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Abstract

This paper applies plane parallel radiance transport techniques to scattering from vegetation.
The leaves, stems, and branches are represented as a volume density of scattering surfaces,
depending only on height and the vertical component of the surface normal. Ordinary differential

equations are written for the multiply scattered radiance as a function of the height above the

ground, with the sky radiance and ground reflectance as boundary conditions. They are solved

using a two-pass integration scheme to unify the two-point bounday conditions, and Fourier

series for the dependence on the azimuthal angle. The resulting radiance distribution is used to
precompute diffuse and specular “ambient” shading tables, as a function of height and surface

normal, to be used in rendering, together with a z-buffer shadow algorithm for direct solar illumi-
nation.

1. Introduction

Radiosity [Cohen] and radiance methods [Ward] were developed to accurately account for

global illumination in realistic rendering. The radiosity at a surface or volume exits diffusely, to

produce equal intensity in all directions, while radiance varies with viewing angle. Computing the
radiosity at all positions necessary for realistic shading usually involves the iterative solution of a
large system of linear equations, and for radiance, the number of variables is even larger [Imm].
Alternative Monte Carlo ray tracing methods [Ward, Kaji] need a large number of rays to con-

verge to an accurate solution. For very complex geometries, such as a forest with thousands of dif-

ferent leaf surfaces, both methods become impractical.

$illion [Sil195a, Sil195b] has suggested grouping objects hierarchically into volumes, and

applying hierarchical volume radiosity methods [Bhate]. Volume radiance methods also exist

[Sieg, Max95a], but the storage and computation become unwieldy if one must determine the
radiance in each direction at each position in 3D space.

One can reduce theproblem to ID by assuming that the radiance depends angularly on the
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light flow direction on the unit sphere, but positionally only on z, the height above the ground, and

not on x or y. If the directions are discretely sampled, this plane parallel assumption reduces the

partial differential equations (PDEs) for radiance transport [Sieg, Max95b] to ordinary differential
equations (ODES) in z alone. As we show below, this permits direct solution by the Runge-Kutta

method, instead of the iterative methods usually needed to solve the general PDEs. The volume

scattering must also be plane parallel, so we assume a random collection of vegetation, whose leaf
area and surface normal densities also depend only on z. This is a significant limitation, prohibit-
ing isolated trees, but is a good approximation for dense vegetation.

Radiation transport in leaf canopies has been studied for the purposes of calculating the pos-

sibilities for photosynthesis, and also for interpreting remote sensing data. Myneni, Ross, and

Asrar [Myn] present a detailed survey of this field, reviewing the measurement of leaf area, sur-
face normal densities, BRDFs, BRTFs, and the various mathematical methods of solving for the
radiance.

For the plane parallel problem of scattering within a leaf, Hanrahan and Krueger ~anr] have
applied Monte-Carlo techniques, and Ma et al,[Ma] have applied discrete ordinate techniques, to

find the bidirectional reflection (or transmission) distribution function (BRDF or BTDF) of the

leaf, and Ma et al. [Ma] and Woolley [Wool] have measured these functions experimentally. Their
results could be used as input to our calculations, but at present, we use only perfectly diffuse

reflection and transmission, and Phong [Bui] specular reflection.

As pointed out by Li and Strahler [Li] and Gerstl and Borel [Gerstl], the ODE solution simu-

lates light attenuation through a continuous distribution of infinitesimal scatterers, and cannot cor-
rectly model the “hot spot”, when the viewing direction is near the solar illumination direction, so

that finite-sized trees and leaves hide their own shadows. This hot spot is well known in remote

sensing, and is also visible around the shadow of an airplane, but will not be present in our images

because we use a geometric shadow calculation for greater realism. We subtract the attenuated

direct solar illumination fkom our ODE solution, and in our rendering, we use a z-buffer shadow

algorithm [WM] for the direct solar illumination. The ODE solution is used only for the attenu-
ated direct sky illumination, and for indirect illumination that has been scattered at least once.
This additional illumination is best appreciated on surfaces in shadow from direct sunlight.

The next section gives the background and derivation of the radiance transport equations, and

the following one describes the table-based shading methods to efficiently use its radiance output.

Section 4 explaines the modeling and rendering system, and sections 5 and 6 give results and con-
clusions, respectively. The Appendix describes the computation of the necessary scattering phase
functions.

