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When a pulsed electron beam hits a metal plate with sufficient
energy a volume of the metal becomes hot fluid that subsequently
sprays out of the plate. A portion of this flow is ionized. This report
describes a fluid that expands so rapidly into a vacuum that the
ionized portion of the flow departs from local thermodynamic
equilibrium. This cold supersonic exhaust will have a much higher
degree of ionization, and of higher electron temperature, than would
be expected from a gas in thermodynamic equilibrium at the local
temperature of the neutral flow. This report presents a continuation of
the work described in reference (1).

My aim is to develop as simple a model as will reasonably
predict the speed and density of neutral flow, and the temperature
and density of plasma. I use simplifying assumptions and
mathematical approximations to develop convenient formulas, and I
test them by comparing specific examples to experimental data and
computations by DeVolder and other Los Alamos scientists (2).

The phenomenon of sudden expansion of a gas cloud into
vacuum is described in several sections of the two-volume work by
Zel’dovich and Raizer (3). The criterion I use for estimating the point
in the flow where plasma ceases to be in equilibrium is in principle
that proposed by Bray (4), (5), and discussed extensively by Vincenti
and Kruger (6).

The immediate concern motivating this work is how to design a
metal target that accurately converts an electron beam pulse train
into a radiation pulse train for use in the high-speed radiography of
implosion hydrodynamics experiments. In the radiography



application, either the electron beam must be swept magnetically
along the metal target more quickly than the spread of the debris
plume, or the metal plate must move laterally past a fixed point of
impact, carrying its plume with it. What is this speed, and how dense
is this splash flow? Aside from its technological application, this
problem has an intrinsic interest because it includes such a wide
range of physical phenomena, and because it is an analog in miniature
of supernova explosions. A small hot source created quickly propels
an expanding flow into a vacuum, and this flow contains a remnant
plasma that preserves information about the earliest moments of the
flow.

The plan of this report is as follows. The section “Heat source
and neutral flow” reviews the physics of an electron beam pulse that
generates enthalpy, which in turn propels a flow of neutral target
material. The section “Thermal plasma” shows the Saha equation used
to estimate the initial degree of ionization in the fluid and the
collisional ionization rate coefficient used. The section “Frozen flow”
describes the criterion that indicates when plasma has ceased to be in
thermodynamic equilibrium with the neutral flow. The section “An
Example” shows a specific case that was originally measured and
calculated at Los Alamos, and described in reference (2).

Heat source and neutral flow

An electron penetrating matter will deposit some of its energy
into enthalpy directly by collisions, and by emitting bremsstrahlung
radiation, a portion of which is absorbed. The details of this physics
are drawn from Berger and Seltzer, (7) and (8), and Fermi (9), and are
summarized in “Appendix 1: Energy loss by electrons.” Thin metal
plates of high atomic number (Z) are used as radiation sources because
they generate a higher proportion of radiation and absorb little of it.
For thin plates, most of the heating is due to the collisional term of the
energy deposition. The simplest estimate of this energy deposition
was used in reference (1) and is

(1/p)dE/dx = 1.6 MeV-cm2/gm (1)



This value is within about 40% of the actual deposition in thin targets
for electrons between 1 and 20 MeV for a wide range of materials. A
better estimate of energy deposition is given by using the formulas in
Appendix 1, and by accounting for absorption of radiation by the
target. Specific examples of collisional and radiative (1/p)dE/dx for
aluminum and tantalum are shown in Appendix 1.

The report cited in reference (1) describes a model for
determining the volume and temperature of hot fluid produced by
electron beam “stopping power,” (1/p)dE/dx. The stagnation
temperature (temperature at zero mass-average velocity) is the
governing parameter, as the flow is assumed to be isentropic and a
perfect gas. The flow within the plate is an unsteady, one-dimensional
expansion, and on exiting, it continues as a two-dimensional
supersonic expansion. This two-dimensional flow is treated in
reference (1), and here, as a sequence of time intervals that each have
a steady flow with a different mass flow rate. Flow at the exit areas,
where the electron beam enters and exits the plate, is at Mach 1; the
flow velocity equals the speed of sound.

