"UCRL- 97650 d

PREPRINT

»

RING INTERCONNECTION NETWORK FOR THE
S-1 AAP MULTIPROCESSOR

Viki Y. Moldenahuer
P. Michael Farmwald
Owen T. Anderson
Jay C. Pattin
Jeffrey M. Broughton

This paper was prepared for submittal to The 15th
Annual International Sympsoium on Computer Architecture
Honolulu, Hawaii
May 30 - June 2, 1988

November 12, 1987

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
vnderstanding that it will not be cited or reproduced without the permission of the
author.

CiRCULATION COPY
SUBJECT TO RECALL
IN TWO WEEKS

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefuiness of any
information, apparatus, product, or process disclosed, or represerts that
its use would not infringe privately owned rights. Reference herein to any
- specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement recommendation, or favoring of the United States
Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

Ring Interconnection Network for the S-1 AAP Multiprocessor

ABSTRACT

This paper presents an interconnection network for the S-1 AAP, a large-scale multipro-
cessor being constructed at Lawrence Livermore National Laboratory. The packet-switched
interconnect consists of dual counter-rotating rings, with nodes modelled as non-uniform cross-
bars. The advantages of this interconnect are its conceptual simplicity, its suitability for high-
speed implementation, and its extensibility. The ability to queue messages in the interconnect
provides reliable transmission without acknowledgements or flow control. The motivations
behind the design are discussed, and the ring organization is described. Both difficult design

issues and benefits of the design are discussed.

INTRODUCTION

One of the classic problems in designing multiprocessors is that of connecting the process-
ing elements and other system resources together. Ideally an interconnection network should
provide high-speed, reliable delivery of messages under all conditions of system performance.
The challenge of meeting these requirements has led to the proposal a.ndl construction of many
solutions such as the global linear bus, direct-connection net, crossbarl, hypercube, star net,
and ring. Each of these has its respective merits, which are well documented in the litera-
ture. A good survey of many interconnection networks can be found in the IEEE Tutorial on

Interconnection Networks,[! and rings, in particular, are discussed by Liu and Rouse.

This paper presents the design of an interconnection network for a large-scale multi-
processor, the S-1 Advanced Architecture Processor (AAP), being constructed at Lawrence
Livermore National La.boratory.'[s"“] Tﬁe interconnect design consists of nodes connected by
dual counter-rotating slotted rings, with nodes constructed as fixed-size, non-uniform cross-

bar switches connecting the rings and processing elements.

The two major design objectives of the AAP interconnection network are high performance
and adaptability for large-scale systems. The systems that will use this network are envisioned
to be moderately large, on the order of two hundred processors. The global interconnect must
be extensible and avoid fixed limits on system size such as those encountered by crossbars.
The physical limitations of many interconnect schemes eliminate them from consideration in
large systems. The limitations of extensibility, interconnection cable count, and adjacent-node

latency are particularly important.

A ring has only two connections per node, regardless of the number of nodes. The size of a
ring can be changed without affecting existing nodes, allowing a system to grow incrementally
as new processing elements are added. Also, with a small, fixed number of connections per
node, wide data paths are not prohibitively expensive. This allows data to be sent in parallel,

preserving the per-processor bandwidth of the interconnect as the system size grows.

In large-scale implementations of some interconnect schemes, cable counts can reach such
high values that transferring data bit-serially is the only reasonable solution. This forces
a large latency even for communication between adjacent nodes. Because many problems
intended for multiprocessors partition in such a way as to display nearest-neighbor locality, a
short adjacent-node latency is desirable. Thus, the parallel data paths minimize latency for

!
all transfers. !

High performance in the AAP interconnect is achieved, in part, by a 15 ns cycle time. The
AAP adopts a RISC-like approach to interconnection as well as processor design. Despite its
low connectivity, the physical simplicity of a ring allows it to be readily optimized for speed to
provide the desired performance. If the cycle time can be made fast enough, then traversing
even the longer distances of a ring will still be faster than performing the more complicated

routing control required by an inter¢onnect of higher connectivity.

The cycle time goal requires that routing and control issues be solved quickly. Speed-of-

light limits imply that there is not enough time for global flow control: routing decisions must

be made locally. The decisions required by a ring or a small, fixed-size crossbar are simple

and can be made relatively quickly.