2. Plane parallel radiance transport equations.

The plane parallel radiance transport equations were originally developed for planetary and
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stellar atmospheres [Amb, Chan] and have more recently been applied to underwater illumination

[Mob194]. In these applications, the scattering is off randomly located and randomly oriented

molecules, phytoplankton, dust particles, droplets, ... etc., so the phase function, giving the angu-
lar distribution of scattered light, depends only on the angle between the incident and scattered

rays; However, the basic mathematics applies to any phase function. We have therefore modified
the Hydrolight code [Mob195] for the surface reflection case where the distribution of surface nor-
mals is rotationally symmetric around the vertical axis, which occurs for rotationally symmetric

plants, or random rotational placement of arbitrary plants. As described below, this permits cer-

tain efficiencies in the solution.

The simplest plane parallel solutions [Milne, Edd] found the light flow in only two represen-

tative directions, up and down. This “two-stream” approximation was applied to scattering from

paint, modeled as pigment particles in a transparent carrier, by Kubelka and Munk [Kub] and has

also been applied to scattering in plant canopies [Nils, Allen]. More powerful computers now
allow more accurate approximation of the angular variation of the radiance, either as (a) spherical
harmonics, (b) a combination of azimuthal Fourier series and discrete sampling of the polar angle,

or (c) division of the unit sphe~ into angular bins which are discrete in both directions. All these
methods lead to PDEs in x, y, and z for the discretised radiance, or its basis expansion coefficients.
Discussions of these methods, as well as equation (1) below, can be found in [Sieg], [Myn], and

[Max95b]. Here, as in [Mob194], we use method (c), but eventually switch to azimuthal Fourier

series. A complete discussion of the mathematics behind the Hydrolight code can be found in

[Mob94], of which the following is a short summary.

The general equation of radiance transport is

dl(x,cl)) =
ds

– K(x, fD)f(X, CD)+ K(X, co)~ ar(X, co’,CO)I(X, CD’)dd
4Z

(1)

where X is 3D position, coand m’ are ray directions on the unit sphere, I(X, co) is the radiance at
position X flowing in direction Q r(X, d, co)is the scattering phase function from direction co’to
direction o (representing in our case both reflection from and transmission through the leaves),

the integral is over the 47csolid angle of incoming directions O’ at X, K is the extinction or beam

attenuation coefficient representing absorption plus scattering, and a is the albedo, the ii-action of

the attenuation that is scattered rather than absorbed. Usually Kis assumed to be isotropic, that is,

independent of@ but in our application, it represents geometric occlusion, from the polygon sur-
face area, projected normal to q per unit volume at X. This depends on counless the distribution

of polygon nonrmls is completely random.

In spherical coordinates, 0 is the polar angle, measured from the vertical z axis, and q is the

azimuthal angle, measured from the x axis in the x-y plane. We allow our distribution of surface
normals to depend on 0, but not on (p.This means that if u = (0, (p)and co’= (6’, q’), then r(X, d,

o) depends only on X, e, (1’,and Iv - qll, as long as the BRDF and BTDF of the leaves satisfy

these same “isotropy” assumptions in a coordinate system with the z axis along the surface nor-
mal.
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We divide the unit sphere into a number of discrete direction bins, 2nt in (l and n in q. How-

ever we do not subdivide by q the first and last (1bins, but instead keep them joined into a pair of
polar caps. This gives a total of (2m - 2) n + 2 bins. We precompute a square matrix of this size,
for each e~ orientation of the normal to an opaque surface, and each wavelength band, by averag-

ing the volume scattering phase function rover sampled pairs of rays, one from the bin for o and
one for of, and over the range of (pNangles for the surface normal. Actually, by the “isotropy”

assumption above, many of the matrix entries are identical, and need only be computed and stored

once. The analytic integration over the 27Crange of ~N variation for the surface normal, necessary

to determine K for occluding surfaces, and r for diffusely reflecting or transmitting surfaces, or
specularly reflecting surfaces, is given in the Appendix. We make separate r matrices for diffuse
reflection, diffuse transmission, and specular reflection.