Mach number is the parameter that ties all flow variables
together. A refinement to the analysis in reference (1) is the use of
the “stream-tube-area relations” to find the Mach number,
temperature, velocity, and density of the two-dimensional expansion
as functions of distance from the exit area. The stream-tube-area
relations are based on the assumption that flow properties are
constant across any cross section of a stream tube, and the stream
tube outside the plate is assumed to bound a hemispherical expansion.
The equation of mass conservation for a stream tube is

pVA = constant = p.C.A. (2)

for the product of density p(R), velocity V(R), and area 2nxR?, and
where the star subscripts refer to conditions at the throat (one on
each side of the plate), where M = 1. See the work cited in reference
(10) for a complete and elegant summary of compressible flow
formulas. Shapiro (11) discusses the subject thoroughly.



A formula for Mach number as a function of distance, M(R), is
derived by using the relationship between A./A and M from

reference (10), with A./A = (nro2)/(2=xR?), and is
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Here y is the ratio of specific heats (5/3 for a monatomic gas), and nrg?
is the area of the electron beam as it enters the plate. Only flow
counter to the electron beam is considered. Flow is modeled for radial
distances R = ro/v2, and Mach 1 flow is assumed to extend from R = O
to R =< ro/V2. Figure 2 in reference (1) shows that this is physically
reasonable. The temperature, velocity, and density of the flow at a
given distance from the exit area are given by:
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where Ty is the stagnation temperature, Cg is the stagnation speed of
sound, and pg is the stagnation density at a delayed time that accounts
for travel over distance R. The stagnation density drops as the source
volume vents, see reference (1) for a detailed discussion.

At high Mach number, and for y = 5/3, the following relations
with respect to R occur:
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Already by R = 2rg the flow has M > 5 and is at 94% of maximum
velocity 1.7321c¢q. At R = 40rg the flow has M = 37, the temperature
ratio is 0.0022, and the density ratio is 0.0001. The analysis of the
flow in reference (1) used the high Mach number approximation.

The difference between the neutral density p(R, t) found with
the stream-tube-area relations, equations (3), (4), (5), and (6), or the
high Mach number approximations, equations (7), (8), (9), and (10), is
negligible for examples typical of the radiography application.
However, the quantity of plasma throughout the flow is largely
determined by the steep gradients of flow properties near the exit
area, and for this the accuracy of the stream-tube-area relations is
essential.

Thermal plasma

The equation developed by Saha (1920) for the equilibrium
concentration of plasma in a gas at temperature T in °K is



N (11)

Equation (11) is in the form shown by Cobine (12) and also by
Vincenti and Kruger (6). Here electron and ion densities are assumed
equal (ne = n,), the gas pressure is p = KNT with number density N =
p/my (for atomic mass my), the factor involving the ion degeneracy g,
and neutral degeneracy gy is assumed equal to one, Vj is the
ionization potential in eV, k is Boltzmann’s constant, h is Planck’s
constant, me is the electron mass, and e is the elementary charge. For
T in units of eV the equilibrium concentration is
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This restatement of Saha’s equation is consistent with forms shown by
Tanenbaum (13), and Mitchner and Kruger (14). For Tin eV and N in
cm3, the function K(T, N) is

K(T,N) = (3.0183 x 10 1)1 73/2e-w/T
cm3evy/2 N (13)

Electron collisional ionization is assumed to dominate photo-
ionization and atomic collisional ionization because electrons maintain
the highest collision frequency of any species during flow. A rate
coefficient « for ionization by electron impact is

o
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The rate coefficient a has the units of s-1. Units of eV are used for T
and V;. Finally, o; = 0.8798 x 10-16 cm?2, the cross section defined by
the first Bohr orbit at radius 0.5292 x 10-8 cm. The cross section for
ionization is assumed to be a step function with a threshold at V; and
a magnitude of ;. This cross section model is a simplification
suggested by the ionization cross section formulas by each of Drawin
(1961) and Gryzinski (1965), which are described by Mitchner and
Kruger (14). Equation (14) is the result of integrating the product of
ionization cross section and electron thermal speed over a Maxwell
electron energy distribution.