A third consequence of the high performance objective of the entire AAP system is that
there are no acknowledgements for receipt of messages. The processors themselves are heavily
pipelined to achieve high performance. With their fast, short pipelines, processors would in-
evitably wait for an end-to-end acknowledgement across the ring. Lack of an acknowledgement

mechanism requires the ring to deliver all messages entrusted to it.

The rest of this paper first defines some terms and looks at the organization of the in-
terconnect. Then the major design issues of deadlock avoidance, command time-ordering,
latency minimization, and traffic management are discussed. Added hardware within a node
and special properties of message types solve the deadlock avoidance problem. A generation
count scheme provides a means of time ordering commands on the ring, while routing rules
preserve the ordering within a node. The choice of a ring as the global interconnect pro-
vides high bandwidth and short adjacent-node distances in large systems, while the extremely
high transfer rate around the ring minimizes the latency for long-distance transfers. Traffic
management implemented as routing rules within the nodes helps maintain the system-wide
performance. A peak transfer rate of 1.1 gigabyte per second per node is achieved by this

|
design. !

RING ORGANIZATION

The organization of the ring interconnect is shown in Figure 1. The ports are the entities
to be connected together, e.g. the processors, memories, I/O processors, etc. The nodes
provide the queuing and control logic that connect the ports to the rings. Under current
implementation technology limitations, up to‘three ports may be attached to a node, and a

system may contain up to 128 nodes.

Two counter-rotating rings, arbitrarily designated the clockwise and counterclockwise

rings, carry data. They can be classified as bit-parallel slotted rings, similar to Pierce rings,
but with relaxed rules on slot access. Slots are not assigned to particular nodes and there is

no token.

Messages are the objects which travel around the interconnect. A message contains 64
data bits, 40 bits of address, plus control and parity bits for a total of 142 bits. Messages are
originated and consumed by ports. There are two types of messages: commands and responses.
A command is a query or a request to perform some operation, e.g. read a doubleword from
memory. A response is a message in answer to a query, such as a doubleword of data. The
significant difference between the two types is that commands can generate further traffic

whereas responses cannot.

Figure 2 shows a block diagram of the data path within a single node. The data flows
from left to right. Messages coming in from the ports travel to other ports or out onto the
rings. Messages coming in on the rings travel to ports on this node or continue on the rings

to the next node. Messages cannot travel from one ring to the other.

Messages on a ring continue to circulate until they are removed by their destination node.

The rings never stop.

DESIGN ISSUES ’
Deadlock Avoidance

The most complicated issue in the ring design is deadlock avoidance. The term deadlock
is used to mean a situation in which no port can make forward progress because the message
delivery system has become saturated, and delivery paths for all messages are blocked. The
following example will illustrate how deadlock.can occur for a simplified crossbar interconnec-

tion of two processors (see Figure 3}. -

The four boxes in the center are output and input registers for each of two entities, here

shown as processors. They form a crossbar. For each processor, two sources generate messages

which are sent to the crossbar through the processor’s output register. The instruction stream
executed by each processor may generate any number of messages. The cache coherency logic
may create new messages for each command that it receives.®! If both processors generate
enough messages from both instruction stream and cache coherency logic, the messages will
fill all four registers. The processors will then be deadlocked, unable to continue processing
because there is no place for either source to put outgoing messages. This can be generalized
to the situation of rings and ports as connected elements on a crossbar. In the AAP system

a node acts as a crossbar switch.

The deadlock problem is caused by unconstrained message generation by processors and

insufficient queuing in the destination ports.

Some attempts are made to curb the generation of messages by processors: a processor can
have only two cache misses and one cache coherency operation outstanding, but there is no
limit on the number of other commands. One cache flush can generate up to 2K doubleword
writes. Control in the processors was kept as simple as possible in order to maintain high
performance. Consequently, processors have little local flow control. Lack of global flow
control compounds this situation as a single memory port may be the destination of messages
from multiple sources. Thus no safe upper bound can be placed on the number of commands

. . !
on the interconnect at any time. I

Additional queuing would not help: there is sufficient queuing in the ports that near-
deadlock situations are expected to be rare, but it is not possible to have enough queuing to

ensure that deadlock never occurs.

However, even if the interconnection network is saturated with messages, and all paths
everywhere are blocked, if one entity anywhere can make forward progress at any time, the
situation can be eventually resovlvédj.. “Therefore, a mechanism is provided in each node that
can be used to resolve local saturation conditions one message at a time. This mechanism

requires very carefully chosen constraints on messages and their routing.