We also tabulate, for each height z, the density of surface area per unit volume with normals

in each ONbin (but collecting all q~). We tabulate the leaf surface density separately from that of

the trunk, branch, stem, or twig polygons, since the leaf color is different, the leaves transmit light

as well as reflect it, and the leaf polygons are two sided, reflecting light both from their front and
back surfaces. We can then approximate K(X,o) and the product K(X,O) a r(X, CO,of) at any posi-
tion by combining the precomputed quantities or matrices, weighted by the tabulated area densi-

ties, and the albedos for each color band.

In our plane parallel case, the intensity 1 depends positionally only on z, and we represent it
by a row vector of intensities Ii(z), where i varies over the direction bins. Let Pi be the cosine of
the representative e for the im direction bin, so that the ds in equation (1) becomes dz 1 pfi Let

ril<z) be the bin to bin scattering matrix K(X, co) a r(X, CO,CO’),whose computation was just

described, modified so that rii(z) contains the extinction term -K(X,w). Then the integral-differen-

tial equation (1) reduces to a linear system of ordinary differential equations

(2)

It is convenient to separate the vector of intensities into two smaller row vectors, IU(z),repre-

senting the upwards flow, for direction bins in the upper hemisphere, and Id(z) representing the

downwards flow. (We choose 2rn bins, so that no bins straddle the equator.) Then we replace equa-

tion (2) by the two coupled vector differential equations

dlu(z)
— = IU(Z)TUU(Z)+ ZJZ)PJZ)

dz

dIJz)
– — = lu(z)puJz) + l&)T&f(z) .

dz

(3)

The z’s and p’s are matices which are multiplied by the row vectors lu and Id For example, the
entries in pdu are the terms rji / l~j, for directions j in the lower hemisphere and i in the upper.
(Note that the signs on the derivatives are reversed in [Mob194], which measures z downwards
from the water surface, instead of upwards from the ground.)
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Let h be the height above ground of the top of the vegetation layer. Then we know one bound-

ary condition: IJh) is determined by the illumination flowing from the sun and sky. The semiem-

pirical model of Harrison and Coombes [Harr] is used to compute the angular distribution of the
sky radiance. The clear-sky irradiance model of Gregg and Carder [Gregg] is used to compute the

direct and diffuse spectral irradiances (on a horizontal plane) for clear skies. The model of Kasten

and Czeplak [Kast] is used to adjust the Gregg and Carder irradiances when the cloud fraction is

greater than 0.25. The (adjusted) irradiances are used to set the magnitude of the spectral sky radi-

ance.

This is not enough information to specify initial conditions at z = h, however, because we do
not know Ju(h). Our second boundary condition is given by the BRDF of the ground at z = Q.We
have used a fallen-leaf texture map to determine this BRDF, but any other method, such as the

model and empirical measurements of [Irons] would do as well. The bin-to-bin matrix F approxi-

mation to this BRDF gives the boundary condition lU(0) =/d(0) F.

Thus we have “two-point” boundary conditions, one at z = h and one at z = O. The shooting

and relaxation methods recommended for this situation [Press] both require complicated itera-

tions. However, it is possible to determine Iu(h) by solving an auxiliary differential equation, and

then solve equation (3) as an initial value problem.

Let F(z) be the BRDF matrix for reflection from the ground and all the vegetation in the ver-

tical range [0, z], including the effects of all multiple scattering (reflection, transmission, and

occlusion). Then

Iu(z) = Id(z) F(z). (4)

We can derive a differential equation for F(z) by taking the derivative of equation (4)
dIu(z) dIJz) dF(z)—F(z) + l~(z)~

dz = dz

and substituting the right hand sides of equations (3) to get

dF(z)
IM(Z)TUU+ l~(z)p~u= (-lu(z)p~-l~(z)z~~)F(z)+ Id(z)- .

Substituting l~z)F(z) for IU(z)and rearranging terms, we get

dF(z) = IJZ) ( p~~+ F(%UJd(z)~ + TddF(z)+ F(z) PMF(z) ) .

Since the row vector l~z) is arbitrary, we must have

dF(z)
— = Pdu+ F(Z% + %F(Z) + F(Z)PJYZ) .dz

(5)

This is a non-linear ordinary differential equation, called a Riccati equation, for the marnx F(z),

with initial conditions F(0) = F, the known BRDF of the ground. Thus it can be integrated incre-

mentally upwards from z = Oto z = h. Once F(h) is known, we can determine lu(h) from equation

(4), and then integrate equations (3) incrementally downwards from z = h to z = O.For our numer-
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ical integration, we used the adaptive Runge-Kutta routines ODEINT, RKQS, and other auxiliary

routines from the Numerical Recipes package [Press]. For equation (5), this involves multiplica-
tion of large square matrices, of size equal to the number of direction bins N = (m - 1) n + 1 in a
hemisphere, taking time O(N 3). This can become very slow for a fine subdivision of the direction

sphere.