Frozen flow

Consider flow where T and N may depend on spatial coordinates
but not on time; this is steady flow. From the perspective of a frame of
reference moving with the mass-average velocity of the flow, the time
rate of change of plasma density within a small parcel of fluid is

Jan
€ = ane - Pné

at (15)

for ionization rate an. and recombination rate Pn.n,. Only single
ionization is assumed for simplicity. A parcel in local thermodynamic
equilibrium will have a concentration of plasma ne = n, = a/P, where
the rate coefficients a and P each depend on T and N. If the plasma
density is perturbed from equilibrium by a small quantity »n, then
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where small terms of second order are neglected. The ionization rate
coefficient is the measure of the responsiveness of the fluid to
perturbations from equilibrium of its plasma density.



The equation of continuity for the plasma species from the
perspective of a static frame of reference is

Me | ¢.n.V = 0

ot (17)

where V is the mass-average velocity and plasma diffusion is
neglected, and there are no external sources or sinks of plasma. In
steady equilibrium flow the local rate-dependent processes
compensate for any local inflow or outflow of plasma density, so
equation (17) can be restated as

ale - Pné¢ + V-neV = 0 (18)

Rate-dependent processes are so fast in equilibrium flow that they
easily adjust to any changes introduced by transport. If L, is a length
scale for the variation of density, and Vis a characteristic flow
velocity, then al,/V >> 1. This nondimensional parameter is the
exponential in equation (16) when t = L,/V, the time scale for the
variation of density.

The temperature and density drop so precipitously during the
rapid expansion into the vacuum, that both the ionization and
recombination rate coefficients decrease by orders of magnitude over
a short distance. The steady flow far downstream from the source is a
simple geometric expansion at constant velocity,

20 d(R%ny) -0
y-1R?dR (19)

and with alL,/V << 1, the plasma density is “frozen.” The frozen
plasma density is well above what would be expected from local
thermodynamic conditions because the three-body recombination
reaction no longer occurs in the cold and rarefied flow.

The transition from equilibrium flow to frozen flow is sudden,
and it can be approximated as occurring at a single hemispherical
cross section of the expansion. At this transition point, recombination



is negligible and the rate of change due to ionization is comparable to
the rate of change due to transport, or equivalently alL,/V = 1. The
criterion for determining the point of transition is

Otﬂe + Vnev = O = O{He + LQ(RZHQV)
R? dR (20)

an idea originally proposed by Bray, see references (4), (5), and (6).
Note that the quantities in equation (20) are calculated on the basis of
equilibrium flow. Conditions prior to the transition are taken to be in
complete equilibrium, and conditions after the transition are assumed
frozen.

An explicit formula for the coordinate Ry at the point of
transition is derived from equation (20) by using the stream-tube-
area relations to specify VIM(R)], TIM(R)], NIM(R), t], the Saha equation
for ne, and a formula for the ionization coefficient a( 7T, N). This result
is

Ro = 2V 4 [0 D0 -9HE + V-1 -9 2 MLy
b a{[ MZ](3y+5)M2—1 }
(21)

where all quantities are calculated on the basis of equilibrium flow at
coordinate R = Rg. These quantities are the velocity V, ionization rate
coefficient a, ionization fraction ¢, temperature T in eV, and Mach
number M. A summary of the derivation is presented in “Appendix 2:
Bray criterion.” The implications of equation (21) are easier to
visualize by considering the limit of high Mach number (M2 > 2), low
ionization fraction (¢? < 1), and temperature well below the ionization
potential Vi,

IR R ISP

The distance between the exit area (M = 1) and the transition to
frozen flow diminishes as the freezing temperature increases, up to
the limit (y - 1)Vi/(3y + 5). The freezing temperature for thisy = 5/3



flow has an upper limit of Vi/15. For aluminum this limit is 0.4 eV,
and for tantalum it is 0.5 eV. If the freezing temperature is at half of
the maximum value then Rg = 2V/a, or equivalently aRp/V = 2.