There are three sequences of messages that can occur: a command is sent and consumed
by the destination node; a command is sent to a destination, which then generates another
command as a direct result; and a command is sent to a destination, which generates from

one to four responses.

The first case is trivial: for example, a processor writes one doubleword of data to a

memory. The memory does not generate any message in reply. This case cannot cause

deadlock.

The second case is a difficult one. A processor may send another processor a cache co-
herency command.®l The second processor does not know in advance that the command is
coming, and cannot have reserved a space for it. Unexpected commands such as these may
back up, blocking data paths throughout the interconnect. In particular, a port’s own output
path may become blocked, preventing that port from making forward progress because it can-
not send messages out. The solution used by the interconnect is an extra register in the node
which allows the node and port to perform a swap of commands: the node takes a command
from the port first, then as the port makes forward progress, the port clears its input register

so that it may accept a command from the node.

This extra register is called the emergency register and is part of t}|1e node’s port-in logic
(see Figure 4). This register is only used in an emergency, which is delﬁned as a situation in
which the node tries to send a command to a port which the port cannot accept, and the port
simultaneously tries to send a message to the node which the node cannot accept. Nodes or

ports refuse messages when they have no place to queue them.
Figure 5 shows the identification and resolution of an emergency.

The third sequence of messages causes problems because of the multiplication of messages.

A processor executing a cache miss will send a single read command for four doublewords of

data, and the memory will return four responses, one for each doubleword of data.

This multiplication of messages is desirable for performance. The processors could send

four separate doubleword reads to satisfy a cache miss. This would allow use of the swapping
scheme to handle deadlock cases, but this would also increases message traffic significantly.
Because they are expected to occur frequently, it is worthwhile to optimize cache misses by

reducing the number of required commands.

Multiple responses can be supported by requiring that a port be able to store, i.e. imme-
diately accept, all responses that it requests. Because responses are explicitly requested by a
port, and not spontaneously generated, this can be done. In the current implementation, a
processor is limited to two outstanding cache misses because there are only eight spaces for

resporIses.

With multiple responses returning from one command, the swapping procedure is insuf-
ficient to avoid deadlock and another means of preventing deadlock must be provided. All
responses have a destination willing to accept them if they can get there. The node must
always be able to route a response to its destination port, even if the path to that port is
cluttered up with unaccepted commands. Thus responses must be able to bypass backed-up

commands in order to avoid deadlock.

Within a node, structures called quelets provide queuing and allow responses to pass

commands. A quelet is shown in Figure 6. The associated control must ensure that only
!

one command may be in a quelet at a time. One or two responses, orlone response and one

command may also be in a quelet at a time. Simultaneously allowing two responses in a quelet

optimizes the cache miss case.

At the system level, each ring must always have at least one slot reserved for responses.
This ensures that responses do not become blocked by a ring full of commands. One spare slot
for responses would be sufficient to avoid deadlock, but designating more slots for responses
improves performance. Slots are'ma‘),xj'l-{é“d according to type of message they can contain. Either
a command or a response may use a slot marked “command,” while only a response can use

a slot marked “response.”

Naturally, emergencies and larger scale near-deadlock situations are not expected to hap-
pen often, but the design must handle them. The process of emergency resolution shown
in the simplified example extends to multiple rings and ports at the expense of additional

complexity in the control logic in the node.

Maintaining Time Ordering

The AAP processor’s cache coherency scheme demands that commands be delivered in
time order.l® Specifically it requires that from any destination’s viewpoint, commands from
any single source must be delivered in the order in which they were generated by the source.
Thus the interconnect must ensure both that commands on the ring are accepted into a
destination node in the order in which they were first seen by that node, and that within a
node a command does not pass another earlier command. Because responses are not subject

to time ordering, a response can pass a command.

To support time ordering, a node must accept commands in the order in which they are
generated. Although the cache coherency scheme requires only that commands from a single
writer be time-ordered, in practice the node cannot keep track of the writers of any commands
refused. If a node is unable to accept a command, that command will circulate around the
ring and can be received on a subsequent pass. This introduces the poss;“lbility that commands
could be accepted out of order. Therefore, that node cannot accept any ‘other commands until

it can accept the first refused command.

