discuss one definitional
problem and one practical collection issue.

5.8.1. Defining Time

Reliability (failure rate) is measured in terms of "estimated failures per unit of time";
consequently, the units in which time is measured have quite an effect on how failure rate
is defined. The reference cites nine different ways of measuring time, which apply in differ-
ent circumstances. The important issue is to choose one unit, and stick to it. Collecting
data using one unit of time, and attempting to apply that to a model requiring a different
unit is a bit suspect, to say the least. Here are the nine methods.

1. Clock (calendar, elapsed) time. This can be used when the application is run for the
same amount of time each week, month, or whatever. For example, if your computer
is operational only during prime shifts, five days a week, then elapsed number of
weeks is a possible time unit.

[A]

Powered—-up time. For applications that are always running when the computer is
operational, but for which this time may vary from week to week, one can use the
amount of time that the system was actually operational. Examples of such are
operating systems, real-time control systems, and many transaction—based systems.

3. Normalized computer time. If your application is running on many different identi-
cal computers, you can pool the powered—on time from the various machines to form
a combined run time. If the machines are of different powers, a normalization factor
will have to be used to make the times commensurate.

4. Batch elapsed time. For batch programs in a multiprogramming system, you may
wish to use the amount of clock time between program load and program termina-
tion.

5. CPU time. Programs used occasionally, or at varying frequencies, cannot easily be
timed by an external clock. In this case, CPU time may be a good choice. In effect,
you are counting the number of machine cycles devoted to that application.

6. Session time. Under some circumstances, you may be interested in the clock time for
an interactive program, using the time from session initiation to session termination.
Typically, this would be the case for a system in which the user's time is considered
the important part of the application.

-1

Message count. For distributed applications which exchange messages at more-or-less

regular intervals, the number of message exchanges can be counted and used as an
estimate of time.

1/21/89 A Tutorial on Software Reliability Engineering Page 19
CMG '89 Annual Conference

8. Machine instruction count. How many object instructions were executed? This
might be useful in cases where the same program is running on computers with the
same instruction set, but much different cycle times. If you wish to compare experi-
ences on such different machines, some method of eliminating the internal timing
differences is necessary. Instruction count is one method of doing this.

9. Source instruction count. If there is no way to count actual instructions executed,
counting the source instructions executed might serve as an estimator.

My personal choice is to use CPU time as the primary time unit unless there is over-
whelming need for one of the others. Normalization is required if the CPUs are of different
power.

5.3.2. A Common Data Collection Problem

Calculating the parameters of the different models will require an accurate record of
the run time for the application (using whichever time unit you choose), plus a record of
every single failure. This latter record must include the time of failure (in the chosen time
units), plus a diagnosis of the actual fault that caused the failure. The latter needs to be
quite specific, since the models generally require knowledge as to whether the failure is the
first occurrence of the fault or a subsequent occurrence.

Humans cannot be relied on to accurately provide this information. If your applica-
tion has been sold to customers, they have little incentive to provide the detailed informa-
tion required. If used within your own shop, the operators are usually too busy to record
the information, or forget to write down the time a fault occurred (due to the need to
return the system to service), or lose patience in recording the fifty—~first occurrence of a
particular failure during a three hour period of time. If you are trying to collect data
during application testing, development pressures are likely to cause failure recording to be
dropped.

Thus, any recording needs to be automated in some fashion. The operation system
accounting log may provide sufficient information to enable you to acquire run times. [t
might be possible to use the system trouble log to record information about application
failures. Best of all, you may be able to have the application system itself record informa-
tion about its running and any failures. (A monitor may he necessary for the latter, to
allow for program crashes.) Some manual recording of failures will almost certainly still be
necessary, but reducing this to an exceptional circumstance gives you a good chance to
actually get the data.

6. CONCLUSION

The purpose of this tutorial has been to introduce the topic of software reliability
engineering. As application development becomes increasingly an engineering activity, we
can expect to see increasing emphasis on practical reliability engineering. Many of the
problems involved are similar to the problems encountered in software performance engi-
neering: the need for data collection, the need to become involved throughout the applica-
tion life cycle, the need to educate programmers, users and management, and so on.

4/21/89 A Tutorial on Software Reliability Engineering Page 20 1

CMG '89 Annual Conference J

REFERENCES

10.

11.

12.

13.

14.

15.
16.

Soflware Reliability. State of the Art Report 14:2, Pergamon Infotech (1986).

Anderson, T. "Fault tolerant computing", in Resilient Computing Systems, T.
Anderson (ed), Wiley (1985), 1-10.

Laprie, Jean—Claude. "Dependable computing and fault tolerance: Concepts and
terminology", The 15th Annual International Symposium on Fault-Tolerant Compu-
ting, IEEE Computer Society Press (1985), 2-11.

Siewiorek, Daniel P., and Robert S. Swarz. The Theory and Practice of Reliable
System Design, Digital Press (1982).

Smith, David J. Reliability Engineering, Pitnam (1972).

Kopetz, H. "Resilient real-time systems", in Restlient Computing Systems, T. Ander-
son (ed), Wiley (1985), 91-101.

Anderson, Thomas, and John C. Knight. "A framework for software fault tolerance
in real-time systems", IEEE Trans. Soft. Eng. SE-9, 3 (May 1983), 355-364.

Efsichritzis, Dionysios C., and Frederick H. Lochovsky, Data Models, Prentice-Hall
1982).

Page-Jones, Meilir. The Practical Guide to Structured Systems Design, Yourdon
Press (1980).

L'Ecuyer, Pierre, and Jacques Malenfant. "Computing optimal checkpointing strate-
gies for rollback and recovery schemes", IEFE Trans. Computers 37, 4 (April 1988),
491496.

Date, C. J. An Introduction to Database Systems, vol. 2, Addison-Wesley (1983).
Nelson, Victor A., and Bill D. Carroll. "Introduction to fault-tolerant computing",
in Tutorial: Fault-Tolerant Computing, Nelson and Carroll (eds), IEEE Computer
Society Press (1987), 14.

fradh;an, D. J. (ed), Fault Tolerant Computing: Theory and Practice, Prentice Hall
1986).

Lawrence, J. D. "Modeling the reliability of a real-time systems", CMG '88, (Dec.
12-16, 1988), 51-57..

Dhillon, B. S. Reliability in Computer System Design, Ablex Pub. Co. (1987).

Musa, J. D., A. Iannino and K. Okumoto, Soflware Reliability: Measurement, Predic-
tion, Application, McGraw-Hill (1987).