Therefore we expand the row vectors {u(z) and Id(z) as a finite Fourier series (i. e., a discrete

Fo&ier transform) in @The resulting Fourier coefficients depend continuously on z and discretely
on & The matrices p, z, and F are also represented by their Fourier coefficients in $. As described

above, the scattering terms in the coefficients of equations (2) and (3) am assumed to depend

directionally only on 0, 9’, and 1$-$’1. Under this symmetry assumption, it can be shown
[Mob194] that the system (2) or (3) of 2N coupled differential equations splits into n+ 1 indepen-

dent groups of 2m equations. These are much easier to solve, in time 0(nm3). The solution Fourier
coefficients are converted back to the functions lJz) and {d(z), which are tabulated at selected val-
ues of z, and interpolated in z to find the radiance for shading purposes.

To decrease the data storage and the integration over the angle bins necessary to get the

entries in the ~ and p matrices, we currently assume that Zuu= ~ddand p~U= pti This will be the

case if the two-sided translucent leaves look the same from either side (under equivalent illumina-
tion), and if the stems, branches, and trunks, bounded by the one-sided opaque polygons, are
cylindrical, so that polygons with one normal are balanced by nearby polygons with the opposite

normal.

3. Shading

In the simulations reported here, we used 2m = 20 latitude bins and n = 24 longitude bins, for

a total of 2N = 434 bins, 217 of which will be in the hemisphere above a surface to be shaded. If

we performed shading by multiplying each of these 217 radiance terms by the appropriately eval-

uated BRDF, and summing these contributions, the shading would be very slow. Instead, we use a
Phong BRDF, with perfectly diffuse reflection plus a specular term which depends only on the

angle between the viewing direction and the perfect mirror reflection of the incident ray. Special
precomputation speedups then apply.

The Phong shading model [Bui] takes the form

f(~, ~ N, k) COS6 = d(k)COS6 + S {R-V}’,

where~is the BRDF, L is the direction “to the light source” opposite to the incoming ray direction

w V is the outgoing ray direction, N is the surface normal, I is the wavelength of the light, 6 is the
angle between L and N, d is a wavelength dependent diffuse reflection coefficient, s is a wave-

length independent specular reflection coefficient, R is the mirror reflection direction, the 180°

rotation of L about N, c is an arbitrary exponent, and the special dot product [R*V) is R*V if R-k’ is
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positive, and Ootherwise.

To determine the surface intensity S (v k) in the viewing direction V we must integrate the

contribution of the incoming radiance 1 (~ k) = 1 (-f., k) for L in the 2X hemisphere above the sur-

face, and thus o in the hemisphere below it.

S(V, k) = j ~(CD,k)f(–(1), v,N, ~) COS&f6)

2X

= d(l) J1(6), k)cosed(l) + s Jf(cll,L){R “ V}cd(j)
27t 2X

Note that the first integral, for perfectly diffuse reflection, depends only on the surface normal N.

As pointed out by Miller and Hoffman [Mill], it can be precomputed and tabulated for a set of

sampled directions N, and interpolated during shading. The same tables can be used with the

opposite normal to determine the diffuse transmission through translucent leaves.

The second integral can be treated by a method proposed by Cabral, Max, and Springmeyer
[Cabr]. Let Q be the 180° rotation of V about N. Then (1?. V} = (L “Q) = (–co. Q), so the second
integral can be replaced by

fl(co,k){-+). Q}cdm

If we imagine for a moment that lig~tncan be specularly reflected even though it comes from the

back of the surface, the 2Z unit hemisphere in this integral is replaced by the 47cunit sphere. Then
the integral depends only on Q, and can also be precomputed. For the large exponents c appropri-
ate for glossy surfaces, the error introduced by extending the integral to the whole unit sphere will
only be significant for glancing viewing rays, when Q is near the boundary of the hemisphere of
integration. In this case brighter highlights are expected anyway from the Fresnel reflection law.

