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Arrays in Sisal

John T. Feo

Computer Research Group (L-306), Lawrence Livermore Nat. Lab.,
P.O. Box 808, Livermore, CA 94550

Although Sisal (Streams and Iterations in a Single Assignment Language) is a
general-purpose applicative language, its expected program domain is large-scale
scientific applications. Since arrays are an indispensable data structure for such
applications, the designers of Sisal included arrays and a robust set of array
operations in the language definition. In this paper, we review and evaluate those
design decisions in light of the first Sisal compilers and runtime systems for
shared-memory multiprocessor systems. In general, array intensive applications
written in Sisal 1.2 execute as fast as their Fortran equivalents. However, a
number of design decisions have hurt expressiveness and performance. We

discuss these flaws and describe how the new language definition (Sisal 2.0)
corrects them.

Introduction

Sisal 1.0 [7] was defined in 1983 and revised in 1985 (Sisal 1.2 [8]). The language definition
was a collaborative effort by Lawrence Livermore National Laboratory, Colorado State
University, University of Manchester, and Digital Equipment Corporation. Although Sisal is a
general-purpose applicative language, its expected program domain is large-scale scientific
applications. Since arrays are an indispensable data structure for such applications, the

designers of Sisal included arrays and a robust set of array operations in the language definition.

Unfortunately, defining and implementing arrays under applicative semantics is not easy.
There are three major problems. First, an array, like any object, is the result of an expression.
The idea of allocating storage and filling in values is alien to applicative semantics. Second, not
all array definitions are legal. Since an array element can be defined at most once, any
recursive definition which defines some elements more than once is illegal. Third, operations

which modify arrays must first copy their operands. The cost of copying large array is
prohibitive.



To solve the first problem, designers of applicative and higher-order functional languages
have developed array comprehensions and gather clauses. Array comprehensions, or monolithic
arrays, permit the definition of subregions of an array within a single expression. For example, a

4 x 4 block diagonal unit matrix is defined in Sisal 2.0 as

X := array [(l..4, 1..4:
[1..2, 1..23 1, 1, 1, 1;
(1..2, 3..41 0, O, 0, O;
[3..4, 1..2] 0, O, O, O;
[3..4, 3..41 1, 1, 1, 1]

Sisal 2.0 includes array comprehensions, but Sisal 1.2 does not. In Sisal 1.2, arrays are built
primarily by loop expressions that deterministically assemble loop values into arrays via gather

clauses. For example, vector sum is defined in Sisal 1.2 as

X := for i in 1, n
z := A[i] + B[{i]
raeturns array of :z
end for

The loop body generates n z-values which are formed into an array by the returns clause.

What to do about recursive array definition is a difficult problem with no good solution. One
possibility is to exclude recursive definitions all together; however, this restricts a language's
ability to express certain computations and may obscure parallelism. A second alternative is to
accept only those recursive definitions that can be proved legal at compile time. Recent work in
this area appears promising [4]. Finally, a language designer may decide to accept all recursive
definitions and rely on hardware to trap illegal expressions. This solution maximizes
expressiveness, but requires special hardware and without a fine-grain implementation may

introduce deadlock. Recent studies have shown fine-grain implementations to be impractical [2].

For applicative programs to execute as fast as imperative programs, copy elimination is
essential. We cannot overcome the cost of copying large arrays by increased parallelism — there
is simply not enough parallelism. Copy elimination involves three levels of analysis: static
inferencing, node reordering, and reference counting. Compile-time analysis can often identify
the last user of an array. Reordering the graph to schedule read operations before write operations
improves the chances of in place operations. In those instances in which analysis fails, the

compiler can insert reference count operations and runtime checks to identify the last user at



runtime. But if done improperly, reference counting can become a bottleneck and degrade
performance [11]. In recent years researchers have made tremendous progress in the general area
of copy elimination and reference count optimization in applicative and higher-order functional

languages [1,5,14]. The work by Cann [1] has virtually eliminated the copy problem in Sisal.