The time ordering of commands is maintained across both rings with a generation count
scheme. A node maintains two special counters called the Accepting (A) and Setting (S)
generation counts. The value of the Setting counter is recorded in messages when they are first
refused. The Accepting counter follows the Sétting counter and is incremented when refused
messages are finally accepted. These are actually special linear feedback shift registers[5]

whose values never become zero; zero always indicates a new message.

Normally, a node clocks in messages coming around the ring. The node’s A and S counters
are equal, the node is accepting commands, and there are no commands refused by this node

on the ring.

When a node refuses to accept an incoming command, the node sends the command
around the ring after changing the command’s generation count to the node’s S count. The
node then increments its S count for the next command. At some future time, the node can
again accept commands, but because it has once refused a command (i.e. A is not equal to S)
the node must not accept new commands and commands where the generation count is not
equal to A. When the command with a generation count equal to A returns, the node clocks

in the command, increments the A counter, and looks for the next command.
Figure 7 demonstrates this.

An interesting complica'i;ion arises when generalizing to two rings. If two commands, one
on each ring, simultaneously arrive at a node, they both must receive the same value of S.
If both can be accepted when they return, A is incremented. However, if only one can be
accepted when they return, A cannot be incremented, or the unaccepted command would
remain in the ring until A cycled through its full count again. This case is detected and

handled properly.

Latency Minimization

One major problem with a ring interconnect is the large latency for distant transfers.
This problem can be minimized by making the interconnect run as fast as possible. This is
achieved in three ways: transferring bits in parallel, making node-to-node transfers very fast,

and generating control signals a cycle in advance of their use.

The nodes operate at twice the sp';ed of the processors, and ring transfers occur at twice
the speed of the node by means of a distributed register scheme. Consequently, a message

moves through four nodes in the time a processor can execute a single instruction.

A slot on one of the rings corresponds to a physical message. The message is held in the
ring-out latches, shown in Figure 2 after the ring-out block. Latches in adjacent nodes form a
distributed register. Adjacent nodes’ clocks run 180 degrees out of phase, permitting messages
to exist in two nodes at any one clock cycle. Messages leapfrog around the ring, advancing
two nodes during a single node clock cycle. As a result, the ring must have an even number

of nodes.

The node cycle time only allows two levels of discrete 100K ECL logic between registers;
signal propagation delay consumes a significant portion of the available cycle time. The
complexity of the routing calculations requires some control signals to be generated one cycle

ahead of their use.

The node-to-port interface includes a bidirectional data bus, arbitration for that bus, and
handshaking for notification of message acceptance. To allow a short cycle time, arbitration
is performed for the next cycle rather than for the present one. Accept-command and accept-

response signals are also generated for the next cycle.

The node-to-node interface pipelines its control functions across two adjacent nodes. Be-
cause of the tight timing constraints, a node N shows its previous node on each ring which
types of messages N is willing to accept. Assume P precedes N on thelclockwise (CW) ring.
P examines its incoming messages on the CW ring and determines if tl!ley are destined for N
and if N can accept them. P directs N to accept or recirculate the messages accordingly. The
node preceding N on the counterclockwise ring performs the same function for N on that ring.
The control signals for the generation count scheme work in a similar fashion. A node shows
its A and S values to its two previous nodes, which factor them in to the generation of the

clock-message-in and pass-message-on signals.

Traffic Management

Local emergency situations are expected to occur temporarily, especially around highly-

10

utilized system resources; therefore, the network is designed to handle them. The network
will also handle system-wide near-deadlock situations: the collective effect of each node’s
resolution of its local emergencies is to prevent system-wide deadlock. System-wide near-
deadlock is expected to occur rarely. If the system were to approach near-deadlock frequently,
performance would drop drastically, making the system useless. The only expected need for

deadlock avoidance is to prevent an unfortunate timing coincidence from halting the system.

Although there is nothing the interconnect can do about the generation rate of messages,
there is one further routing decision that can significantly affect performance: trying to keep
the ring as empty as possible. Thus, within a node, messages coming from a ring and going
to a port have routing preference over messages originated by and destined for a port at this
node. If the port-in messages were given priority, the node’s ring-in quelet could fill up. If this
happens, the node will refuse to accept commands, and refused commands to this node could
fill every ring command slot. If all command slots were filled, no node could place commands
onto the ring. In general, it is better to make a local port wait a cycle or two than to allow
even one command to back up onto the ring. However, as in the emergency example, it is

sometimes essential that a node route a port-to-port message before a ring-to-port message.

