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USER ‘S MANUAL FOR MC. WIND:
A NEW MASS-CONSISTENT WIND MODEL FOR ARAC-3

.

S.T. Chan
G. Sugiyama

ABSTRACT

Based on a mixed variational principle and the Galerkin finite element method (GFEM), a
new model for efficiently generating mass-consistent wind fields over continuous terrain has been
developed. The main features of the model include: treatment of continuous terrain, variable
honzontaI and vertical grid resolution, grid-point representation of the wind fields, ability to
presexwe velocities at desired grid points, incorporation of map projections, efficient iterative
solvers, and a new pararneterization for atmospheric stability and topographical effects. This report
presents a description of the model, a user’s guide for the computer code, and four numerical
examples to illustrate the usage of the model.

1. INTRODUCTION

Three-dimensional wind fields are required in many practical applications. Some examples
are the assessments of the atmospheric transport and dispersion of pollutants, selection of potential
sites for wind energy generation, and studies of wind effects on structures such as buildings and
bridges.

There are basically two kinds of wind flow models: prognostic and diagnostic. Prognostic
models are largely based on solving the time-dependent conservation equations and frequently with
various degrees of approximation. Diagnostic models are constructed using a limited amount of
measurements, empirical relations, and certain important physical constraints. Having more
complete physics, prognostic models are generally regarded as more realistic than the simpIer,
diagnostic models. However, models of this type are complex in nature, requiring delicate input
and heavy use of computer resources. While not as sophisticated, diagnostic models generally have
some of the important physics and, more importantly, require less delicate input and much less
computer resources. Such models are, therefore, better-suited for emergency preparedness ,and
response situations. Validated diagnostic models CaII dso be highly useful in providing the
necessay initial and boundary conditions for prognostic models. A recent review of dia.mostic
models k given by Ratto, et al. [1994].

As part of the modernization efforts of the Atmospheric Release Advisory Capability (ARAC)
project (Lee, et al. [1997]), the development of a new diagnostic model for generating mass-
consistent wind fields over continuous terrain was initiated recently (Chan and Sugiyama [1997]).
This model, MC_WIND, will replace ARAC-2’S operation~ code MATHEW (Sherman [1978],
Sugiyama, et al. [1994]), which uses stair-step topography and constant grid spacings. The mass-
adjustment algorithm of iMC_WIND has also been incoworated in A-DAPT (Sugiyama and Chan
[ 1997b]), which will replace MEDICYMATHEW operationally. The resulting wind fields from
either ADAPT or iMC_WIND can be used to drive ARAC’S new dispersion model LODI
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(Leone, et al. [1997]) and to aid the initialization and validation of prognostic models such as
NORAPS (Hodur [ 1987]) and COAMPS (Hodur[ 1997]).

The present model is based on a mixed vtiation~ principle and the GFEM for spatial
discretization. The finite element method is employed to effectively west continuous terrain with
variable grid resolution. In addition, the grid-point representation of the wind fields by FEM, in
contrast to the flux-based, staggered grid representation often used in finite difference approaches,
offers a more rigorous treatment of boundary conditions and allows the preservation of velocities at
desired grid-points for cells in which wind observations are located. Other salient features of the
model include map projections and a Strouhal-number-dependent parametrization scheme for
differential weighting of the horizontal and vertical velocity adjustments to account for atmospheric
stability effects. Two preconditioned conjugate gradient solvers are available for efficiently solving
the Poisson equation resulting from the numerical formulation. Their performance is further
improved by a stabilization procedure applied to the Poisson equation matrix.

In the next section, the theoretical and numerical aspects of the model are described. A user’s
guide for the model is given in section 3, and four numerical examples are presented in section 4 to
illustrate the usage of the model.

2. NUMERICAL MODEL

In this section, the theoretical and numerical aspects of the model are described. These
include the governing equations, a pararneterization for atmospheric stability, spatial discretization
by the finite element method, specification of boundary conditions, stabilization of the discrete
Poisson equation for Lagrange multiplier, and the iterative solution for such a linear system of
equations. The treatment of map projections is discussed at the end of the section.

2.1 Governing Equations

The underlying theoretical basis of our model is, with the assumption of constant density, the
following functional (Sherman [1978]),

(2.1)

In the above equation, (uO,v~,W“) and (u, v,w) are the components of the initial and adjusted
velocity fields, A is the Lagrange multiplier, and ~H and ~v are the Gauss precision moduli
controlling the relative amount of vertical and horizontal velocity adjustments, and Q is the domain
under consideration. Equation (2. 1) is a mixed variational principle for which the solution
(LI, v, w, a) is a saddle point, rather than an extremum point (Arnold [1990]). The solution
corresponds to a minimum with respect to the difference between the adjusted and the initial
velocity fields and a maximum with respect to the Lagrange multiplier. With this approach. the
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mass-conservation requirement is enforced as a strong constraint (Sasaki [1970]). It should be
noted that, for constant values of ~H and O!v, the adjustment procedure conserves vorticity.

It can be shown that the solution of (2.1), via taking 61=0, leads to the following Euler-
Lagrange equations,

I au=uo+T—
aH & (~.za)

(~o~b)

(2.2C)

(2.3)

in Q . and

Mu” = o (2.4)

on the boundary.

In equation (2.4), tin is the first variation of the adjusted velocity in the normal direction.
This equation implies that either

aun=o
or

A=o.

The former corresponds to a boundary where the normal vekxity is specified, such as Un= u: on
an inflow plane or Un= O on a solid boundary, while tbe latter corresponds to a “flow through”
boundary over which adjustment of the normal velocity is permitted.

Equations (2.2) may be substituted into the mass-conservation constraint of Equation (2.3) to
yield the continuum Poisson equation

(11 J*:+ (32A+ 1 d2a = ho dv” &v”—— — —— .—— _ —_ (Q.~)
c+ &- # a; &2 &~&

for ~H and ccv constant throughout the domain. The WC-2 model MATHEW (Sherman
[1978]) solves for A using a finite-difference discretization of Equation (2.5) with appropriate
boundary conditions and derives the adjusted wind f~lds from Equations (2.2). NIC_WIND
discretizes and solves equation (2.1) or its equivalent equations (2.2) through (2.4) directly (see
Section 2.3).

