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GODUNOV METHODS ON A STAGGERED MESH - AN IMPROVED 
ARTIFICIAL VISCOSITY 

RANDY B. CHMSTENSEN 
Lawrence Livermore National Laboratory 

Livermore, California 

ABSTRACT 

We present a method for obtaining a High-Order, Non-Oscillatory hydro scheme 
for staggered mesh, internal energy-based codes using a simple modification of the 
standard von-Neumann artificial viscosity method. This modification is derived by 
applying the Godunov technique directly to a staggered mesh and replacing the full 
Riemann solution by a particular approximate Riemann solver. It will be shown to 
deliver results much better than the standard scheme and comparable to other modem 
hydro methods. 

INTROI>UCTION 
Shock Hydrodynamics plays a key role in many applications. While the von Neumann- 

Richtmyer Artificial Viscosity method used to treat shocks in the vast majority of our codes is 
very general, easy to implement, and computationally efficient, it has several weaknesses: 1) It 
typically produces overly thick or oscillatory shock profiles, 2) It is incapable of properly treating 

1 weak shocks, and 3) It displays Noh's Q Errors. 
During the last decade or so, a number of high order differencing schemes for the e uations 

of hydrodynamics have been developed, such as the Flux Corrected Transport (FCT), Total 
Variation Diminishing (TVD), and High Order Godunov methods, that: 1) Give nearly 
optimally thin shocks (1 - 3 zones), 2) Have greatly reduced oscillations behind the shocks, 3) 
Accurately treat weak shocks, and 4) Typically display significantly smaller values of the Noh Q 
errors than Artificial Viscosity based methods. 

Unfortunately, these methods, as presented, are not directly applicable to the staggered 
mesh, internal energy-based codes most commonly used today to solve the problems of 
continuum mechanics. 

In the remainder of this paper, we will derive a High-Order, Non-Oscillatory hydro scheme 
for staggered mesh, internal energy-based codes that is a simple modification of the standard von- 
Neummn artificial viscosity method. This modification is obtained by applying the Godunov 
technique directly to a staggered mesh and replacing the full Riemann solution by a particular 
approximate Riemann solver. It will be shown to deliver results much better than the standard 
scheme and comparable to other modem hydro methods. 

qz 
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THE GODUNOV METHOD ON A SPATIALLY STAGGERED MESH 
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The starting point for any non-oscillatory, high-order scheme is a non-oscillatory first-order 
scheme. tn this section we will apply the Godunov method directly to a spatially (not temporally) 
staggered mesh to obtain such a scheme. We will restrict our attention to a Lagrangian 
formulation, since the extension to an Eulerian formulation via a Lagrange plus remap approach 
is straightforward. Our procedure for applying the Godunov method to the staggered mesh (see 
fig. 1 for notation) has the following steps: 

1) Solve the Riemann problems at the edges of the momentum control volumes (cell 
centers), where there are discontinuities in velocity (but not density, energy, or pressure). The 
pressure, PRk, from the solution to the Riemann problem at these points can then be used to 

update the velocities, Wk+1/2: 

where 6 t  E the time step, and 

Mk + 1/2 = 0.5 (Mk+h'fk+l ) .  

2) Solve the Riemann problems at the cell edges, where there are discontinuities in density, 
energy and pressure (but not velocity). We will use the pressure, PRk+1/2, and the velocity, 

WRk+l/2,, from the solution to the Riemann problem at these points to update the internal energy: 

To do this, however. we must first update the total energy, Ek, using the PRk+l/2 and 

Rk+ 1 /2:: 

A Ek =6  (PRk-1/2WRk-1/2 - PRk+1/2WRk+1/2) 

Use eq. 3 to update the internal energy using the relation: 

Liek = AEk-AKEk , where 

KEk =Mk [w2k-1/2 +w2k+1/2] /4. (EQ 5 )  

Some straightforward algebraic manipulation (using eq. 1, 2, 3, and 5) of eq. 4 gives the 

Aek 
6t 

following expression for - : 

1 n + 1 / 2  - n +  1/2 
- = PRk (wk- 112 wk+ 1/2 
Aek 
6t  
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(EQ 7) n+ 1/2 AEFk+l/2 = [PRk+l/2WRk+l/2 - PBk+l/2 w k  + 112 1, 

n+ 1/2 - Awk + 1/2 
and wk+ 1/2 = w F + 1 / 2 +  2 (EQ 9) 

Note that the first term on the RHS of eq. 6 is the same expression used in our "standard" 
method with PR + P+Q. The second term does not affect total energy conservation, but rather 
represents a flux of energy between zones. Our "standard" codes simply ignore this term. 