An Example

A specific example of these phenomena is the experiment with
an aluminum target described by DeVolder and her colleagues (2). An
electron beam of 3.8 kA at 5.25 MeV within a diameter of 1 mm and a
pulse width of 70 ns strikes an aluminum plate 0.8 mm thick. Figures
1, 2, 3, and 4 show the log of the neutral density, the log of the plasma
density, the log of the ionization fraction, and the electron
temperature for this example as calculated by using the formulas in
this report. I will use this example to illustrate the model presented
here.

As shown in Appendix 1, electrons lose (1/p)dE/dx = 1.657
MeV-cm2/gm, of which 1.527 (92%) is a collision loss and 0.130 (8%)
is a radiative loss. Assuming bremsstrahlung photons have an average
mean-free-path A, = 1.4 cm, then 1.3% of the radiative loss contributes
to material enthalpy. This estimate of absorption is described in
“Appendix 3: Radiation capture.” The stagnation temperature is found
to be Tg = 2.85 eV by using (1/p)dE/dx = 1.529 MeV-cm2/gm in the
formula shown in reference (1).

Figure 5 shows the log of the neutral density as a function of
time at the exit area. This is the result of the one-dimensional,
clumped-wave analysis of the flow within the metal plate. The report
cited in reference (1) is largely devoted to describing this clumped-
wave analysis. The flow at the exit areas is at Mach 1, the ratio of the
density there to the stagnation density is 0.6495. This is the source
history seen by the external two-dimensional flow. It is very
convenient to model this two-dimensional flow as a sequence of
steady flows each at a mass flow rate set by the “steps” of Figure 5.
The mass front, seen as the cliff in Figure 1, moves at a speed of V =
7.11 mm/us, except very close to the M = 1 area, where V= 3.56
mm/us.

10



The ionization fraction and the quantities included in the Bray
criterion shown as equation (21) are now calculated throughout the
equilibrium flowfield. From this information the self-consistent
trajectory R = Rg(R, t), the location of the transition from equilibrium
to frozen flow over the course of time, is determined. Flow that has
yet to reach this space-time boundary line has plasma in Saha
equilibrium with the neutral flowfield. As parcels of fluid cross the
space-time boundary line their ionization fractions are fixed to the
ionization fractions they experienced at the transition point. This is
also true for the electron temperature. Figure 6 shows the ionization
fraction and the location of the transition point over the course of time
for this example. Frozen supersonic flow is described by hyperbolic
partial differential equations, and the trajectory of the Bray criterion
is their space-time boundary condition. The ionization fraction in the
frozen part of the flowfield is specified by a method-of-characteristics
propagation of the transition boundary line information. This “ray-
like” nature of the frozen flow is clearly visible in Figures 2, 3 and 4.
Figure 4 shows frozen electron temperatures of 0.24 eV and 0.31 eV, a
little over half of the maximum of 0.4 eV found from equation (22).

Figures 7 and 8 show radial profiles of the neutral and plasma
densities at times 1.52 us and 2.9 us, respectively. At 1.52 us the
matter front is essentially a shell about 3 mm thick of atmospheric
density metal (1 ATM = 2.69 x 1019 atoms/cm-3). The ionization
fraction is about 10-+. At 2.9 us the flow extends to R = 2 cm, the
leading edge is at 22% of atmospheric density, and plasma density is
between 101! cm-3 and 1014 cm-3 along the profile. That plasma is out
of thermal equilibrium is clear when you consider that the
temperature of the neutral flow at R=1cmis T=178 °K, and at R = 2
cm the neutral temperature is T= 72 °K.

The Los Alamos results for this example are as follows:
1) The measured velocity is V= 8.1 mm/us,
2) the stagnation temperature peaks at 1.9 eV,
3) the electron temperature is between 0.2 eV and 0.34 eV (at 2 us),
4) the leading edge density for R~ 1 cm and 1.25 us < t < 1.50 us is
p/po = 5 x 104 of solid density (so N= 3 x 1019 atoms/cm-3 as solid
aluminum = 2.699 gm/cm=3 = 6.024 x 1022 atoms/cm3),

11



5) and the density of electrons is ne =~ 1 x 1017 cm-3 for R =~ 0.4 cm and
t=0.5 us.