-3-



2.2 Parameterization for Atmospheric Stability
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The characteristics of atmospheric flows over terrain vw drastically under different stability
conditions. Winds tend to pass over the tops of hills in neutral and unstable conditions, but are
primarily steered around obstacles in stable flows. One of the ways to incorporate the effects of
atmospheric stability in a dia=wostic wind field model is to utilize the parameter a = ~H /av,
which is the ratio of the Gauss Precision moduli, to control the degree of adjustment in the vertical
wind component relative to the horizontal wind component. In general, small values of a are
appropriate for stable flows, resulting in small adjustments tOthe vertical velocity (which is usually
zero initially), while larger values are required for unstable flOWS to produce larger adjustments to
the vertical velocity.

The simplest approach is to use a constant value of ~ for the entire grid, and set a~ = 1 so
that av = l/a. A value of 1.0 is appropriate for neutml stability, values smaller than 1.0 are for
stable conditions and values greater than 1.0 are for unstable conditions. The recommended values
for a are 5.0, 2.0, 1.0, 0.5, and 0.2 for very unstable, slightly unstable, neutral, slightly stable,
and very stable conditions, respectively.

For situations involving complex topography and atmospheric stability, it is more appropriate
to let a vary over the entire domain. Such an option has also been implemented in MC_WIND.
Our approach follows the framework proposed by Ross, et al. [1988] and developed further by
Moussiopoulos, et al. [1988], with modifications to better correlate predictions with experimental
results. Specifically, an improved curve-fitting formula for a2 m a function of local Strouhal
number has been devised along with a generalized formula for determining the characteristic height
difference to incorporate topographic effects.

Based on the experimental data for stably stratified flOW of Hunt and Snyder [1980], the
following exponential relationship between a2 and the local Strouhal number was adopted,

a2 = ~–1.5(sw)’”5, Slr20

a2=e ‘“5(-s@*“5, sir<o

(2.6a)

(2.6b)

instead of the formulae proposed by Moussiopoulos, et al.,

a2=l-Str ‘(--yistr~o (2.7a)

Results from the above formula for stable cmes me Cornpxed in fi:ure 2.1. It is seen that the
present formula provides a closer fit to the data, especially for higher Strouhal numbers.
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Figure ~. 1. Values of a2 as a function of Strouhal number.

The local Strouhal number is defined as

Str =
HN

r

gde dJl>o
—, N= –—
u 8 dz, dz -

rgd8d9 ~
Str=–$ t= ––— —<

, (3dz, dz

(2.8a)

(2.8b)

In the above, H is the characteristic height difference, N is the Brunt-Vaisiila frequency, U is the

characteristic velocity, t is the buoyancy time scale, and 6 is the potential temperature of the

atmosphere.

For the characteristic wind velocity, we retain the formula proposed by Moussiopoulos, et al.

.=m.x[Jm, 0.2./s] (2.9)

For the characteristic height difference, the same authors proposed the following formula
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where MO and ~, are the orographic height difference and tie horizontal distance between the
considered location and location (i,~q on the (l*J) terrtin grid, respectively. An examination of
(2. 10) reveals that the formula lacks a provision for mating flOWScharacterized by a constant
Strouhal number. Further, the inverse distance-squ~ed weighting appe~s to result in an overly
rapid diminishment of topographical influence in regions of flatter terrain.

For the above reasons, a more general formula was devised and implemented, which
possesses a constant term involving the difference between the maximum and minimum terrain
heights and a horizontally varying term involving the inverse distance weighted height difference,

I,J

I /..
I,J

H=c[~ax –~jn)+(l–c)z f%j/fij ~1/Gj (2.11)
i,j f i,j

In the above formula, hmu and hmin are respectively the mwimum and minimum terrain heights of
the ground surface, tiv and qj are as defined before, ~d c is ~ input parameter with value
varying between O and 1.0 for selecting appropriate linem combination of the two terms. For
problems involving only a single hill, using only the first term (with c = 1.0) is probably a good
choice; for problems with more complex terrain, a linear combination of the two terms is generally
more appropriate. The recommended value of c for the general problems is 0.5.

2.3 Finite Element Discretization

Finite-element spatial discretization is performed directly on Equation (2.1), rather than on
the Poisson equation (2.5), and a consistently derived discrete equation is then obtained for A.
This approach is preferred because it conserves mass exactly in the discrete sense; discretization of
the continuum Poisson equation may result in noticeable final divergences (Moussiopoulos et al.

[1988]). Specifically, trilinear basis functions @,defined on a general hexahedron are used for the
velocities and piecewise constant functions V, are used for the field of Lagrange multiplier. With
repeated indices indicating summation, these fields are approximated as

u = $;1{, , V=(p,v,, w=@iw,, (~.1~)

a = I//,ai (~13)

in which there are n nodes for the velocities and m elements for the field of Lagrange multiplier.

Similar approximations are used for the initial winds ([(o,V“, W“ ).

Upon substituting the above approximations into (2. 1) and taking 61=0, a coupled system of
algebraic equations is obtained,

-6-



Mu+ca=A4u0 (~7J4)

and

.

In the above equations, U
vector for (L#,v~,w~), and

CT U=O. (~15)

is a vector containing all the nod~ values of (u, v, w), UO is a similar
A is a vector for the field of Lagrange multiplier, M is the mass matrix

of size 3n x 3n, c is the gradient matrix of size 3n x m, ~d CT, the transpose of C, is the
divergence matrix. Equations (2. 14) and (2. 15) are the finite-element equivalent of the continuum
equations (2.2) and (2.3). Thes ystem matrices M and C are obtained by assembling appropriately
the following element matrices:

M$) = jea(’$J@2 (2.16)

(2.17)

(k)denotes the relevant value of the Gaussin which (k) refers to the k-th coordinate direction, a
precision moduli, and the integral is over the element volume e.

In principle, equations (2.14) and (2.15) could be solved as a coupled system of equations.
However, the cost-effectiveness of such an approach is questionable, because the system is not
strictly positive definite (due to the zero coefficients on the diagonal). This fact makes pivoting
necessary when solving the system by direct methods md limiw the applicability of almost all
iterative solution techniques. Further, for large-scale problems, dkect methods are impractical
because of the excessive memory requirements and possibly high CpU costs. In order to be able to
use iterative methods, we adapted and implemented a cost-effective alternative developed by
Gresho, et al. [1984]. By approximating the origin~ consistent mass matrix with a lumPed (via
row-sum) mass matrix (denoted below as ML), the following uncoupled system of equations is
obtained,

cTA’!f~’Ca = Cw (2.18)

and

in which CTM~ 1C is a symmetric, semi-definite matrix. Eq. (2. 18) is called the consistently

derived discrete Poisson equation for A and can be solved with appropriate iterative methods.
Eq. (2.19) is used to obtain the nodal values of velocities for the mass-consistent wind field.