Although conservative, the Sisal 1.2 approach has been successful. The language includes
gather clauses, but neither array comprehensions nor recursive definitions (in fact, the compiler
enforces a strict "definition before use” style). To eliminate copy operations, the native code
compiler rearranges nodes, introduces artificial dependencies to schedule readers before writers,
and inserts runtime checks when analysis fails [1]. We find that we can express most array
computations easily and concisely in Sisal 1.2, and most array intensive applications execute as

fast as their Fortran equivalents on shared-memory multiprocessors [3].

This paper is organized as follows. Section two describes arrays and array operations in Sisal
1.2 and discusses changes to arrays in the new language definition, Sisal 2.0 [12]. Section three
presents an efficient solution for Gaussian elimination using gather operations. We compare the
Sisal 1.2 code to an equivalent Fortran program on the Alliant FX/80. Section 4 discusses an array
computation which is difficult to express in Sisal 1.2, but easy to express in Sisal 2.0. In section 5,

we conclude by describing some of the new language directions we are persuing.
Arrays in Sisal 1.2

Array Declaration

Sisal 1.2 includes the standard scalar types: integer, real, double precision, boolean, and
character. All other types are user-defined. An array declaration specifies only the component
type (any scalar or user-defined type). It does not specify size, lower or upper bound, or structure —

these are specified by the expressions that create arrays. An array of integers is defined as
type OneDim = arrayl[integer]

In Sisal 1.2, an n-dimensional array is an array of (n-I1)-dimensional arrays. A two-

dimensional array of integers is defined as an array of array of integers,

type TwoDim = array([OneDim]
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Figure 1 - Hierarchial Ragged Arrays

The components of TwoDim can be either the rows or the columns of the mathematical array. Since
the elements of an n-dimensional array are arrays, the size and bounds of each element may be

different. Thus, Sisal 1.2 arrays are hierarchical and ragged [Figure la]l.

Hierarchical arrays are convenient when expressing row- or column-ordered algorithms,
permit row sharing, and reduce copying costs. However, they make read operations more
expensive, prevent easy access to arbitrary subcomponents (such as blocks or diagonals), and
make expressing anything but a row- or column-ordered algorithm difficult. Raggedness is ideal
when programming an array whose rows (columns) have different or continually changing sizes
and bounds. In hydrodynamics codes, an array is typically used to represent a grid of cells — each
cell comprising an arbitrary number of particles. During execution, particles move from cell to
cell. The continual change in cell size is easily programmed using ragged arrays. In LU-
decomposition, the lower and upper triangular matrices may be stored as two ragged arrays in
minimum space. However, ragged arrays do not support strides, make vectorization difficult,

and require a hierarchical storage implementation [Figure 1b].

For the great majority of applications which do not need hierarchical ragged arrays, the
drawbacks are severe. But, since the advantage to some applications is great, Sisal 2.0 includes

both hierarchical ragged arrays and flat arrays.



Array Creation

Any expression which has type array creates a new array. The simplest way to create an array
in Sisal 1.2 is to list the elements,

[a]
I

array OneDim []

[£]
]

array OneDim [1: 1,2, 3]

array TwoDim [1: array [1l: 1,2,3], array [1:4,5,6]1]

The first expression creates an empty array of integers. The type specification is mandatory. The
second expression builds an array of integers with lower bound 1. The type specification is
optional since it can be derived from the element list. The third expression builds a two-

dimensional array (an array of arrays) of integers. ¢ is similar to a flat array with two rows and

three columns.

The most common way to create arrays in Sisal 1.2 is by loop expressions. The for expression
provides a means to specify independent iterations. This expression's semantics does not allow
references to values defined in other iterations. Recursive definitions are not permitted. A for

expression comprises three parts: a range generator, a loop body, and a returns clause. Consider

the expression

u := for i in 1,n cross j in 1,m
z =1+ 3
returns array of =z
end for

An instance of the loop body is executed for each (i, j) pair, I <i <n,1 <j < m. The returns
clause, array of, deterministically gathers the z values into an array. The order of reduction, size,

and structure of the array are specified by the range generator. Thus, u is a two-dimensional

array with n rows, m columns, and ufi, j/ =i +J.