Velocity is the only measured quantity of the Los Alamos results just

described. DeVolder’s report (2) did not show plasma density beyond

0.5 us. The analytical model of this report gives a plasma density of ne

~ 3 x 1016 cm-3 for the front at R= 0.3 cm and t = 0.5 us. All these

parameters compare quite well.

The clearest difference between the Los Alamos calculations and
the model here is in the neutral density profiles. While the leading
edges of the Los Alamos profiles are similar to those shown here, the
Los Alamos calculations show a density maximum at R=1 cm and t=
2.0 us. Even before this time, the density between the plate and the
front in the Los Alamos work is much higher than in the model here. I
have no explanation; however, the Los Alamos calculations include
more physical effects than I considered. In particular, the source
volume will exert pressure on the cold plate, enlarging itself at the
expense of stagnation temperature (by “pdV” work). This enlargement
works against the resistance to deformation, fracture, and ablation of
the solid plate. It is possible that within a microsecond these effects
have introduced denser material into the flowfield. As in all good
physics problems, there is always more to learn.

Appendix 1: Energy loss by electrons
The energy lost per unit length through collisions by an electron

while penetrating matter is given by Bethe’s stopping-power theory,
shown below in the formulation quoted by Berger and Seltzer (7):

_L@m)=é@£@£3;{m_ﬁ&1£L +Hﬂ_5}

P dx B A 2(1/mc2)? (A1.1)
F(r)=1-8%+[2%/8 - 2r+ In(2)]/(z + 1) (A1.2)
2
8= log( & , )
1-p (A1.3)

12



- (9.76 +58-8)z eV
7119 (A1.4)

p- v1 -1
(t+1)° (A1.5)

The various symbols have the following meanings: t is the
electron kinetic energy in units of mc? (0.510976 MeV), B is the ratio
of the electron velocity to the speed of light (c), I is the mean
excitation (ionization) energy in eV [see references (7), (8), and (9)], Z
is the atomic number, A is the atomic weight, re2 = (e2/mc2)2 = 7.9403
x 1026 cm?2, N, = 6.02486 x 1023 electron/mole (Avogadro’s number
in the old mass scale in which the atomic weight of O is exactly 16),
d is an approximation to the density effect correction shown in
reference (7), and p is the mass density in gm/cm3.

Electrons also lose energy by radiation as they traverse matter.
The average radiative loss is:

272
_1(dE)  _4Narel"Eyp(1837-1/3)

Fermi (9) shows the ratio of radiative energy loss to ionization loss as
given roughly by yf,

Vi = [Z x (MeV)]/800 (A1.7)

Energy loss by radiation equals the energy loss by collision (yg = 1) at
the critical energy, shown by Berger and Seltzer (7) as

Ecrit = 800/(Z + 1.2) MeV (A1.8)

The total energy loss is (1 + yp) times the collision loss shown as
(A1.1), the ratio of collision loss to total loss is 1/(1 + y&), and the ratio
of radiative loss to total loss is y&/(1 + yF).

13



As an example, a 5.25 MeV electron penetrating aluminum loses
(1/p)dE/dx = 1.657 MeV-cm2/gm, of which 1.527 (92%) is a collision
loss and 0.130 (8%) is a radiative loss. At 20 MeV the total loss is 2.29
MeV-cm2/gm, of which 1.728 (75.5%) is a collision loss and 0.562
(24.5%) is a radiative loss. For aluminum the critical energy is 56.3
MeV.

For tantalum at 5.25 Meyv, the total loss is 1.612 MeV-cm2/gm,
of which 1.090 (67.6%) is a collision loss and 0.522 (32.4%) is a
radiative loss. At 20 MeV the total loss is 3.558 MeV-cm2/gm, of
which 1.259 (35.4%) is a collision loss and 2.299 (64.6%) is a radiative
loss. For tantalum the critical energy is 10.8 MeV.

The energy deposited by an electron that raises the enthalpy of
the material is the collision loss plus the absorbed fraction of the
radiative loss. The estimate used in reference (1) for the electron
energy deposited into enthalpy was 1.6 MeV-cm?2/gm.