Prior to solving equations (2. 18) and (2. 19), modifications to these equations are necessary
in order to accommodate: ( 1) specification of velocities including no-penetration on the ground
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surface, and (2) stabilization of the discrete Poisson equation to enhance the convergence rate of
the iterative solution. These topics are discussed in the next two subsections.

2.4 Specification of Boundary Conditions

Boundary conditions may be imposed by specifying velocities Lt, v and/or w at appropriate
grid points. This is easily accomplished by placing the desired value in the initial velocity vector
and setting the corresponding value of kf~’ equal to zero in equations (2. 18) and (2.19). It is
critical that any specification of velocities and the use of boundary specifications to preserve
observational input be consistent with mass conservation. A particular element needs to satisfy
mass consistency in the (unlikely) event that all the velmities for that element are specified.
Similarly, if velocities on all the simulation domain boundties are fixed, global mass-conservation
must be satisfied.

In order to impose the no-penetration condition (i.e., zero normal velocity) on the terrain

surface, the surface (.x,y, z) velociw components ~ ~~sformed into a 10C~, oflhogon~
coordinate system ~rl,12,~,j in which two of the dfiection~ components are tangential and one is——
normal to the surface. The above matrix equations can then be reestablished in terms of the
transformed velocity components. Once this is done, imposition of a zero normal velocity can be
performed using the method described in the preceding paragraph.

In the local coordinate system, the consistent normal direction defined by Engelman, et al.
[198 1] is used. With its positive direction pointing into the computational domain, the unit normal
vector n = n n n— ( .v? ~, ~] is given by

where

(2.20C)

For a given normal vector, since there exists a unique tangent plane with an infinite number

fh
of possibilities for the pair of ~rl,L , a tangenti~ direction h~ to be selected. For convenience~ we_=
choose ~ to be in the x-z plane. e new, local coordinate system is then uniquely defined by

(~, t,,~) with=

-8-



,[ )jxg ?2-0 n.~
tJ=~= -— (~.m~)

Jxg 7k’ ‘h

( n.rnv n+
f?=flxfl= –-, m&---

1
(~.773)

= — rh ml

n“=(n~+n.v
(2.z4)

The relationships between the velocity components in the two coordinate systems at a grid
point are given by

and

.

●

<

f’+I

< ‘r2

‘n

u

< v

w

L

n, nx%’_- %
rh rh

[

nvn.nr .—A— - n.
n~ &’

111

v

w

The gradient and divergence matrices associated with the tran
by

&RTC

(2.z5)

Formed velocities are defined

(2.27)

and

in which R is a block diagonal matrix consisting of the 3 x 3 transformation matrices of (2.26) for
grid points on the terrain surface and the 3 x 3 identify matrices for the remaining grid points.

Finally, in place of equations (2. 18) and (2. 19), the uncoupled system of matrix equations
become

-9-
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where the velocity vector contains the

[t%~’ + =truo (279)

U=u o– fif~l~a (~.30)

normal and tangential components for all grid points on the
terrain surface, thus allowing a zero normal velocity to be specified. Upon obtaining the velocities
from (2.30), Eq. (2.26) is then used to transform the normal and tangential velocity components
back to the components in the (x,y,z) coordinate system.

For “flow through” boundaries, such as the exit and lateral planes, the condition of L = O is
automatically imposed (more precisely,
formulation.

2.5 Stabilization of the Discrete

approximated due to discretization errors) by the present

Poisson Equation

The discrete Poisson equation constructed using the popular, ‘low cost’ Q 1-PO finite
elements for the Stokes problem is known to be unstable and Spurious pressure modes could
contaminate the solution (see Sani, et al. [1981]). AS a result, convergence rate of the solution
deteriorates as the mesh is refined (see, for example, results of Vincent and Boyer [1992]). Since
the same Q 1-PO finite elements are used here, similar deficiencies are expected. Our problem is
somewhat less severe, because the entries of the ill-conditioned matrix are 0(h3), h being the mesh
size, for the Stokes problem but are only O(}Z)for the prewnt problem.

To stabilize the linear system of equations (2.29) and improve the convergence rate of its
soIution, we adapted the ‘local jump formulation’ proposed by Silvester and Kechkar [1990]. In
this approach, the elements are grouped into disjoint macroelements and a stabilization term is
designed to make A continuous in each macroelement. In essence, a stabilization matrix S with a
tunable parameter /3 is added to the left-hand-side matrix of the original linear system of equations,

[thq’t +/3s]a=tTuO (2.31)

With this approach, mass conservation is strictly enforced for each macmelement (actually
accurate up to the convergence tolerance used for the iterative solution of d) but is only
approximately enforced for each individual element.

The matrix S is obtained by assembling the subma~ces for the macroelements which, in”
general, are made up of 8 (i.e., 2 x 2 x 2) adjacent elements, as shown in the following sketch,
except on the boundaries where the number of elements may be less than 8 if there exists an odd
number of zones in any of the coordinate directions.

7 / 8
5

1 2

Numbering of hexahedrons in a macroelement. Element No. 3 is behind No. 1 and below No. 7.
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.

●

For a macroelement of 8 elements as ordered in the above sketch, the submatrix is defined
below:

hl.2 + h1,3
-}1,2 –}1,3 o -hl,5 o 0 0

+/1,.5

-h2,f
h2., + ~.4

o -}12,4 o -112,6
++6

o 0

-}q.l o hu + 113.4

+%7
-%4 o 0 –/13,7 o

0 -)14,? -hq
h~.z + h~.j o
+h~.8

o 0 -/148

–hj.] o 0 0 %.! + 115.6

+%.7
‘%,6 -h5,7 o

-~+ 1~,5
o -k,? o 0 -h~ +&,8 o ‘%8

h7.3 + h7,5
o 0 -h7.3 o -b.s o +h.s

-h7,8

o 0 0 -f%,, o -}~,6 -l%,,
t~., + h~,b

+3.7

(2.32)

in which hi ~ is the length scale for elements ‘i’ and ‘j’ in the macroelement. The matrix Stnzl is
symmetric, since ~,j = hj,~. Two schemes are available for computing the length scale ~ ,j: (1) the

square root of the interior inter-element surface area between elements ‘i’ and ‘j’, or (2) the
quotient of the interior inter-element surface area divided by the cube root of the average element
volume of the macroelement.

Numerical experimentation shows that the optimal value for the stabilization parameter is
somewhat problem dependent but is not very important. Generally speaking, a larger value of ~
will make the system more stable. However, too large a value can cause noticeable loss in the

accuracy of the solution. A value between 0.01 and 0.1 appem to work well for most applications
conducted so far.