CONCLUDING REMARKS |
Performance

The transfer rate of the interconnect past a node can be calculated as follows:

8 bytes 1 2 rings i
ytes message % Ting =1.1 glgabytes/second
message 15 ns node

Adding nodes increases the bandwidth, ali;hough at the expense of increased latency. The
total interconnect bandwidth is 1.1 éigabytes per second times the number of nodes. Port-to-
port transfers within a node can occur in parallel with ring-to-ring transfers, with a bandwidth
of 0.5 gigabytes per second.

11

Potential Problems

Potential problems of rings include issues such as the fate of lost messages and the effect
of a broken link between nodes. The AAP interconnect does not have a supervisory node
to identify and remove lost messages. Although local area networks can contain supervisory

nodes, such centralized control is inconsistent with the goals of a multiprocessor interconnect.

The network does not detect faults such as broken cables or dead nodes, nor does it
attempt to route around them dynamically. Without message-level acknowledgements, it is
very difficult to detect such faults. The system can, however, be reconfigured off-line by a
front-end processor to avoid dead nodes and allow continued operation with the malfunctioning

hardware still in place.

Status and Future Work

A prototype is expected to be operational by May, 1988. The logic for a single node has
been successfully simulated in the SCALD logic simulator.®! A design consisting of a node,
a processor, and a memory controller has also been simulated. A full multiprocessor with

several nodes, processors, and memories will be simulated in the near future.

With improved implementation technologies it will be possible to speled up the ring slightly,
|
but more leverage would be gained by increasing the amount of queuing in the ports, increasing

the size of the local crossbars, or enhancing the global connectivity of the rings.

The generalization of this interconnection scheme to other processors is also an area for

future work.

Summary

Designing the interconnect of a high-performance multiprocessing system is hard — really
hard! The AAP multiprocessor system has taken a RISC-like approach to solving this problem.

The choice of a ring as the global interconnect provides high bandwidth and short adjacent-

12

node distances at large scales, while the extremely high transfer rate around the ring minimizes
the latency for long-distance transfers. A peak transfer rate of 1.1 gigabyte per second per

node is achieved by this design.

ACKNOWLEDGMENT

Work performed under the auspices of the U. S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48 with support from

the Office of Naval Technology.

REFERENCES

1. Tutorial: Interconnection Networks for Parallel and Distributed Processing, Chuan-lin
Wu and Tse-yun Feng, eds. IEEE Computer Society Press, Silver Spring, Md, 1984.

2. M. T. Liu and D. M. Rouse, “A Study of Ring Networks,” Ring Technology Local
Area Networks, I. N. Dallas and E. B. Spratt, eds., Elsevier Science Publishers B. V.
(North Holland) IFIP, 1984.

3. J. D. Bruner, et. al., Cache Coherency on the S-1 AAP, Lawrence Livermore National
Laboratory, UCRL-97646.

. E. H. Jensen, et. al.,

[SANE N

. D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
Addison Wesley Publishing Co., Reading, MA, pp. 29-30.

6. T. M. McWilliams and L. C. Widdoes, Jr., SCALD: Structured Computer-Aided Logic
Design, Lawrence Livermore National Laboratory, UCRL-80950.
i

13

AlB|C ports

nodes —

clockwisy'

iy

counter-clockwise
rng

Figure 1: Organization of the Ring Interconnect

cw ring in

CW 1 cw
nntg ing
cw cw ou
ring-in ring-out I latch | O4t
quelet quelet
CCw ring in CCW
, Jring | cew
| fout | ring
ccw ccW .
ring-in ring-out I latch | out
quelet quelet

port-out |-aportout

/ quelet
aportin .
b Sort in port-in \
extended b
cportin quelet i / portl-out b port out
| quelet

C
\ port-out _Cp_ortO_Ut.

