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Use of the Lorentz-operator in relativistic quantum 

mechanics $0 guarantee a single-energy root 

Burke Ritchie 
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The Lorentz-operator form of relativistic qasardum 

it? -= (mc2p &) ly 
mechanics, with rdativistic wave equation at , 

is impkmented to guarantee a single-energy root. The 

Lerentz factor as modified by Pauli’s ansatz is given by 

I such that the theory is appropriate 

for ekctrons. Magnetic fine structure in the Lorentz 

relativistic wave equation emerges on the use of an 

appropriate operator form of the Lienard-Wiechert fsur- 

potential ( c’B~ ;) from electromagnetic theory. Although 

is the elimimation of the negative-root of the energy and an 

particle, positive definite probability derPsity like that 

of nonrelativistic quantum mechanics. 



The relativistic wave equation which is inferred directly from 

the special theory of relativity is well known to be, 

where y is the Lorentz factor, 

and in Eq. (2) P 2-+-%2V2 . The square-root operation is sometimes 

regarded as undefined; however a square-root operation of the form 

given by Eq. (2) has been used for example in optical physics [I]. The 

operation is performed by expanding the square root, even outside 

its radius of convergence, successively operating on an 

eigenfunction of the Laplacian term by term, and then re-collapsing 

the series back into the compact form of the square root. In the 

above example the wave function is expanded in a Fourier series and 

the Lorentz operator is evaluated to give simply, 
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Historically Schroedinger derived his nonrelativistic wave 

equation by expanding the square root to first order in the Laplacian. 

One observes however that such a truncated expansion could not be 

expected to be reliable for an S-state for motion in an attractive 

Coulomb field, even for small nuclear charge Z, because for small 

enough radius the motion must become ultra-relativistic (p =r> mc). 

Thus the so-called nonrelativistic limit is not well defined for S- 

states. The success of nonrelativistic theory for small-Z S-states 

depends on the happenstance that on average the electron spends a 

preponderance of its time far enought from the nucleus such that 

p <e mc. 

There are situations however in which this on-average distant 

motion does not obtain. For example the Klein-Gordon equation, in 

which the operation of the Laplacian is linearized at the cost of 

casting relativistic quantum theory in a form with a double-root 

energy, 

2 

actually has two normalizable Is states, one of which has a binding 
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energy nearly equal to mc2 (Fig. 1) and is identified with the 

Schroedinger Is wave function irregular at the origin [I?], while the * 

other is identified with the Schroedinger Is wave finction regular at 

the origin This state has not attracted interest because it is not 

physically realizable in an atom, where the source of the Coulomb 

potential is not a point, such that it can be argued [3] that the only 

physically interpretable solution of the Klein-Gordon equation is the 

one which agrees with the regular Schroedinger solution in the 

“nonrelativistic limit.” Such arguments are not appropriate however 

when there really is a point source of attraction such as a positron 

[2]. The overcompleteness of the S-state basis in Klein--Gordon 

theory suggests a pathology possibly related to its quadratic form; 

however in practice this overcompleteness is not of serious 

consequence since the vast energy difference between the two 4s 

states causes them to be nearly orthogonal [2]. 

The resolution by Dirac of the double-root ambiguity in the 

energy is of course well known and forms the basis for the practical 

application of this form of relativistic quantum theory, namely that 

the collapse of the atom by spontaneous radiative decay from 



positive-energy to negative-energy states is averted by filling the 

negative energy-states with a “sea”’ of electrons (“particles”), a 

vacancy in which signifies a positron (“‘hole”). It is curious that 

although spontaneous radiative transitions are allowed to tdnfilled 

negative-energy states, the motion in the negative-energy regime is 

repulsive and not attractive through the term -2Ee@ in Eq. (4) (and 

similarly in the Dirae equation), which causes the motion to be 

attractive for e@ < 0, E ZZ- 0 but repulsive for e@ c 0, E c 0. Thus the 

hydrogenic spectrum lies wholly in the e@ < 0, E > 0 regime and in 

the e@ c 0, E < 0 regime there are no bound states but only the 

negative-energy continuum which lies -mc2 below E = 0 (Fig. 2). The 

mirror image of this spectrum exists for positive potentials (Fig. 3), 

for which the motion is repulsive in the regime e@ > 0, E > 0 but 

attractive in the regime e@ > 0, E < 0 such that for example a 

positron moving in the field of a proton will have a hydrogenic 

spectrum of bound states lying above -me* in the e@ > 0, E c 0 

regime, to which it can make spontaneous radiative transitions 

unless these levels are already filled with a “sea” of positrons. 
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To this author it seems intolerable that the simple repulsive 

motion of two particles having the same charge cannot be 

understood without invoking Dirac’s ansafr. It seems clear that 

neither scenario will be predicted by Eq. (-l), which is single-valued 

in its energy spectrum. Thus we are motivated to fo lrmulate 

relativistic quantum mechanics as a single-spectra I, single-particle 

theory with positive-definite probability density. 