_.. .—. —.—
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Fi:ure 2.z. Reduction in residuals as a function of ICCG iterations from the Poisson equation
solutions for a hemispheric hill using three different grids. ---- -unstabilized.

stabilized.
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In Fig. 2.2, the reduction in the residuals during the solution of A as a fimction of ICCG
(defined in 2.6) iterations is shown for a hemispheric hi~ problem using three different grids. The
current stabilization scheme is quite effective, actieving Up to 5070 reduction in the number of
iterations with the finest grid. These results also show that, when the grid is refined by a factor of
~, the number of ICCG iterations increases by a factor of slightly over 2 for the unstabilized cases

but increases only by a factor of ~ for the stabilized cme using the finest grid. The final wind
fields obtained with the stabilization scheme differ only by a few ~rcent from those obtained with
the unstabilized scheme.

2.6 Solution of Linear System of Equations

Conjugate gradient methods for solving an N x N linear system Ax = b have several
advantageous features. They require no parameter estimations and provide optimal error
minimization. The algorithms have a finite termination afier M S N steps, where M is the number
of distinct eigenvalues of A. Since they reference A only through vector multiplication, the codes
are also highly vectorizable and allow concise storage for sparse systems.

Conjugate gradient algorithms (Varga [19621) Me b-don theideaof ~mizing a finction

f(~) =&”A., y-xT .b by finding the point where Vf=A. x–b=O. The minimization is

carried out by generating a succession of search directions pk md a corresponding set of improved

solutions Xk+l which minimize ~ in the space spanned by {PI, p2, ”””, pk }. Convergence is

monotonic, with the generalized error function (A-r– z)~ .(x – z) taking on its smallest value in the
subspace spanned by the search directions when z = Xk+l and decreming in magnitude with each
iteration.

For improved convergence, preconditioning is used to modify the matrix A to one that is very
close to the identity matrix except for a few extreme eigenvalue$LIPreconditioning is performed by
multiplying A by an easily calculable spmse symmetric ma~x A

Two preconditioned conjugate gradient solvers are available in MC_WND for efficiently solving
the linear system of equations (2.31). They are the Incomplete ChoIeski Conjugate Gradient
(ICCG) method of Kershaw [1978] and the Diagonally Scaled Conjugate Gradient (DSCG)
method.

Described below are the procedures for solving a symmetic system of equations in the form
A.T = b, using the ICCG method,

1. Given Xo, compute

(
-1

rO=b–/irO, pO = LLT) ro, Z. ‘p.

where LLT = ~ is the incomplete factorization matrix of A.



?-. For k =0,1,2, .... until convergence, compute

a~ = (% :k)/(Pkl Ok)

Xk+I =xk+~k pk

rk+] = rk – ~k Apk

()
T ‘]

~k+l = IL ‘k+l

bk+l = (r,+l~ zk+l)/(rk~ Zk)

~k+l = Zk+l + ~kpk

Remarks:

(1) The following convergence criteria are used to stop the iterations:

bk+l -xdl/llxk+Il<E
and

M‘k+l b!<&

where E is the convergence tolerance.

(2) For DSCG, replace (LLT)-’ ‘, of which D is the diagonal vector of A.with D–

2.7 Map Projections

Calculations are generally performed in a conformal map projection coordinate system, which
. preserves the angles between intersecting curves. TIE relationships between the map projection

coordinates (X, Y,Z) and the Cartesian coordinates (x,y,z) can be written as

●

X=rnx, Y= my, Z=Z (~.35)

where M(X,y) is the map length scaling factor. Similarly, the velocities are related by

The continuity equation,
Haltiner and Williams [1980]),

The mixed variational principle

(~.33)

(2.34)

U=mu, V=mv, W=w (2.36)

written for the mapped coordinate system, takes the form (see

in the map projection coordinates is,

(~.37)
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For numerical computations, it is advantageous to directly compute the values of U/m, V/m,
and W\m2 at the grid points. To do so, we recast (2.38) as

with the associated Euler-Lagrange equations

U U0+m2 i?.—=— ——
mm a; &

(2.40a)

(2.40b)

(2.40c)

and

The same numerical procedures described previously Cm then be applied to these equations
by substituting U/WI, V/m, W/ mz for u, V, w and inctxporating the map scaling factor m into the
lumped mass matrix ML.

3. USER’S GUIDE

In this section, the namelist groups used by MC_~D are descfibed. For easy reference,
they are also summarized in tables. Finally, a brief desc@on is presented for the input and output
files used in the code.

-l-!-



3.1. The Namelist Groups

There are five narnelist groups for MC_WTND: mc_idfiles, mc_hills_xyz, mc_hills_ics,
adapt_ mc_adj ust, and adapt_mc_bc. Of the five narnelist groups, mc_idfiles, adapt_ mc_adj ust,

and adapt_mc_bc are more commonly used; mc_hills_xyz and mc_hills_ics have been designed
specifically for the hemispheric hill and polynorni~ hill problems and are required only when one
chooses to generate the grids and the initial winds internally. The namelist groups adapt_ mc_adjust
and adapt_mc_bc are also used by ADAPT (Sugi yama and Chan [ 1997b] ), when mass-consistent
wind fields are desired in the run. Default values for the variables are given in square brackets.

.

3.1.1 Namelist group 6mc_idfiles ’
.

This namelist group is used in MC_W~D to define the problem, grid dimensions, and the
names of input/output files. The variables in this group are:

title
imax
jmax
krnax
grid_file [grid_nc]
wind_file [wind_nc]
outgtx_file [mc_wmd_nc]

The variable ‘title’ is a string of 80 characters for problem identification, ‘imax’, ‘jmax’, and
‘krnax’ are the number of grid points in the X, y, and z coordinate directions, respectively,
‘grid_ file’ and ‘wind_file’ are the names of input files containing the nodal coordinates generated

.

.

b; G–~GEN and the initial winds generated by ADAPT, and ‘outgtx_file’ is a netCDF output
containing the mass-consistent wind field, which is used as input to the dispersion code LODI.