Appendix 2: Bray criterion

The transition from equilibrium to frozen flow occurs when

CZQ( VneR?) + aneR? = ng( VR%Ng) + aR*Np =0

(A2.1)
At the point of transition, R = Rg,
2_0,19% 1dv, 1dN

where all quantities are based on equilibrium flow at coordinate Rg.
The derivatives in R are converted to derivatives in Mach number,

2 _a, {1[a¢dT+a¢dN] ,1dv +1dN}dM

The derivatives in (A2.3) are evaluated by using stream-tube-area
relations for each of M, T, V, and N, and the Saha equation for ¢. These

14



equations are numbered in the text as follows: (3), (4), (5), (6), and
(12). The result is

Re = 2V 4 [r- (1 -H)3 + Vi) -1 - ¢ - 2 ME g
0‘{[ 2 T M%" (3y+ 5)M? - 1 }
(A2.4)

and is shown as equation (21) in the text. In any particular case the
numerical value of Rg is the root of (A2.4).

In deriving equation (A2.4), the stagnation number density Ny,
which appears in equation (6), is treated as a constant. See reference
(1) for a description of this “clumped wave” model of the source flow.
Shapiro (11) uses the phrase “lumped pressure waves.” In the
clumped wave model, the stagnation density is constant during the
time an expansion wave travels at the speed of sound from one end of
the source region in the metal plate to the other. When an expansion
wave reflects at the exit area back into the source then the mass flow
rate out (at M = 1) readjusts “instantly” to a lower value that remains
constant until the next traversal is complete. The stagnation density
history seen by the external flow is a downward staircase in time, the
source density does not change with time except at the instants of
wave reflection at the exit areas.

The ionization fraction in any parcel of fluid becomes a constant
as the parcel crosses the transition. The history of the ionization
fraction at the locations of transition, ¢[Rg(t)], forms the boundary
condition for the method-of-characteristics solution of the subsequent
frozen flow. See references (3), (4), (5), and (6) for discussions of the
transition from equilibrium to “frozen” nonequilibrium flow, and the
Bray criterion.

Appendix 3: Radiation capture
A portion of the bremsstrahlung emission generated by the
electron beam is captured by the target plate and converted into heat.

Thin, high Z plates are used as radiation sources because they convert
a higher proportion of the electron energy into radiation and they

15



absorb little of it. What follows is a simple estimate of the fraction of
the radiation captured by the plate.

Given a plate of thickness AL, an electron beam diameter of do,
and an average photon mean-free-path in the target of A,, then an
estimate for the fraction of radiation captured is

AL

N _AL
do_(1-¢e7,)

1+ AL
do (A3.1)

The first factor in (A3.1) is the fraction of the radiation that interacts
with the plate, and the second factor is the fraction of interacting
radiation that is absorbed. If the source region is a disc, then none of
the radiation interacts, and if the source region is a line, then all of the
radiation interacts. Photons that interact are assumed to travel an
average distance AL/2 through the plate.

Most of the bremsstrahlung radiation from multi-MeV electrons
is in the x-ray portion of the spectrum. In the range of 50 keV to 200
keV, the photon mean-free-path in aluminum is between 1 cm and 3
cm, and in tantalum it is between 0.01 cm and 0.08 cm. Plechaty,
Cullen, and Howerton (15) have tabulated photon mean-free-path
data.

16
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Figure legends

(1)

(3)

(4)

Log of neutral density in cm-3. The neutral density of aluminum
for the example described over a domain extending to 2 cm and
2.9 us. The large “cliff” is the material front advancing from left
rear to right front at 7.11 mm/us, after a rapid acceleration from
3.56 mm/us at the sonic origin. The sharp steps on this density
surface are an artifact of the clumped-wave analysis of the flow
within the metal plate, see reference (1). Density before the cliff
is set arbitrarily to avoid plotting log(0).

Log of electron density in cm-3. This is the density of plasma for
the flow of Figure 1. Near the plate, plasma is in thermal
equilibrium and it diminishes quickly as it flows. On crossing a
transition point where recombination ceases, the ionization
fraction is “frozen” into the flow and propagates downstream in
the manner of a Riemann invariant of a field governed by
hyperbolic partial differential equations. The “shelf” of
nonequilibrium plasma is clearly visible in this figure, as are the
“rays” of flow aligned with the material front. Density before the
cliff is set arbitrarily to avoid plotting log(0).