An interpretation of matter-antimatter annihilation reactions 

which is radically different from Birac’s is immediately suggested 

by classical relativistic theory 143, in which a particle with angular 

momentum L < e2/c in an attractive Coulomb field falls to the center 

of attraction even in absence of the electromagnetic field. In 

relativistic quantum theory the uncertainty principle guarantees 

that the motion of such a collapsed state will stabilize in a small 

volume about the center of attraction, and indeed the ultra- 

relativistically bound state predicted by Klein-Gordon theory 

(Fig. 1) confirms this expectation [a]. The binding energy of this 

state is less than 2mc2 by about 0.4 5% (Fig. I), which is well outside 

the error bars of existing experiments which seem to confirm that 
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precisely 2mc 2 of energy is radiated by two photons in annihilation, 

as predicted by Dirac theory. However, in a single-root theory such 

as that of Eq. (I), in which a negative-energy regime and a many- 

particle interpratation of the wave function seem not to be 

available, one would have to infer that annihilation would be 

represented by two-photon decay to an ultra-relativistically bound 

state whose binding is 2mc2 within the error bars of existing 

precision experiments. Also single-root theory suggests that 

annihilation reactions may produce two photons and a nearly 

massless neutrino, which provides a new degree of freedom to 

experimental investigations. 

These particle-physics implications of single-root theory are not 

of that much interest however in relativistic quantum chemistry, 

except for the concern of what constitutes a complete set of states 

and how these states are accurately calculated for an atom or 

molecule. These are the same concerns however in conventional 

Dirac-theory calculations, in which for exampfe a complete set of 

states in a perturbative calculation comprises both the positive- 



and negative-energy states. Thus the practical advantage of single- 

root theory appears to be conceptual rather than computational: it 

provides a single-particle interpretation with positive definite 

probability density in analogy to nonrelativistic quantum theory. 

First we modify the Hamiltonian by using Pauli’s ansak in 

Eq* (2) 
c -;x -&+i) 

such that the Hamiltonian of Eq. (1) 

becomes, 

--d M- 
> (5) 

is now appropriate for an electron. The second term under the 

square root can be written in the more familiar form, 

2 e.p-e4 
_ y- cP(VxA) 

8 (f4 

such that expansion of the square root immediately gives the Pauli 

Hamiltonian to first order in the operator. Now how is the operation 

determined by the square root in Eq. (5) defined? We can infer its 

definition by dropping the scalar potential, transposing the right- 

hand term to the left side in Eq. (la), such that, 
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operating on Eq. (7a) from the left with, 

Pa) 

a 
ls--- f I/ 

at 
ln2c4 i- c2[TP(;; - p)]* 

, VW 

and using Eq. (6) to obtain, 

2 

(99 
2 eti- - - --y+m2c4+C2[(;-~& --p~(vxA)]}y=O 

at (8) 
This equation is identical to the Dirac equation when <D = 0 ; thus its 

positive-energy solutions are also solutions to the Lorentz 

relativistic wave equation (LRWE) [Eq. (I)] when dc, = 0 and form a 

complete set in this subspace which can be used to expand the wave 

function of the LRWE when <ID is not zero. We can also infer from 

Eq. (8) that the LRWE satisfies the correct energy-momentum 

relation for a free particle and is Lorentz covariant. From Eq. (I) we 

have already inferred that the LRWE form of relativistic quantum 

theory satisfies the demand which motivated the present work: that 

of a theory with a single-particle, positive definite probability 

density interpretation. Thus it is close to Dirac theory, but without 
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the negative root to the energy, such that the third demand above, 

which goes back to the original formulation of Dirac but was later - 

abandoned by him because of the presence of the negative-energy 

root, can be satisfied. 

Although there are no obvious approximations as yet, still the 

LWWE appears not to describe the magnetic fine structure of the 

atom. This omission is only apparent however when we realize that 

a relativistic matter theory should be used in conjunction with a 

relativistically invariant form of the electromagnetic potentials. 