We have now generated expressions for updating both the velocities (and hence densities 
and positions) and the internal energies on a spatially staggered mesh in terms of the solutions to 
a set of Riemann problems defined on the two sets of control volumes. Our next step is to replace 
the full solutions to these Riemann problems b a particular approximate solution based on that 
suggested by Harten, Lax, and van Leer (HLL). k 
HLL APPROXIMATE RIEMANN SOLVER 

Since much of the detailed information provided by a full solution of the Riemann problem 
is lost in the projection step of a Godunov method, it is possible to replace the full solution by an 

5 approximate solution with little effect on the answer. Harten, Lax, and van Leer (HLL) 
proposed an approximate Riemann solver with one intermediate state that needs as input, in 
addition to the initial conditions, only the lower and upper bounds, aL and aR, respectively, for the 
smallest and largest signal velocities. 

For the Lagrangian equations of motion, ut + f(u)M= 0, where 

u = [i , flu) = k: , andVistherelativevolume, 

the HLL approximate solution to the Riemann problem is given by: 

where 
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In addition, we have the following expression for the flux: 

~ L R  = [ ( a ~ f ~  - a ~ f  R) + ~ R ~ L ( U R  - UL)I 1 ( a ~  - (EQ 13) 

In order to use this approximation we must make a choice for aL and aR. For reasons which 

will become clear, we make the following choice: 

aR = D R X C  (EQ 14) 

= -DL X C aL 
The quantity C in eq. 14 is an estimate of the maximum speed of the signals generated in the 

interaction of the left and right hand sides (The density factors are present because we are using 
Lagrangian coordinates). 

A useful approximation for this quantity in the vicinity of a shock is 

where C!; is the sound speed of the unshocked material and a is a material dependent quantity 
which can be derived from the equation of state or determined empirically from a particle- 
velocity/shock-velocity plot (A similar approximation was used by Dukowicz in his derivation 
of an approximate Riemann solver). 

6 

Combining eq. 12-15 gives us the following expressions for PLR and WLR: 

where A W  = IWR - WL/ , and (EQ 17) 

Using eq. 16 and 18 we can finally generate expressions for the quantities we need in eq. 1 
and 6: 

- D k + l P k + D k P k + l  

Dk+ l + D k  
PRk+ 1/2 - 
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THE CONNECTION WITH ARTIFICIAL VISCOSITY 
We must make one more approximation to complete the connection with our “standard” 

artificial viscosity based codes. This approximation involves setting the energy flux terms in eq. 6 
equal to zero. (Note that this does not destroy conservation of energy or alter the rate at which 
kinetic energy is transformed into internal energy.) 

This approximation is equivalent io moving the zone boundaries with the velocity 

+ rather than with WRk+l/2, and replacing PRk+l/2 with PBk+l/2. Observe that for wk+ 1/2 
uniform zoning, PRk+l/2 and PBk+1/2 are identical anyway. 

Given this last approximation we see that we have arrived at the same set of equations used 
in a “standard”, first-order7 staggered-mesh Lagrangian scheme if we make the following 
substitution: 

We have now arrived at a most interesting result: 
Our “standard” staggered mesh artijiciul viscosity method can be made completely equivalent 
(modulo the energy flux terms) to a staggered mesh Godunov method based on the HLL 
approximate Riemann solver by simply choosing the coeficients of the linear and quadratic 
terms in accordance with eq. 22. 

SECOND ORDER EXTENSIONS 
For the sake of simplicity, we will not explicitly tackle the problem of staggered temporal 

meshes. In practice we have found that using the existing temporal centering in the Q 
formulations of temporally staggered mesh codes in conjunction with the modified spatial 
formulations described below has been quite satisfactory. Further work on this problem is 
underway. 

Given the close connection we have established between our “standard” artificial viscosity 
and the Godunov method, it is now straightforward to use the same techniques that have been 
used to obtain spatially higher-order extensions of the Godunov method to do the same to our 
“standard” method. We have implemented schemes based both on the “pre-processing” methods 
of van Leer and the “post-processing” TVD methods of Harten . While each has its own 
strengths and weaknesses, they can all be made to work well. 