3. 1.2 Namelist group ‘mc_hills_xyz}

file

MC_WIND has some capabilities for generating the grids internally for problems involving
simple or analytic geometric shapes, such as the hemispheric and polynomial hill problems. The
following variables are used to generate such grids:

xm.in Xrnax
ymin ymax
Zmin zmax
Xo yo Zo
radius height
ihmin[O] ihrnax[O]
~ln[O] jhrnax[O]
~~

In the above list, the first six variables specify the extent of the computational domain, while the
next three variables define the location of the till center. w vtiable ‘radius’ is the radius
parameter for a hemispheric hill, while ‘height’ is the height parameter for the axisymmetric

polynomial hill problem studied by Hunt and Snyder [1980]. ‘ihmin’, ‘ihmax., ‘jhmin’. and
‘jhmax’ are optional inputs for the hemispheric hill problem used in rearranging the horizontal g-id
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locations to better represent the circular base of the till and the steep gradients near the base
without requiring extra grid points. Their values define the boundary of a square, whose four
comer points are near the circular base of the till and are used as control points in the remeshing
process. The variable ‘ggf is a geometric grading factor to be used in generating a graded mesh in
the vertical direction. Its value is, in general, dictated by tie desired grid spacings near the ground
and the number of grid points used in the vertical direction. However, for solution accuracy, a
value between 1.0 and 1.2 is recommended.

3.1.3 Namelist group cmc_hills_ics’

In MC_WIND, constant initial winds and a temperature field with a linear profile can be
generated with the following variables:

Uo [1.0]
Vo [0.0]
Wo [0.0]
to [300.0]
dtdz [0.0]

The variables ‘uO’, ‘vO’, and ‘wO’are the Cartesian velocity components, and ‘tO’, ‘dtdz’ are
the parameters for defining a linear potential temperature profile. This narnelist can only be used for
the hemispheric and polynomial hill problems.

3.1.4 Namelist group ‘adapt_mc_adjust’

The variables of this narnelist group are used by both MC_WND and ADAFT to define the
various parameters required by the mass-adjustment algorithm. Based on their functionality, the
variables can be divided into three subgroups:

flag_vgpm ~p;]
alpha_h
alpha_v [1:0]
Cfhmax [0.5]
grav [9.806]
itdpts [0]
file_tprof
nbc_specified [0]

cg_solver [Liccg’]
epsilon [0.001]
itmax [400]
istab [~]
cstab [0.01]

prt_level [-1]

Variables in the first subgroup pertain to atmospheric stability and boundary conditions,
which are used in constructing the Poisson equation matrix for the field of Lagrange multiplier.
Specifically, the first seven variables are related to the ev~uation of the Gauss precision moduli
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(GPM), the weighting factors for controlling the adjustment of vertical velocity relative to
horizontal velocity, and the last variable is the number of boundary condition namelists
‘adapt_ mc_bc’ present in the input file.

In the present codes, the field of GPM can be either constant or variable. To use constant
GPM, ‘flag_vgpm’ is set to ‘off and the values ‘alpha_h’ and ‘alpha_v’ are used. The value for
‘alpha_h’ is usually set equal to 1.0, and the recommended values for ‘aIpha_v’ are 0.2, 0.5, 1.0,
2.0, and 5.0 for very unstable, slightly unstable, neutral, slightly stable, and very stable
atmospheric conditions, respective y. If variable GPM are desired, ‘flag_vgpm’ is set to ‘on’ and
the values for ‘cfhmax’, ‘grav’, ‘itdpts’, and ‘file_tprof must be given. The variable ‘cfhmax’ is a
floating-point number between [0, 1], which specifies the fraction of the maximum and minimum
terrain difference to be used in the characteristic height difference formula (2.11), ‘grav’ is the
constant of gravitational acceleration, ‘itdpts’ is the number of temperature data points to be
extracted from the upper air sounding file, and ‘file_tprof’ specifies the name of that file.

The next five variables are input parameters to be used in solving the linear system of
equations for the field of Lagrange multiplier. The variables ‘cgzsolver’, ‘epsilon’, and ‘itmax’ are
associated with the iterative solver and ‘istab’ and ‘cstab’ are related to the stabilization schemes. In
the present codes, either the ‘iccg’ (incomplete Choleski conjugate gradient) or ‘dscg’ (diagonally
scaled conjugate gradient) solver can be used. ‘epsilon’ is a convergence tolerance for the iterative
solution, and ‘itmax’ is the maximum number of iterations allowed. In order to enhance the
convergence rate of the iterative solution, two slightly different stabilization schemes, each
involving the addition of a small, block diagonal stabilization matrix to filter out the unstable modes
in the solution, have been implemented. The desired scheme is selected by the value of ‘istab’ and
the weight of the stabilization matrix ( ~ in Eq. (2.3)) is specified by ‘cstab’. The stabilization
scheme is activated with either istab= 1 (for which the stabilization matrix is built with length scales
based on the inter-element areas and element volumes) or istab=2 (for which the stabilization
matrix is built with length scales based on the inter-element areas only). The recommended value
for ‘cstab’ is 0.01, but larger values (on the order of 0.1 or 0.2) may sometimes be needed for
problems having very ill-conditioned matrices, such as those involving rough terrain and/or very
stable atmospheric conditions.

The variable ‘prt_level’ is a parameter for controlling tie level of output to a file called
mc_wind.sol. For most problems, a value of ‘-1‘ (default) is adequate and the output will include
an echo of the input parameters and certain global results sampled before and after mass-
adjustment. A value of ‘O’ will put out, in addition, the nodal values of the coordinates, map
factors, the field of the Lagrange multiplier, potential temperatures, and the initial and adjusted
wind fields. The fields from this file can be processed and postprocessed by a graphics code
named GRIZ. Values higher than ‘O’are for debugging purposes only- Specifically, a value of ‘1‘
will produce additional output, including grid points with specified velocities, the values of

direction cosines for grid points on the ground surface, and the right-hand-side (RHS) vector of
the linear system of equations. A value of ’2’ will also print out entries of the linear system of
equations, the stabilization matrix, and the incomplete Cholesti decomposed matrix.
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3.1.5 NameList group 6adapt_mc_bc ’

.

.

The variables in this narnelist group have been designed to specify or hold velocity
components at selected grid points, which are usually on the domain boundaries, from being
altered by the mass adjustment process. Some examples me the specification of velocities on the
inlet plane, no-penetration on the ground surface, and the preservation of interpolated data at

desired grid points within the grid. For convenience, the imposition of no-penetration on the

ground surface has been hard-wired in the code so that no input is required.

Other constraints can be imposed by using various combinations of the following variables:

kind_bc
value_bc
il jl kl
i2 j2 k2

The character variable ‘kind_bc’ denotes the action to be taken, ‘value_bc’ is the specified value for
the selected velocity component, and the six integer variables, ‘i1‘, ‘i2’, ‘j1‘, ‘j2’, ‘k 1‘, and ‘k2’,
are the (i,j ,k) indices of two control points defining the group of grid points for which the desired
specification is to take place. Depending on the values of the indices, the two control points can
define a group of grid points forming a 3-D block of cells (with the control points placed at the
opposite comers of the block), a plane (with the control points placed at the opposite comers of the
plane), or a line (with the control points placed at the ends of the line).