This means that one should use, not just the scalar potential 0, but 

the four-vector potential (@p ;I, which for the Coulomb field is just 

the Lenard-Wiechert four-potential [5]. In the moving frame of the 

electron the scalar and vector components of this potential are, 
&$ 

(94 

j&&c 
r c W4 

where we have neglected retard’ation over the scale of the atom. In 

order to take the vector component over into quantum mechanics, it 

must be in an appropriate operator form. We write the ansatz, 
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- -it,- 2) =- 
where we have used the standard operator replacement m 

and a symmetrization which insures the antisymmetry of the 

magnetic field ;;xL-Ax? associated with the electron’s motion. 

Before Dirac’s equation the spin-orbit interaction had been 

derived [6] from the Pauli term in Eq. (6), or more precisely from the 

expanded square root of Eq. (5), where to first-order in the 

operator, the Pauli interaction is, 

using classical arguments, namely that in a frame moving with the 

electron the magnetic field and energy associated with the orbital 

motion is, 

where Lc= m(r X VI. Eq. (12a) is obtained from the curl of Eq. (9b); its 

substitution into Eq* (11) gives the first term on the right side of Eq. 

(lab). The second term on the right side of Eq. (12b) is the Thomas 

precession [6], whose origin is the rotation of the frame moving 
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with the electron about the nucleus. It contributes a counter term 

which is minus one-half of the first term, so that the classically 

derived spin-orbit interaction agrees with Birac theory. 

Although these classical arguments eventually lead to the 

correct form of the spin-orbit interaction, the passage to the 

--b 
-D iti- - %i- 

operator form of Eqs. (12), in which 
rxu-+-mrxV=~L 

, is clearly 

flawed because the importance of the order of the operators in the 

product is ignored. Qn the other hand the symmetrized form of the 

vector potential given by Eq. (IO) is simply a weighted average of 

the two possible ordered products, with relative weights chosen to 

give simultaneously the correct spin-orbit interaction and the 

correct antisymmetry of the operator magnetic field associated 

with the electron’s orbital motion Qbviously the rule v4XX =.J,: 

must be observed in any operator field one writes since the Pauli 

Hamiltonian itself [see Eq. (6)3 depends on the cancellation of 

operators G X x and i X G * In which the gradient operates in both 

cases on the wave function and not on the vector field. Eq. (10) 

leads to the correct spin-orbit interaction without invoking Thomas 

page 12 



precession; thus it is possible that the physics of the counter term 

which Thomas precession contributes is also described, although in 

a way which is not clear at present, by using the symmetrized 

operator in the Hamiltonian. Inevitably it contributes terms in 

addition to the correct spin-orbit interaction, which as it turns out 

are important only close to the origin or for S-states, as we shall 

see. Thus for angular momentum L > 0, for which the expansion of 

the square-root can be reliably made in the so-called nonrelativistic 

limit, the LRWE with four-potential is in exact agreement with 

Dirac theory. Qbviously however this derivation of the magnetic fine 

structure is heuristic and not entirely satisfactory because it finds 

an operator form from the classically derived four-potential (@y A) , 

which is fine when the vector component is ignored except for 

externally applied fields, as in nonrelativistic theory. A more 

satisfactory procedure would be to derive the four-potential using a 

quantum mechanical operator form of Maxwell’s equations for the 

potentials, as in quantum electrodynamics (QED). In a complete 

theory then quantum Maxwell theory would be used both for the 

static four-potential and for the dynamic four-potential which 
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causes QED corrections to the motion. 

Dirac’s treatment does not require the explicit use of the static 

four-potential to describe magnetic fine structure; however Dirac’s 

equation can be cast in the form which would be precisely 

a statement of the relativistic invariance of the square of the four 

iha e@ at-- - 
momentum operator 

( c , O~I;;-~G) 
if the noncommutivity 

of the scalar and vector components of the four momentum were 

ignored. This form of the Dirac equation is 673, 

iti 
a 

--eB, 
a 

iti--e@ 

[- 
at 

C , (13) 

where magnetic fine structure emerges from the noncommutivity 

of the second term in the first square bracket and the first term in 

the second square bracket. On the other hand the Klein-Gordon 

equation is precisely a statement of the relativistic invariance of 

( 
at 

the square of the four momentum c 
,;-;ii, 

I namely, 
2 
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Finally, returning to the LRWE and using Eq. (10) and its curl in 

Eq. (6), one has, 

e 0 ll”C+J--& 
(15W 

One notes that on expanding the square root in Eq. (5) and using 

Eq. (Isa) the correct spin-orbit interaction emerges, 

w 
efi* ddb GE 

SO==-- 22dr p 4m c (16) 

Ill. Ultra-relativ ist ic D30ti0af 

The LRWE [Eq. (I)] insures that the energy is single-valued: 

however one would expect for there to be a counterpart to the 

negative-energy continuum of Birac theory since otherwise, when 

the electron couples to the quantum electromagnetic field, the LRWE 

would be unable to describe two-photon radiative decay, with energy 
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loss of mc? per electron mass, which is characteristic of the Dirac 

spectrum when there is a hole at -mc2. Just as in Dirac theory it is 

necessary to resolve this issue before one can use the theory in 

practical atomic physics applications. 