In fact, there is no reason whys should be constant. It could easily depend on N” L according to

Fresnel’s law, adjusted to compensate for the brightening mentioned above, and also on the wave-
length k. However, we have kept it independent of k, because the uncolored highlights seem

appropriate for the waxy outer coating of leaves.

As mentioned in the introduction, we have subtracted the contribution of the direct sunlight,

as continuously attenuated by the effect of the extinction K(z, co)on its direct path through the
vegetation, before storing the solution I(z, u). The shading process adds back the effect of the
unattenuated direct sunlight, using the Phong BRDF in the usual way for a discrete parallel light
source, only if the surface point is not in shadow.

4. Modeling and Rendering.

For modeling the vegetation, we used the hierarchical modeling and rendering system

described in [Max96]. This image-based rendering system is able to resample precomputed multi-
Iayer z-buffer images of hierarchical subparts of a plant, and combine them onto a multi-layer z-
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buffer for a new viewpoint. The size of the subparts to be resampled depends on the viewpoint

location. Parts closer to the viewpoint are taken from higher-detail images farther down in the

hierarchical model, and only the closest parts are scan converted fmm the original texture/trans-
parency mapped polygons. This allows extremely complex and extensive vegetation to be ren-

dered in a reasonable time.

Each z-buffer layer has a surface normal, a surface diffuse reflectivity color, a subpixel cover-

age mask, a z value, and a leaf bit. This is enough information to perform as a post-process the

shading described in the previous section, including a z-buffer shadow algorithm, at each of the

multiple layers. (Details of the shadow algorithm will be given elsewhere.) The subpixel masks

are used, as in the A-buffer algorithm [Carp] to composite these shading results into an antialiased
color value for the pixel. If the leaf bit is set, the shading will take into account the diffusely trans-

mitted light from the back of the leaf.

The geometry from the vegetation model is used to create the input for the radiance transport
phase. In order to compute the extinction coefficient K(z,CD),we must know at each z and each (lN
the surface area density per unit volume with normal of polar angle (3WWe divide the (z, e~)

ranges into a two dimensional array of bins, and make an initial traversal of the hierarchical

model, using the detailed polygonal description throughout. Each polygon is clipped to the (z, (3N)
ranges it overlaps, and the clipped areas are summed into the appropriate (z, e~) bins. In the

Appendix we show how to compute the contribution of the area in these bins to the extinction
coefficient K(Z,0) and scattering coefficient r(z, @ co’).

5. Results

The maple tree of [Max96] was processed to give the density of both leaf and non leaf sur-

faces per unit volume at 10 different normal orientation bins, and 10 different height intervals.

The sky radiance model was for a clear sky, with the sun at 30° from the vertical, and 35° to the
right of the viewing directions of figures 1 and 2. The radiance was calculated for a hemisphere

divided at 10° latitude and 15° longitude intervals, i. e., m =20 and n = 24. The radiance transport

calculation took 7 hours to find the radiance in each of the N = 217 direction bins at each of the 10
heights, and far each of three (red, green, and blue) wavelength bands. Computing the shading by

the methods of section 3 added only one minute to the post-processing of a 640 by 480 image.

Figure 1 shows a maple grove, with 28 rotated and translated copies of the basic maple tree.

The view is near the bottom of the tree canopy, where little direct sunlight has penetrated. The

shading on the diffuse grey test sphere shows a greenish tint from the radiance which has filtered

through and multiply scattered in the canopy. In contrast, the shading on the test sphere in figure
2, which is near the top of the canopy, shows the actual grey color. Note the sun flecks from the
shadow computation, visible on the tree branches, and the yellow-green glow of the diffuse trans-
mission through the back-lit leaves, which was included in the radiance transport calculations.
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Figure 1. V]ew of maple grove from near bottom of tree canopy.

Figure 2. View of maple grove from near top of tree canopy.
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6. Summary and conclusions

The calculations described here are efficient for the following reasons.

(a) The computation of the scattering phase functions r(z, w co’),described in the Appendix,

is done once per f)~ bin, and integrated over each pair of o and co’bins. Because r(z, @ d) is rota-

tionally symmetric, depending only on e, Wand 10-$’1, only a fraction of these coefficients need
be computed and stored; the rest are accessed by an appropriate indexing scheme. These coeffi-

cients are found once and for all, even before any vegetation model is specified.