The entry of ‘kind_bc’ can be one of the following:

hold_i lUVW
hold_u hold_v hold_w
set_u set_v set_w

The key word ‘hold_i 1UVW’directs the code to hold all the velocity components on the i= 1 (inlet)
plane to the initial values. The key words ‘hold_u’, ‘hold_v’, and ‘hold_w’ hold the designated

velocity components to their initial values for the locations defined by the control points. The key
words ‘set_u’, ‘set_v’, and ‘set_w’ are used similarly except that the variable ‘value_bc’ is used to

specify a value different from that in the initial wind field.

This namelist group can be used as many times as necessmy in both ADAPT and
MC_WIND.

3.2. Tables of Namelist Groups

For easy reference, the namelist groups are summtized in the following tables.
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Table 3.1. Namelist MC_IDFILES

.

.

.

.

Variable

grid_fde

imax

jmax

krnax

title

wind_fiIe

outgtx_file

Type

char* 160

integer

integer

integer

char*80

char* 160

char* 160

Description

Table 3.2. Namelist MC_HILLS_XYZ

DescriptionType

name of grid input file generated by
GRIDGEN

number of grid points in the x-direction

number of grid points in the ydirection

number of grid points in the zdirection

character string for problem identification

name of wind input file generated by
ADm

name of netCDF output file containing grid
point coordinates and the wind fields

Variable

ggf

height

ihmax

ihmin

jhmax

jhmin

radius

xmin, xmax

ymin, ymax

zmin, zmax

Xo, yoj Zo

real

real

integer

integer

integer

integer

real

real

real

real

real

geometric grading factor for grid spacings in the
vertical direction

height parameter for the polynomial hill problem

i-index of the right side of the square used in
remeshing the hemispheric hill problem

i-index of the left side of the square used in
remeshing the hemispheric hill problem

j-index-of the upper side of the square used in
remeshmg the herruspheric hill problem

j-index.of the lower side of the squae used in
remeshmg the hermsphenc hill problem

radius parameter for a hemispherical hill

the minimum and maximum x-coordinates of the
computational domain

the minimum and maximum y-coordinates of the
computational domain

the minimum and maximum z-coordinates of the
computational domain

location of hill center

Table 3.3. Name list MC_HILLS_ICS

Variable

dtdz

to

Uo

Vo

Wo

Type

real

real

real

real

real

Default

‘grid_nc’

‘wind_nc’

‘mc_wind_nc’

Default

o

0

0

0

Description I Default

slope of potential temperature profde

value of potential temperature at 2=0

constant initial wind component in the x-direction

constant initial wind component in the y-direction

constant initial wind component in the z-direction

0.0

300

1.0

0.0

0.0
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Table 3.4. Namelist ADAFT_MC_ADJUST

.

●

Variable

alpha_h
alpha_v

cfhmax

cg_solver

cstab
epsilon
file_tprof
flag_vgpm

grav
istab

itdpts

itrnax

nbc_specified
prt_level

Type

real
real

real

char*24

real
real
char* 160
char*24

real
integer

integer

integer

integer
integer

Description

weighting factor for horizontal velocity adjustment
weighting factor for vertical velocity adjustment, with
the following recommended values:
0.2, very unstable
0.5, slightly unstable
1.0, neutral
2.0, slightly stable
5.0, very stable
fraction of maximum terrain height difference to be
used in the formula for the characteristic height
difference
conjugate gradient solver
‘iccg’=incomplete Choleski conjugate gradient
‘dscg’=diagonally scaled conjugate gradient

weighting factor for the stabilization matrix
convergence tolerance for the iterative solution
name of upper air sounding file
flag for vtiable Gauss precision moduli
‘off=constant Gauss precision moduli
‘on‘ =variable Gauss precision moduli
constant of gravitational acceleration
stabilization matrix selector
O:no stabilization matrix
1: stabilization matrix using length scales based on
inter-element surface areas and element volumes
2: stabilization matrix using length scales based on
inter-element surface areas only
mmber of temperature data points to be extracted from
~pper air sounding file
inaximum number of iterations allowed for the
:onjugate gradient solver
rmmber of boundary condition namelist groups
level of ASCII output to mc_wind.sol
-1: input parameters and sample global results
1: plus coordinates, map factors, solution vectors,
initial and adjusted winds
1: plus specified velocities and their locations, values
of direction cosines on the ground surface, and the
RHS vector of Eq. (2.31)
2: plus entries of the original matrix, the stabilization
matrix, and the incomplete Choleski decomposed

Default

1.0
1.0

0.5

‘iCCg’

0.01
0.001

‘off?

9.806
2

0

400

0
-1



Table 3.5. Namelist ADAFT_MC_BC

.

.

Variable

il

i~

jl

j2

kl

k~

kind_bc

value_bc

Type

integer

integer

integer

integer

integer

integer

char*24

real

Description

i-index of first control point of a line, a plane, or a 3-D
block for which the wind component is to be held or set

i-index of second control point of a line, a plane, or a 3-D
block for which the wind component is to be held or set

j-index of first control. point of a line, a plane, or a 3-D
block for which the wmd component is to be held or set

j-index of second control point of a line, a plane, or a 3-D
block for which the wind component is to be held or set

k-index of first control point of a line, a plane, or a 3-D
block for which the wind component is to be held or set

k-index of second control point of a line, a plane, or a 3-1
block for which the wind component is to be held or set

type of boundary conditions
‘hold_i lUVW’:hold all velocity components on the i= 1
plane to their initial values

‘hold=u’: hold u-velocity component to the initial values
for grid points defined by (i 1,j1,kl ) and (i2,j2,k2)

‘holdTv’: hold v-velocity component to the initial values
for grid points defined by (i 1,j1,kl) and (i2,j2,k2)

‘hOld=w’: hold w-velocity component to the initial values
for grid points defined by (i l,jl,kl) and (i2,j2,k2)

‘set_u’: set u-velocity component to input value,
value_bc, for grid points defined by (i 1,j 1,k 1,) and
(i2,j2,k2)

set_v’: set v-velocity component to input value,
{alue_bc, for grid points defined by (i 1,j 1,k 1,) and
i2,j2,k2)

‘set_w’: set w-velocity component to input value,
ialue_bc, for grid points defined by (i 1,j 1,k 1) and
i2,j2,k2)

ipecifled wind component value, if kind_bc is ‘set_ u’,
‘set_v’, or ‘set_w’
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3.3 Input and Output Files

The primary input to MC_WIND is a namelist file called mc_wind.nmI, which is usually
supplemented by file(s) containing the grid-point coordinates and the initial winds. In addition,
when space-dependent weighings for horizontal and vertical velocity adjustment are desired, an
upper air sounding file for the temperature profile is also required. However, for the hemispheric
hill and polynomial hill problems, an option exists to obtain the required temperature field from the
initial conditions generated by ‘mc_hills_ics’, thus no upper air sounding file is required. The input
files are described in the following table.