Remarkably the LRWE spectrum is divided into two subregions, 

which are characterized by the range of values of the velocity given 

by Eq. (15b), which can be regarded as a renormalized speed of light 

whose origin is the operator vector potential [Eq. (IO)]. Recall that , 

the curl of the vector potential is the magnetic field which gives 

the correct spin-orbit interaction (Eq. (-l6)] when substituted into 

the Pauli interaction in the Hamiltonian; similarly when the vector 
-+ e-9 

potential is used in the kinetic momentum ’ -z* , it leads to the 

renormalized speed of light. 

The critical values of the renormalized speed are 2) I= 0 at an 

electron radius r = e2/2mc2 (for a unit-strength Coulomb potential), 

which is roughly the radius of the nucleus, and ‘u -+-O” as r--p ? . 

Remarkably the wave function vanishes at II =.O, r = e2/2mc2 and 

diverges as r-j at V--+--W r+ 0 t . This suggests an identification of 
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the subregion 0 g r g e2/2mc2, in which particles can be sucked in - 

near the origin, with the negative-energy continuum of Dirac theory, 

in which similarly the electron coupled to the electromagnetic field 

can cascade to oblivion as E 4 “O”. It is also tempting to compare 

the negative range of the speed II in the “nuclear” sphere, which 

implies a clock running backwards, with the Feynman boundary 

conditions for negative-energy states in which negative-energy 

waves propagate backwards in time [8]. In any event the theory 

should be extended to include the point-particle source of the 

Coulomb field, so that the possibility exists that source recoil will 

soften the potential enough to give a physically interpretable wave 

function at the origin. 

Alternatively one must use a device similar to that of Dirac 

which consists of filling up the “nuclear” levels to a point such that 

particle mass is conserved. Thus the LRWE seems to suffer a fate 

very analogous to Dirac theory, which similarly points toward a 

many-body resolution; however the LRWE suggests a physical origin 

for these difficulties and, intriguingly, predicts a separation of the 
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motion into two subregions of space and energy, one nuclear for the _ 

renormalized speed in the regime ” O” cu < o and the other atomic in 

the regime oCU6 c. 

In what follows we support the foregoing remarks by examining 

the motion when the electron is close to the center of force. We 

assume that the second term under the square root sign in Eq. (5) 

dominates the first term. This is known as the ultra-relativistic 

regime, where p >> mc [9,10]. On making the steady assumption 

1% d-+E 
at , we obtain, 

This equation is close in form to Dirac’s equation, so that we can 

use standard methods in its analysis First we expand the wave 

function, 

w= i&cX~, -t i L&y , P3 

where gK is the radial wave function and xKy are the two-component 

spinors with the well known properties, 

CTd&= 4-1)x, (194 
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&,== - &, . (19b) - 

Substituting Eq. (18) into Eq. (17) and using Eqs. (l9), (9a), and (IO) 

and the identity, 

we derive the pair of coupled radial equations, 

(21 b) 

where the prime denotes derivative with respect to r and u is given 

by Eq. (15b). Eliminating Eq. (21 b) in favor of Eq, (2la) one has, 

2mcu 2mcu E-e@ 2mcu 

(22) 

First a few general remarks concerning Eq. (22) are in order. Two 

of the terms, - e@‘lmcur and - eW/2mcu, cancel. If the 

vector component of the four-potential [Eq. (1O)J is ignored, Dirac’s 
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equation is recovered for small r, 

2 

(“$;g”K -1-a 

2 

>&c= 0 
dr r* 8 (23) 

whose solution regular at the origin is, 

C?-1 g,-r 1 (24) 

where cx is the fine structure constant. If the vector component and 

the Dirac-like term [next to the last term on the left side of 

Eq. (22)] are ignored, the Klein-Gordon equation is recovered for 

small r, 

both of whose solutions for s states (K = -1) are regular at 

the origin [2], as discussed earlier, 

l *L 
gK=r-;i 2 

4 1 +4(K(K+1) -aa, 
. 