/ quelet

Figure 2: Block Diagram of the Data Path within a Node

processor a
instruction
stream
cache
1— coherency 4—’
output . | Input
register >< register
output | input
register | register
’ cache
coherency
instruction
stream processor b

Figure 3: Simplified Crossbar Example

aportin \ }
; port-in ‘

b port in quelet

c portin /’ I

i avtandar emergency
port (lqugléttended register

Figure 4: Port-In Extended Quelet containing the Emergency Register

port A
% cmd 4

ring-out end 2 - x loA
loA

K proc

ring-in port-in

cmd 1

cnd 3 cmd 5 |
oA oA X< 1o

{from B) ring

portB portC

5a: An emergency implies that both node and port
are full or nearly full. The X’s show that both the node
and the port are trying to send a command to each other
and being refused. A swap of cmd 2 to A and c¢md 5 to
ring is required.

V portA
port-out and 4

ring-out omd 2 N oA
IcA x

emergency
register
/k omd 3 proc
lo A
ring-in port-in

cmd 1 l
cmd 5
loA o

5c: The port’s newly-emptied output register cre-
ates a hole that must be propagated back to the port’s
input register so the port can accept cmd 2 to A. The
node warned the port of the swap, so the port must in-
ternally choose a command such that the command it
places in its output register will free up its input regis-
ter. When nodes and ports are both saturated, this is
the one hole available to resolve the routing.

port A
: port-out cmd 2
ring-out 0A
A l
emergency

register
cmd 3 proc
10A

ring-in portin

cmd 1
cmd 6 '
oA P

j\ring

5e: Now the hole is in the node’s port-out register.
Here the node must choose a command that allows the
emergency register to be emptied in the near future.
This is usually the command in the emergency register,
unless that command is destined for a ring. Then the
node must select the command in that ring’s ring-in reg-
ister, allowing a swap of commands with the ring, and
allowing the emergency register to send its command to
the ring-out register. The node can perform a swap with
a ring without requiring an extra register. An incoming
command can be clocked into the rine-in logic at the

V port A
ort-out
- 0 P cmd 4
ring-ou cmd 2 10 A
oA x
emergency
register
/l }\ cmd 3 proc
10A
ring-in portin
cmd 1
WA -— msg 5
o
ring
—_—
Nd to swap

5b: The emergency register in the port allows the
node to accept the port’s command first. The node tells
the port that a swap must occur.

port A
port-oult
ring-out emd 2
cmd 5 0 A
to
ring
emergency
regisler
/] \ cmd 3 proc
oA
nng;n1 port-in
cm
cmd 6
oA o
_),\ -

5d: In consuming c¢md 4 to A, emd 6 to ring was
generated. Now the port can accept cmd 2 to A from
the node. Here, because the port’s cmd 5 to ring was
destined for the ring, a second hole appears in the node’s
port-in register. In the worst case, the destination of
this command would be another port, and the command
would wait in the node’s port-in register waiting for the
emergency register to empty.

port A

porl-out
ring-out emd 2
cmd 6 oA
1o
ring

emergency

register

proc
ring-in -
emd 1 port-in
toA cmd 7
lo
—}l\ "

5f: The emergency is over when the emergency reg-
ister is emptied. In the worst case, port A’s commands
would have been destined for another port, so both node
and port would again be full of commands. Another
swap would be needed, and it could be performed be-
cause the emergency register is empty again. The port is
able to make forward progress. If all entities can be ser-
viced, albeit slowly, then full deadlock can be avoided.

: in
in reg
in‘reg
load enable bypass
reg
bypass reg
load enable

Figure 6: A Quelet

sel

out

S=7
A=7
node N

7a: Here is a simplified single ring, with the node
of interest labeled N. Command CI is a new command,
originated in some other node. N’s § and A counters
are equal, but N must now refuse commands. The com-
mand remains on the ring with its generation count
changed to the value of N’s S counter. N then incre-
ments its S counter. The same will happen to command
C2.

S=37
A=7

7c: N can accept commands, but because its S and A
counters are not equal, it cannot accept commands with
generation counts not equal to A. C2 continues around
the ring, but its generation count is not changed this
time.

S$=37

A=17
C1
ﬁ

Pt

Te: N has accepted Cl1. N is still accepting com-
mands and the generation count of C2is equal to A, so
N accepts C2 and increments the A counter.

7b: The commands have been sent on, and N’s S
counter has been incremented.

S=37
A=7
c2
g=17

7d: N’s S and A counts are not equal and N is ac-
cepting commands, but now a command with a genera-
tion count equal to A is seen, so N accepts the command
and increments the A counter.

5=37
A=37

7f: Now S and A counts are equal, so there are no
refused commands destined for N on the ring. N will
accept any new commands.