For expressions are expressive, flexible, easy to implement, and exhibit good speedup on
medium- and coarse-grain shared memory multiprocessors. Because the loop bodies are
independent and recursive definitions are not permitted, the runtime system may execute the
subexpressions in any order. Compile-time analysis inserts code to preallocate array storage
where analysis or runtime calculations can determine array sizes [13]. Thus, most results are
built in place eliminating useless copying [3]. For expressions do have one flaw — they couple the

scattering of work and the gathering of result values. This is unnecessary, and results in



confusion and programming errors. A common mistake is to write the transpose of an (n x m)

matrix as

for i in 1,n cross j in 1,m
returns array of X[j, 1i]
end for

This expression returns an (n x m) matrix, not an (m x n) matrix. The correct expression is

for i in 1,m cross j in 1,n
returns array of X[(j, 1i]
end for

In Sisal 2.0, the scattering of work and gathering of results are decoupled. The former governed

by the range generator and the latter governed by the returns clause.

For initial expressions resemble sequential iteration in conventional languages, but retain
single assignment semantics. They comprise four parts: initialization, loop body, termination
test, and returns clause. The initialization segment defines all loop constants and assigns initial
values to all loop-carried names. It is the first iteration of the loop. The loop body computes new
values for the loop names. Unlike for expressions, loop values on the previous iteration are
accessible — old <name> returns the value of <name> on the previous iteration. The returns

clause, array of, gathers loop values in order into an array.

Although Sisal 1.2 prohibits recursive definitions, for initial expressions can build

recursively defined arrays. Consider the array definition

1 i =1
X(i,j)={1 J =1
X(i, j-1D + X(i-1, j) 2<isn, 2<jsn

A legal Sisal 1.2 expression for X is

X := for initial
i = 1;
row := array fill(l, n, 1);

while i < n repeat

i = o0ld 1 + 1;
row := for initial
j o= 1;
x =1



while j < n repeat
j :=o0ld j + 1;
x := old x + old row[j]
returns array of x
end for
returns array of row
end for

The expression is certainly long and obscures parallelism. It is hard to ascertain that
computations along a diagonal are data independent. However, a nonstrict implementation of the
loop bodies — initiate all loop bodies simultaneously and have each wait for its inputs ~ will realize

the parallelism.

If for initial expressions can build recursively defined arrays and do not necessarily limit
parallelism, has excluding recursive definitions cost us anything? Definitely, yes! A for initial
expression can compute new loop values as a function of only the loop values of the previous
iteration. Worse yet, returns array of binds the ith element of the result to the ith iteration. These
two restrictions greatly complicate the programming effort and may increase copying costs. Sisal
2.0 still prohibits recursive array definitions (the performance consequences are just too great),

but does allow users to specify where values computed on the ith iteration appear in the results.

Other Array Operations

Read operations have the form,
x := A[l]

The type of x is the component type of A. The shorthand notation, A/i, j/, returns the jth component
of the ith component of A. In Sisal 1.2, you can read (access) only single elements. This is
unfortunate because many array computations operate along diagonals or within blocks of an

array. Sisal 2.0 permits reads to any contiguous set of elements separated by a constant stride.
Write operations have the form,
X := A[l: 0, 1, 2]

The expression preserves single assignment semantics by creating a new array, x, which is
identical to A except that the first, second, and third elements are 0, 1, and 2, respectively. The

inclusion of such explicit write operations simplifies copy elimination analysis. If the compiler



can ascertain, or a runtime check can assure, that the write is the last consumer of A, then the
update can execute in place. Although write operations can change several element values at once,
the syntax is still too limiting. Values along diagonals or within blocks cannot be changed in a

single expression. Like reads, Sisal 2.0 permits writes to any contiguous set of elements separated

by constant stride.

Sisal 1.2 also includes operations to concatenate arrays, insert or remove values at either end
of an array, set the bounds of an array, and return an array's size. Except for concatenation and
array size, the more general syntax of read, write, and array creation in Sisal 2.0 supplants the
other operations. It remains to be seen whether we have overly complicated copy elimination

analysis by replacing explicit array modification operations with more general expressions.