(b) The plane parallel assumption reduces the dimensionality of the radiance transfer prob-
lem, replacing PDEs by ODES. The ODE solution is further simplified by replacing a two-point
boundary value problem by two initial value problems.

(c) The first of these initial value problems, equation (5) for the matrix F, needs to be solved
only when the vegetation model changes, and therefore the leaf area and normal densities change.

The easier equations (3) for the vectors Iu and Id must be solved each time the sky illumination

changes. Once tabulated, the radiance solution can be reused if the viewpoint moves, or if small

objects not contributing to the radiance transport simulation move.

(d) Again due to the rotational symmetry of r(z, CQw’), the large coupled system of ODES
separates into several smaller mutually independents ystems of equations, after a discrete Fourier

transform in@

(e) The shading during rendering is based on tables precomputed from the radiance solution,
which also do not change when the viewpoint moves.

~ The hierarchical model lets very complex vegetation to be rendered efficiently from pre-

computed z-buffer images. Since these precomputed images contain surface color and normal
information, and are shaded in a post-process after resampling, they are unaffected when the radi-

ance solution changes.

7. Future work

We hope to extend these calculations to underwater vegetation, taking into account the refrac-

tion by the waves on the water surface, as in [Mob194].

It would be interesting to animate vegetation blowing in the wind. For simple waving of
leaves, we could assume that the area density distribution of surface normals did not change. Then
the radiance solution could be reused, although the hierarchical system of precomputed images

could not. However, for more violent motion, such as grass or grain bending in wind gusts, our

rotational symmetry assumptions are violated; when grass stems are coherently blown away from

the vertical, the distribution of surface normals is no longer independent of @ In this case, the effi-
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ciencies listed in points (a)and (d) of the previous section no longer apply. The full matrices r, z,

and p must be calculated, and used in solving one large system of coupled differential equations.
This more general case is also necessa~ for vertical vegetation growing on a slanted hill, because

the parallel planes along which the radiance is constant are no longer horizontal. This general case
could also handle multiple scattering in hair and fur, when the hairs are not perpendicular to the

skin.
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Appendix: Calculating the scattering phase function.

Suppose we have a random collection of small polygons, of total area 1, with normals N =

(0~, $N), where fl~ is fixed, and +~ is uniformly distributed in [0, 2z]. In order to find the contri-
bution of these polygons to K(2,o)), we need to determine their projected area noxmal to a viewing
direction co= V = ($V tlv). Also, in order to find the contribution to r(z, -L, V), we need to know

the average intensity of this projected area, when illuminated by a light source in direction L =

(6L, $~, with unit flux per unit area normal to the beam, assuming the surface diffuse reflectivity

kd is also 1. In the integro-differential equation (l), the light scattering takes place in an infinitesi-
mal slab of thickness ds, where the probability of random polygon overlap approaches zero, so we

can neglect mutual occlusion or shadowing of the polygons.

In Cartesian coordinates,

N = ( sin e~ cos QN,sin ONsin ON,cos ON)

and

V= ( sin evcos $V sin evsin @vcos 6V).

Since the total polygon area is 1, the area with normals between $~ and $N + do is do / (27c),so we

integrate (N” V) d$ / (2n) to find the projected area perpendicular to co.There are two cases to be
considered. For one-sided polygons which form the boundaries of solid structures, we integrate
N. V only over the range R of $N where N‘ V >0. For two-sided leaves, we must add the integral

of- N” V over the complementary range [0, 27c]- R where N” V c O.These ranges are bounded by
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the $N values where N” V = O. Solving this eqLIatiOnfOr$N,

N” V= sin 6/I/sin g“ ( cos ONcos $~ + sin $N sin @v)+ cos f)Ncos o~ = ()

Let ~~ = ION- $~ = (cos-l) ( - cot fi)~cot (IV), where (cos-l) (x)= Cos-l(x) if -1 <x< 1, and is Oif
x >1, or n if x e -1. Then, interpreting (#)Nmod 27c,the range R is [Qv- $//, $V + $R]. So for one-

sided polygons, the projected area AR is

h -OR

= $ sine~sinevsin$fl

For two-sided polygons, we add

h - $R

+ ~RcOseNcOsev).