4 3 
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One simple second-order extension to implement is based on a TVD approach. In this 
approach. we simply express our fluxes (in this case P + Q), as the sum of a first-order part (Q) and 
;L second-order part (P) and put a multiplier on the first-order part that goes to one in the 
neighborhood of rapid oscillations in the velocity field (this includes shocks) and to zero 
elsewhere. 

While formally we can achieve second order accuracy by limiting only the linear term in the 
artificial viscosity, in practice we have found it beneficial to also limit the quadratic term, albeit 
more gently: 

I AW AW X ( 1 - Q) in the linear term, and 

AWIAW X (1 - Q 2 )  in the quadratic term 

where Q is the TVD limiter: 

Qk = max(0, min(.5(R~ + RR), ~ R L ,  ~ R R ,  I)), 

(EQ 23) 

, (EQ 26) 
aw w k -  1/2 - wk-3 /2  wk+ 1/2 - wk - 1/2 

Xk+1/2  k - 1 / 2  - X  - X  k - 1 / 2  k - 3 / 2  X 
(- 1 = 
ax L 

aw wk+ 3/2 - wk+ 1/2 
(T = (EQ 27) 

- X  X k + 3 / 2  k + 1 / 2  'dx R' 

This completes the spatially second-order accurate extension of our new method. In 
practice, applying this method to existing staggered mesh, artificial viscosity based codes allows 
them to perform competitively with existing second-order Godunov based codes with 
considerably less computational effort and complexity. Shock widths are decreased by 30% to 
50%, and post-shock oscillations are eliminated or significantly reduced. A number of previously 
mentioned classic difficulties, such as wall heating, radioed zone errors, and spurious 
convergence heating are similarly reduced. 

EXTENSION TO MULTIPLE DIMENSIONS 
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Once again following in the path of existing high-order Godunov methods, we have used 
operator splitting as the main way of extending our new method to multiple dimensions. 

This leads to a “split Q 7 ,  where there is a separate Q (with a separate limiter) for each 
velocity component. For codes with face-centered velocities, the previous 1D derivation can be 
applied without modification. For codes with node-centered velocities the quantities 4( and Cs,k 
in eq. 22 must be replaced by a simple average. 

Although we have found this “split Q’  approach to be quite satisfactory, we have developed 
an un-split, fully tensor-invariant formulation (but that’s another paper). 

CONCLUSION 
We have demonstrated the close relationship between the Godunov method on a staggered 

mesh arid our “standard” methods and used this connection, in conjunction with the HLL 
approxirnate Riemann solver, to develop a Non-Oscillatory, High Resolution hydro method using 
artificial viscosity 

This method has been applied to existing ID Lagrange codes, 2D face-centered and node- 
centered Eulerian codes and 2D node-centered Lagrange and ALE codes. The method has proven 
easy to apply and computationally economical to use. 

The results obtained with these codes (see below) are equivalent in quality to those obtained 
by the better known cell-centered, total-energy based FCT, high-order Godunov, and TVD codes. 
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Fig. 1. Variable Placement on Staggered Spatial 
Grid 

Fig. 2. 
'Neumann Q on Noh Problem (same zoning) 

Density Curves for New Q and von 

Fig. 3. Density Curves for New Q (doubled 
zone size) and the von Neumann Q. 

Fig. 4. Energy Curves for New Q and von 
Neumann Q (same zoning) 

Fig. 5. One-Dimensional Blast Wave Problem of 
Woodward and Colella - Initial Condition 

Fig, 6. Velocity Plot of Blast Wave Prob. at t = 

.018. Note only two cells across shock. 

Fig. 7. Density Plot of Blast Wave Problem at t = 

.036 for von Neumann Q, New Q First Order, 
and New Q Second Order. 

Fig. 8. Density Plot for Andronov Shock Tube 
Problem (weak shock). 
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Staggered Mesh Centering 

One Dimensional Example d l  
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Fig. 3. Density Curves for New Q (doubled Fig. 4. Energy Curves for New Q and von 
zone size) and the von Neumann Q. Neumann Q (same zoning) 



Fig. 5. One-Dimensional Blast Wave Problem of Fig. 6. Velocity Plot of Blast Wave Rob. at t = 
Woodward and Colella - Initial Condition .018. Note only two cells across shock. 
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Fig. 7. Density Plot of Blast Wave Problem at t = 

.036 for von Neumann Q, New Q First order, 
and New Q Second Order. 
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2 J f ANDRONOV SHOCK TUBE PROBLEM 
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Fig. 8. Density Plot for Andronov Shock Tube 
Problem (weak shock). 