LU Decomposition
LU decomposition is a method to solve systems of linear equations of the form
Ax=5b

where A is an n x n matrix, and x and b are n x I column vectors. The method reduces A into a
lower (L) and upper (U) triangular matrix. A common solution method for LU decomposition is
Gaussian elimination without pivoting. The algorithm comprises n iterative steps. At step i, rows

i + 1ton are reduced by row i. Row i is called the pivot row and A/, i/ is called the pivot element.

The reduction executes in two steps:
1. Alk,i]=Alk,i]/A[i, i] i+I<k <n
2. Alk,l]=A[kR,1]-Alk,1]* Ali,l], i+1<k,I<n

L comprises the n column vectors computed in step 1 (the multipliers) and U comprises the n pivot

TOWS.

Since A is modified every iteration, a functional implementation of Gaussian elimination
creates n - I intermediate copies of A. As the computation progresses, the number of computations
decreases and the amount of computationless copying increases. Solutions have ranged from
proposing new algorithms [6,10] to extending the idea of monolithic arrays [4]. However, Sisal's

gather operations solve the problem naturally and efficiently.

Consider the following functions



type OneDim array[double_ real]

type TwoDim array[arrayl[double_real]]

function GE(n: integer; A _in: TwoDim returns TwoDim, TwoDim)
for initial

i :=1;

P := A _in[1];

M := Multipliers(i, n, A_in);
A := Reduce(i, n, M, A in)

while i < n repeat

i :=o0ld i + 1;

P := old A[i];

M := Multipliers (i, n, old Aa);
A := Reduce(i, n, M, old 1)

returns array of M
array of P
end for

end function % Gaussian Elimination

function Multipliers(i,n:integer; A: TwoDim returns OneDim)
for k in i+l, n
returns array of A[k,i1] / A[i,i]
end for

end function % Multipliers

function Reduce(i,n: integer; M: OneDim; A: TwoDim
returns TwoDim)
for k in i+l, n cross 1 in i+l, n
returns array of A[k,l] - M[k] * A[i,1]
end for
end function % Reduce

In function GE, P is the pivot row, M is the vector of multipliers, and A is the reduced matrix.
Notice the number of rows and columns in A decrease by one every iteration. There is no copying
and no useless computation. Every computation is necessary and computes a new value. The
vectors of multipliers and pivot rows are gathered to form L and U. Both arrays are ragged;
however, it is easy to extend the code to return rectangular arrays. Because the gather operation
removes P and M from the computation, the code avoids useless copying. The completed portion of
L and U are not carried (i.e., copied) from iteration to iteration. Unlike the equivalent Fortran

code which stores the reduced matrix back into A, the Sisal code preallocates new storage for A and



deallocates the storage for old A every iteration. Although this is cheap, it is not an insignificant

expense.

We compared equivalent Sisal and Fortran versions of Gaussian elimination on a 200 x 200
problem on the Alliant FX/80. The Sisal execution times on one and five processors were 7.53 and
2.30 seconds, respectively. The Fortran execution times were 7.09 and 1.42 seconds, respectively.
The Sisal code was approximately 6% slower than Fortran on one processor and 62% slower on five
processors. It was slower because it spent 1.15 seconds on one processor and 0.61 seconds on five

processors allocating and deallocating memory. Also, the speedup of the Sisal code was poor

because memory deallocation is sequentially.

Clearly, not reusing storage is hurting performance. There are two solutions. One possible
optimization is to allocate space for two n x n arrays outside the for initial expression and use the
two arrays alternatively for A and old A. At the end of each iteration we would swap pointers
instead of allocating and deallocating memory. A second solution is to use flat arrays. We have
found repeatedly that managing hierarchical arrays is expensive. The cost of allocating and
deallocating a hierarchical array is linear in the product of the sizes of the outer dimensions, and
the cost of accessing the innermost component is linear in the number of dimensions. For flat
arrays the cost of both these operations is constant. We expect the Sisal 2.0 version of Gaussian

elimination, which will include both optimizations, to execute as fast as the Fortran code.