J(
d@N

–N “V)z
[0,27r]-R

= ~(sineNsinevsin$~- (~-$~)cost)~cosev)

to get the total

1(2sineNsineVsin@~ + (24)~- ~)cosejvcosev).
n

To compute the average diffuse reflection intensity for one-sided opaque polygons, we must

integrate over R the diffuse reflection {N. L), weighted by the projected area N” Wand divide by

the integral of the weights, which is the AR calculated above. The region S where N oL S Ois, by

the above analysis, the interval [~~ -$$, $~ + ~~], where $~ = {cos-l } (- cot 6N cot e~. The prod-

uct (N “ V) (N QL) is a polynomial in sin $jv and cos ON,with coefficients involving sines and
cosines of eN, (3Vand e~, and can be straightforwardly integrated over the intersection of the
intervals R and S (which may be empty).

For two-sided translucent leaf polygons, the intersection of R and S and their respective com-

plements divides the unit circle for ONup into ranges of four types: (1) front, front lit (i. e. the
front surface of the leaf is visible to ~ and also to L), (2) back, front lit, (3) front, back lit, and (4)

back, back lit. The identification of these ranges and their types is found from a table, based on the

topology of overlap of the intervals R and Son the unit circle. Over each range, I (N” V) (N -L) I
can be straightforwardly integrated.
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In our current implementation, we assume that the front and back surfaces of the leaves have

identical optical properties, so that ranges of types (1) and (2) contribute to the diffuse reflection,

and ranges of types (3) and (4) contribute to the diffuse transmission. For each wavelength band,
we allow separate coefficients for diffuse reflection and diffuse transmission, and in the images

shown here, the diffuse transmission is yellower. The analysis above shows how the scattering for

perfectly diffuse reflection and transmission can be integrated analytically over certain ~~ ranges,
but any computed or table-based measured BR.DF or BTDF could be integrated numerically over

the same ranges.

The above computations for K and diffuser are integrated in (1~over each angle bin band Si =

[ei, 6i+l] into which the surface noimals are accumulated, using Simpson’s rule, and then divided

by the solid angle of the band. For the contribution of specular reflection, however, it is easier to

consider the whole band Si from the start, rather than first integrating over (#)W

The Phong specular term (V“l?)cis constant on small circles on the unit sphere, centered at R.

We show below that for a fixed viewing direction ~ the contours of this specular term, as a func-

tion of the normal N, are, to first order, small ellipses centered at H = (V+L)flV+L1.Blinn has sug-

gested an alternate specular term [Blinn] of the form {NoH}C,consistent with a rotationally

symmetric distribution of local microfacet normals H, centered on the global surface normal N.
For a fixed viewing direction, the contours of this term are exactly circles, centered at H. We first

show how to integrate the Blinn term over the band Si, and then modify the method for the Phong

term.

We flatten the unit sphere near H onto the (x, y) tan ent plane TH at H, by a map pH, which

takes great circle arclength distance from H into r = J-X2+ y2, and precompute and tabulate
t-

Q(t) = @ j COSc(+&X.

04

The factor sin(r)/r converts differential area on the plane to differential area on the sphere. Whh

appropriate additions and subtractions of Q(t), we can find the integral over the band between any

two parallel lines in the (x, y) plane, and thus, to first order, the integral for N in the band between

any two large circles on the sphere, such as the band Si. We then multiply by V*H to account for
the forshortening of the polygon area, as viewed from v assuming the normal N of any polygon
showing a significant highlight is very close to 1-1,and divide by the solid angle of the band St

For the Phong term, consider the map~ which takes a normal “Nto the corresponding reflec-

tion vector R = 2(NQL)N- L. For fixed V and L, we need to integrate (V*R)C= [VOf(N)}Cas N var-
ies over Sfi Since ~ is smooth, the differential df of f at H maps the tangent plane TH at H to the

tangent plane Tw at W = f(H) = 2(H”L)H - L, and the composition of maps pw-l”dfpH is a first

order approximation to~ Therefore, we can map Si to Tw by dfpn, approximate the image as the
region between two parallel lines, and integrate Cost(r) there using the tabulated Q(t). We must

then divide by the Jacobian J(f) of f to account for the change of the integration variables, and
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,

s

multiply by V*H as above to account for forshortening. In spherical coordinates with the north

pole at L, the formulas for~are straightforward: Ois doubled and $ is unchanged. The Jacobian of
f turns out to be 4 V*H.(See [Rens].) Since d~is linear, df’* maps circles to ellipses, as mentioned

above.
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