Log of ionization fraction. This figure shows the ionization
fraction over the flowfield of Figures 1 and 2. The steep drop in
the equilibrium region near the plate is in sharp contrast to the
frozen region, which is “terraced” along flow characteristics. The
ionization fraction steadily increases over time because the
neutral density is diminishing while the local temperature is
fixed. Ionization fraction before the cliff is set arbitrarily to
avoid plotting log(0). The negative signs for the numbers on the
vertical axis are fat due to computer gremlins.

Electron temperature in eV. This figure shows the electron
temperature over the flowfield of the previous figures. The
temperature at Mach 1 is 2.116 eV, and it drops precipitously
through the equilibrium flow. The two plateaus of frozen
electron temperature are a narrow one at 0.24 eV and a broad
one at 0.31 eV. The edges of these plateaus are aligned with
flow characteristics.

19



(5)

(6)

(7)

(8)

Log neutral density ratio at M = 1. This is the history of the
outflow density at the sonic origin, a result of the clumped-wave
analysis described in reference (1). Point locations for this
calculation are shown. The clumped-wave analysis makes it
possible to model the subsequent two-dimensional, supersonic
flow as a sequence of steady flows, each of which has its mass
flow rate set by the constant density appropriate to the time
interval during which each flow issued from the plate.

Ionization fraction at transition point, and the radial location of
the transition point. These time charts show the ionization
fraction at the location of the “Bray transition” during the course
of the flow shown in the previous figures. The trajectory of this
transition point is the space-time boundary condition to the
hyperbolic partial differential equations describing the frozen
flow. This boundary line, Rg(t), is the result of iteration because
it is defined in terms of equilibrium flow properties at its own
location. From the perspective of a particular parcel of fluid, the
transition point is found by integrating the equations of motion
and ionization-recombination rate equations forward in time
until the Bray criterion is met. The approximation of a point for
what in reality is a zone of transition is successful because the
change is so sudden.

Radial profiles of neutral and plasma densities. This is a radial
cross section of Figures 1 and 2 at time t = 1.52 us. The neutral
density is seen to be essentially a shell of about 3 mm thickness
and atmospheric density. The plasma density is more uniform at
between 1014 cm-3 and 1015 cm-3.

Radial profiles of neutral and plasma densities. This is a radial
cross section of Figures 1 and 2 at time t = 2.91 us. The neutral
density is seen to be greatest at the leading edge, at about 15%
of atmospheric density in the forward 3 mm. The plasma
density lies between 1014 cm-3 near the leading edge to 1012
cm-3 close to the plate. The gas flow for this example evolves
into an expanding shell because the source has been exhausted.
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Figure 1: log of neutral density in cmA-3
Radial axis is on the left, time axis is in back,
domain extends from (0O, O) (at left rear)

to (2 cm, 2.9 us) (at right front)
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Figure 2: log of electron density in cmA-3
Radial axis is on the left, time axis is in back,
domain extends from (O, O) to (2 cm, 2.9 us)
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Figure 3: log of ionization fraction
Radial axis is on the left, time axis is in back,
domain extends from (0, O) to (2 cm, 2.9 us)
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Figure 4: electron temperature in eV
Radial axis is on the left, time axis is in back,
domain extends from (0, 0) to (2 cm, 2.9 us),
temperature plateaus at 0.24 eV and 0.31 eV.
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Figure 5: log neutral density ratioat M =1
Density at Mach 1 normalized by original density,
time in us, point locations shown
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Figure 6: ionization fraction at transition point,

and the radial location of the transition point

The Bray criterion as a function of time:

the location where a specific ionization fraction is frozen
for flow downstream from that point
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Figure 7: Radial profiles of neutral and plasma densities
Densities in cmA-3, distance in cm, point locations shown,
neutral points = <> (upper line), plasma points = + (lower line)
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Figure 8: Radial profiles of neutral and plasma densities
Densities in cmA-3, distance in cm, point locations shown,
neutral points = <> (upper line), plasma points = + (lower line)
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