Table 3.6. MC_WIND input files

File name Unit No. Description Default

mc_wind. nml 5 A namelist file used to define the problem,

grid dimensions, names of files containing grid-point
locations and the initial winds, parameters for the
mass-adjustment algorithm, and specified velocity
components, etc. Details of the namelists are given in
sections 3.1 and 3.2

user supplied 7 A netCDF file generated by GRIDGEN defining the ‘grid_nc’
grid-point locations.

user supplied ? A netCDF file generated by ADAPT defining the ‘wind_nc’
interpolated/extrapolated initial winds.

user supplied 11 An ASCII formatted file defining the upper air
sounding of the temperature profile, which is required
when flag_vgpm=’on’ and itdpts>O. Data are read
beginning at line xl 1 with format (al 0,f5.0,a34,f5. 1).

? Unit number assigned by the system at run time.

In addition to screen output, output files are generated by MC_WIND for storing error
messages, a log of the run, the initial and adjusted wind fields and temperatures for post-
processing. The~e files are described in the following table.

Table 3.7. MC_WIND output files

File Name 1!1lnit NCI. I ~escrintinn I Default---- .. —---- ----- ---- —----- ~.- . .. —_-——-

adapt. err 2 An ASCII file for error messages.

mc_wind.log 3 A log file containing input parameters, certain
monitored data such as minimum and maximum
velocities, minimum and maximum divergence,
convergence information of the iterative solution, and
timing information for various tasks.

mc_wind. sol 10 An ASCII file containing data similar to the log file
except the convergence information. In addition,
depending on the input value of prt_level (see table 3.4),
various level of output for post-processing by GRIZ and
for debugging purposes may also be included.

user 9 A netCDF file containing grid-point locations. the initial ‘mc_wind_nc’
supplied and adjusted winds for post- processing by GTX.

? Unit number assigned by the system at run time.



4. NUMERICAL EXAMPLES

In this section, four examples are presented to demonstrate the usage and some of the
features available in the MC_WIND model. The examples are: potential flow over a hemispheric
hill, stably stratified flow around an axisymrnetric polynomial hill, an application for the San
Francisco Bay Area, and an adjusted wind flow for the Los Alamos National Laboratory area.

4.1 Potential Flow Over a Hemispheric Hill

. To test the accuracy of the present model, the patent.ial flow around a hemispheric hill is
simulated. The solution for this problem, in terms of the velocity potential, is

.
@ = LIox(l +rj/2r3), r~ro

in which UOis the free stream velocity and r. is the radius of the hill
components are

[(U=uol+ y*+z
)]

2 – 2x2 rjJ2r5

/v = –3uoxy r; 2r5

w = –3UOXZ r~J2r5

Listed below is the namelist file for the problem:

&mc_idfiles
title = ‘Potential flow over a hemispheric hill’
imax = 81
jmax = 81
krnax = 51
grid_file = ‘henispheric_hill’
outgtx_file = ‘mc wind_nc’—
I

&mc_hills_xyz
xmin = -2500.0 xmax = 2500.0
ymin = -2500.0 ymax = 2500.0
zrnin = 0.0000 zmax = 2500.0
Xo = 0.0 yo = 0.0 Zf) = 0.0
ihmin = 31 ihmax = 51
jhmin = 31 jhmax = 51
radius = 1000.0
ggf = ~.o~
/

&mc_hills_ics
Uo = 1.00
Vo = 0.00
Wo = 0.00

&adapt_mc_adjust
istab =
cstab =

The corresponding velocity

?3 .--



prt_level = o
nbc_specified = 1
I

&adapt_mc_bc
kind_bc = ‘hold_iluvw’
/

In this numerical simulation, a computational domtin of 81x81 x 51 grid points is used. The
ent~ of grid_filedirects[he code to generate the grid and initial wind field internally, with the
pameters supplied by nmelists mc_hills_xyz and mc_hi]ls_ics. The computational domain is

5000m x 5000m x 2500m, with a hemispheric hill of radius 1000m placed at the center of the grid.
A geome~c grading factor of 1.02 is used to generate the vertical grid, with a minimum grid

spacing of 17 .74m on the hill top. The flexibility of the finite element method is utilized in the
horizontal directions, through the input of ihmin, ihmax, jhmin, and jhmax, to obtain a closer
approximation of the circular base of the hill and the steep gmdients nearby. The default choice of
constant Gauss precision moduli and the ICCG solver are used in this example. As indicated by the
input value of prt_level, nodal coordinates and the solutio~ including the initial and adjusted flow
field, etc., will be written into mc_wind.sol for post-pr~essing. The velocity components on the
inlet plane are held to their initial values, as requested by nbc_specified= 1 and the namelist group
adapt_mc_bc at the end of the file.

Some sample results are shown in figures 4.1 and 4.2. In Fig. 4.1, the predicted velocity
vectors on the center plane and the 100-m horizontal plane are displayed. The wind field, as
expected, exhibits the stagnation points at the front and the rea of the hill and shows the potential
flow following the surface of the hill. In Fig. 4.2, the predicted velocity profile above the hill crest
is compared with the exact potential flow solution. The agreement is excellent, with a predicted

maximum speed of 1.54 versus the theoretical value of 1.50.

.
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Figure 4.1. Predicted velocity vectors on z=100m and the center plane for a hemispheric hill
using a 81x81x51 grid.
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Figure 4.~. Comparison of predicted versus exact u-velocity profile above the crest of a
hemispheric hill using a81x81 x51 grid.
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4.2 Stably Stratified F1OW Around a Polynomial Hill

.

.

.

b

In this example, amass-consistent wind over anaxisyrnrnetric polynomial hill under stable
atmospheric conditions (Strouhal number= 1) is generated. This is a simulation for one of the
laboratory experiments conducted by Hunt and Snyder [1980], whose results have been used for
parametrizing the stability effects in the diagnostic wind models by Moussiopoulos, et al. [ 1988]
and Ross, et al. [ 1988] . The following is the input file necessary for the simulation.