Segmental Recomputation

Segmental recomputation is a simplification of the second Livermore Loop [9]. Let X and V be

two n element vectors (assume n is a power of 2). Compute new values for X as follows:
1. Initialize LHS, RHS, and VHS as:
X(1.. %, XiFe1. 2y vizer.
2. Compute new values for the elements of RHS

RHS(i) =LHS(2*1i) + V(i) 1<i<

3. Advance LHS, RHS, and VHS:
n 3n 3n
X[§+1"T]’ X[‘4_+1--j3—]y V['——‘+1..,—8—]

4. Gotostep2

10



Figure 2 - Segmental Recomputation

Continue until X is exhausted. The algorithm comprises Log n iterative steps. Figure 2 depicts the
algorithm's state after the first step. The computations at Step 2 are data independent and can

execute in parallel. Moreover, since LHS and RHS are disjoint, X can be updated in place.

Since Sisal 1.2 lacks subarray operations, the (Log n) RHS vectors must be built independently
and gathered into an array by the reduction operation

returns value of catenate rhs

The Sisal 1.2 code is
type OneDim = array[double_ real]

function SegRec (X, V: OneDim returns OneDim)
for initial

n := array_size(X) / 2;
vhs := 0;
rhs := array adjust(X, 1, n)
while n > 1 repeat
n =o0ldn / 2;
vhs := old vhs + old n;

rhs

for i in 1, n
returns array of

old rhs(2 * 1] + V[vhs + 1]
end for

returns value of catenate rhs
end for

end function % Segmental Recomputation

Two points about the code: 1) instead of forming the subvector VHS every iteration, we use a

pointer, vhs, to point to the start of the subvector; and 2) observe that LHS is just old RHS.

11



The performance of this routine is dismal; in fact, regardless of the size of X, computing the
new values for X one at a time is faster. The Sisal optimizers completely break down on this code.
First, the runtime system allocates new memory for rhs every iteration, and deallocates old rhs
every iteration. Second, the optimizers fail to recognize (and who can blame them) that X can be
updated in place. Third, the build-in-place analysis fails to preallocate memory for the result.
Thus, not only do we copy rhs every iteration as we move it into the result, we also copy the partial
result every iteration as it grows and requires more space. The optimization discussed in the
previous chapter (allocate two arrays outside the for initial expression and switch back and forth)
alleviates the first problem, and an enhanced build-in-place analyzer solves the third problem.
But unless X is updated in place, the cost of copying rhis every iteration will destroy performance.

The computation per loop body (one addition) is too small the recuperate much, if any, of the cost.

The problem is not weak optimizers, but poor syntax. The lack of subarray operations destroys
all hope of realizing that X can by updated-in-place. In Sisal 2.0, which includes subarray
operations, the algorithm is clean, concise, and easily optimized for update-in-place. The Sisal
2.0 code is

type OneDim = array[double_real]

function SegRec (X, V: OneDim returns OneDim)

let
n := size(X) / 2;
i:=1;
j :=n

in

while n > 1 do

newn :=n / 2;
new i := j + 1;
new j := j + n;
new X := X[new i..new j:

X{i..j..2] + Vinew i..new j]
returns X
end while
end let

end function % Segmental Recomputation

Here we use i andj to point to the start and end of each subvector. The plus operation on Line 13 is
an element-by-element vector addition. The update of X is now obvious. Moreover, it is easy for
the compiler to realize that the subarray of X which is written, X/new i.. new jJ, is disjoint from

the subarray which is read, X/i..j.. 2/, since new i :=j + 1 (Line 10).

12



Conclusions

In this paper we discussed the definition of arrays in Sisal 1.2 and the changes to arrays in the
new language definition, Sisal 2.0. The biggest changes are: true multidimensional arrays (flat
arrays), array comprehensions, and subarray operations. We showed that these changes can
yield more readable code and better performance. We are hopeful that the optimization techniques
developed for Sisal 1.2 are extendable to the new language definition. The goal of any functional
language must be to achieve equivalent, or better, performance than Fortran; otherwise, the
language will not be widely accepted. Sisal 1.2 did achieve Fortran-like speed on shared-memory

multiprocessors. We believe Sisal 2.0 can achieve even better performance.
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