Finally close to r = 0 (for K = -"I) Eq (22) becomes, 

(25) 

(26) 

(27) 
whose least singular solution is r-l. Then remarkably a natural 

boundary is found at r = Ze2/2mc2, where a, = 0 and both solutions 

page 20 



vanish. The solutions near this boundary are are given by, 

g, = (2mc’r - 2e5 
lztifi 

(28a) 

(2W 

Clearly the present theory makes sense at these small distances 

only if the center of force really is a point source (Z = I). Thus the 

radius of the boundary is one-half the classical electron radius or 

r = r0/2 where t-0 = e2/mc2, which is the order of the nuclear radiu 

As discussed earlier this result suggests that the negative energy 

branch of Dirac theory, which is filled with electrons whose 

energies range from - 00 to -mc2 to avert the collapse of the atom, 

has its counterpart here in states which are localized in a volume 

about the size of the nucleus. The r-j behavior at the origin likely 

reflects the shortcomings of the physical model, namely the 

assumption of a recoiless point source. 
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flv. Summary and Conclusions 

The Lorentz relativistic wave equation (LRWE) has been used 

to guarantee a single-valued spectrum, positive-definite probability 

density, and single-particle interpretation of the wave function 

Atomic fine structure depends on the use of a relativistically 

invariant form of the electromagnetic potential, which we take to be 

a physically appropriate operator form of the Lienard-Wiechert 

four-potential ( @pa,. This procedure gives the correct spin-orbit 

interaction when the curl of the vector component is used to 

evaluate the Pauli magnetic moment term in the Hamiltonian. The 

vector component also contributes to the kinetic momentum of the 

electron in a manner which causes the wave function to vanish on 

the surface of a sphere of radius e2/2mc2 and to diverge as t--l at 

the origin. This result suggests a many-body resolution, either 

explicitly by treating the dynamics of the point source of the 

Coulomb field or implicitly, as in Dirac theory, by filling up the 

levels from - 00 < E<-mc* , such that a two-photon radiative 

transition to a hole at -mc2 represents positron-electron 
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annihilation. The former procedure is the more fundamental and the 

point source would be considered to be a positron. Then a critical 

test of this form of relativistic quantum theory is the existence of 

of an untra-relativistically bound state in the two-particle 

spectrum (Fig. 1) such that a two-photon radiative transition will 

give up an energy of 2mc2 within the error bars of existing 

experiments. 

The latter procedure however is the easier to implement, and we 

illustrate how the Dirac ansafz for filling up the levels in the 

regime -~<E<-IllC2 might work in practice. We know quite 

generally that the number of quantum levels which can be confined 

to a small box is sparse, even in the presence of a strong attractive 

potential. Therefore as an exercise we solve Eq. (22) in the regime 

0 c r c a2ao (where a is the fine structure constant and ag is the 

bohr radius) by finding an energy at which the wave function 

vanishes at the boundary cr2ao/2, according to Eq. (28a), for a cut off 

at the origin which is chosen to be small compared to 012a(-j2. The 

result is shown in Fig. 4, where the energy of the level is indeed 
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close to -mc2, which is the highest occupied negative-energy orbital 

of Dirac theory. Thus the single level can be saturated by two paired 

electrons (provided four-potential attraction overcomes their 

mutual repulsion). The next avaliable level would be expected to lie 

in the atomic region where r > cr2ao/2, and the familiar S-state cusp 

behavior close to the nuclear region (i. e. close to a2a0/2) would be 

expected eventually to emerge with increasing r. 
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Figure 1. Klein-Gordon spectrum for the relative motion of 

positronium; the center-of-mass motion is separable if it is 

assumed to be nonrelativistic. 

Figure 2. Dirac spectrum for a negative Coulomb potential e&z * , 

with attraction and binding for E > 0 and repulsion and nonbinding for 

E < 0. 

Figure 3. Dirac spectrum for a positive Coulomb potential e@’ * , 

with repulsion and nonbinding for E > Q and attraction and binding for 

E < 0. 

Figure 4. Example of Dirac-like ap7safz used to fill up the Lorentz 

relativistic wave equation (LRWE) spectral subregion in the regime 

--ZE<-ElC2 

e The plot shows the wave function versus radial 

distance for a cut off at the origin of 0.0195 02ao (where cx is the 

fine structure constant and a6 the bohr radius) and boundary 

condition that the wave function vanish at a2ao/2. The LRWE is 

satisfied for an energy of -0.804022490267 mc2. The number of 

significant figures shows the sensitivity to the boundary condition. 
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