&mc_idfiles
title= ’Stably stratified flow around a polynomial hill, Str= 1‘
imax = 51
jmax = 51
kmax = 31
grid_file = ‘polynomial_hill’
outgtx_file = ‘mc_wind_nc’
/

&mc_hills_xyz
xmin = -100.0 Xrnax = 100.0
ymin = -100.0 ymax = 100.0
Zmin = 0.00 zmax = 50.0
Xo = 0.0 yo = 0.0 20 = 0.0
height = 22.9 ggf = 1.05
/

&mc_hills_ics
Uo = 1.0 Vo = 0.0 Wo = 0.0
to = 300.0 dtdz = 0.05535
/

&adapt_mc_adjust
flag-v~m = ‘on’
cfhmax = 1.0
grav = 9.806
nbc_specified = I
prt_level = -1
I

&adapt_mc_bc
kind_bc = ‘hold_i lUVW’
I

This computational mesh has 51x5 1x31 grid points. The grid_file entry directs the code to
generate the grid and initial wind field internally. The size of the computational domain is 200m x
200m x 50m. The polynomial hill, with a height of 22.9m, is placed at the center of the grid. A
geometric grading factor of 1.05 is used to yield a minimum veflical grid spacing of 0.408m above
the hill top. To account for the desired level of stable stratification, the variable GPM flag is turned
‘on’ and a linear temperature profile is defined by the values of tO and dtdz based on equation
(2.8a) (thus no upper air sounding file is required). On the inlet plane, the velocities are held to
their initial values of u= 1 and v=w-dl.

In Fig. 4.3, the predicted stream function on the center plane is shown, together with three
streamlines beginning upstream at the heights z/h = 0.5, 1.0, 1.5, where h is the height of the hill.



In Fig. 4.4, a close-up view of the velocity projection and the (shaded) w-component on the plane
at one-half of the hill height are displayed. These figures clemly show how the flow ‘climbs’ up
and ‘channels’ itself around the hill. Due to the fact that tie velocity adjustments are based on
potential flow theory, the observed wake effects of separations and horseshoe vortices behind the
hill are absent in the numerical predictions. The overall flOW patterns are, however, quite consistent
with those observed by Hunt and Snyder [1980]. The streamline beginning at z=h is predicted to
be displaced 0.3h above the hill crest (see Fig. 4.3) versus 0.21 h as observed in the laboratory
experiment.

.

●
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1.5 on the center plane of an axisymmetric polynomial kll understable conditions
with Strouhal number= 1.0.
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height for an axisymmetric polynomial hill under stable conditions with Su’ouha]
number = 1.0.
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4.3 Application for the San Francisco Bay Area

●

●

In this example, MC_WIND is applied to generate the windfields for m emergency response
scenario in the San Francisco Bay Area, using interpolated wind data from the new ARAC
meteorological database (Sugiyama and Chan [1997a]). The grid is 100km x 100km x 3km, with
81 grid points in each horizontal direction and31 grid points in the vertical direction. The grid has
10m vertical resolution near the ground surface. The namelist file used in the simulation is listed
below, with default values used for the Gauss precision moduli and the ICCG iteative solver.

&mc_idfiles
title = ‘San Francisco Bay Area, 8 1x8 1x31 grid’
imax = 81
jmax = 81
-hax = 31
grid_file = ‘sigmaz 1 _569000_4176000_O0 l~yd.nc’100
wind_file = ‘magic_oak_ 19960709_220000.nc’
outgtx_fde = ‘mc_wind_ 19960709_220000g.nc’
I

&adapt_mc_adjust
istab = 2
cstab = 0.1
prt_level = -1
I

Figs. 4.5 shows the mms-consistent wind vectors on the 10 m AGL plane, together with the

surface observations (plotted within the circles). In general, only small changes were made to the
initial winds by the mass-adjustment model. In Fig. 4.6, wind vectors on the y-z plane in the

middle of the grid are shown, with the vertical wind components exaggerated by a factor of 10.
The variable grid employed and the terrain following adjusted velocity vectors can be seen in this
figure, The magnitude of the ve~c~ wind induced by the topography is not very large, which is

consistent with the small changes observed for the horizontal winds.
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4.4 Wind Flow in the LANL Area

In this example, MC_WIND is applied to generate a mass-consistent wind field in the Los
Alarnos National Laboratory area, where terrain effects are very important. The grid is 20km x
~o~ x 4~, with 5 I grid points in each horizontal direction and 31 grid points in the vertical

direction. The grid has 10 m vertical resolution near tie ground surface. The name list file used in
the simulation is listed below. The default values of constant Gauss precision moduli for a neutral
atmosphere and the ICCG iteative solver have been used in the present simulation. Except for the
default of no-penetration on the ground surface, no other boundary condition is specified.

&mc_idfiles
title = ‘LANL_BB 1994/03/02 02:15:005 1x51x31’
imax = 51
imax = 51
“hax = 31
grid_file — —20—= ‘sigmaz 1 38 1380_3969170_O0 lgrd.nc’
wind_file = ‘magic l~l_nc’
outgtx_file = ‘mc_w~nd_nc’
I

&adapt_mc_adjust
nbc_specifled = O
I

Fi~s. 4.7 and 4.8 show the interpolated and adjusted wind vectors on the OZ = 0.0124 plane

(11 m to 30m AGL). There is a good agreement between the interpolated and adjusted winds except
in regions of extreme terrain where, as expected, much larger adjustments are observed. In Figs.
4.9 and 4.10, the interpolated wind vectors on the 23m AGL plane from MEDIC and the adjusted
wind vectors on the same plane from the MATHEW cwie of ARAC-2, which uses a constant
vertical grid of 23 m and has the top boundary at 700 m, are displayed. As a result of its stair-step
terrain and the inflexible uniform grid representation, the MATI-IIW model has produced much
slower wind speeds and has greatly distorted the wind directions across almost the entire region
near the surface.
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Interpolated wind vectors on the u, = 0.0124 plane ( 1Im to 30m AGL)for the LANL
area.

Adjusted wind vectors on the CT:= 0.0124 pkme (1 lm to 30m AGL) for the LANL
area from MC_WIND,
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Figure 4,9. 1]nterpol ated wind vectors on the 23m AGL plane for the LANL area from IMEDIC.

F@.we 4.10. Adjusted wind vectors on the 23m AGL plane for the L.MNLarea from ,M.ATHEW
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