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INTRODUCTION

Tight{binding models capture many of the qualitative features of interaction{
induced e�ects in solids. For example, the simplest such model, the single{band Hub-
bard Hamiltonian, [1] describes the \Mott" insulating phase which occurs in correlated
systems, despite the fact that the one electron band is nominally only half{�lled, as
well as the tendency towards magnetic order. Both phenomena occur in the transition
metal oxides. The Periodic Anderson Model (PAM) is a step towards incorporating
more complex orbital structure. [2] It contains a pair of orbitals on each site{ a de-
localized conduction band and a set of highly correlated, localized states. The PAM
successfully describes conditions for transitions between antiferromagnetic order of the
local moments and phases in which these moments are quenched into singlets paired
with conduction electrons. [3] These phenomena are central to heavy fermion systems.
[4] The pressure{induced volume collapse in Ce has also been attributed to Kondo{like
quenching of the local f moments in this metal, as has been discussed in the context of
the impurity Anderson Model. [5]

We will describe Quantum Monte Carlo (QMC) calculations of the magnetic and
thermodynamic properties of the PAM in three dimensions. Previous QMC studies
have been reported in one and two dimensions. [6,7] A focus of our attention will be on
the density of states and the speci�c heat. The organization of this paper is as follows.
We �rst introduce the PAM and outline some of its properties. Next, a brief presenta-

1



tion of the Quantum Monte Carlo, Maximum Entropy, and Hartree{Fock methods is
given. We then show the equilibrium magnetic properties of the PAM, including the
spin correlations between conduction and localized orbitals, and antiferromagnetic cor-
relations in the localized band, before turning to the thermodynamics and the density
of states. A concluding section describes connections of this work to the problem of
the rare earth volume collapse transitions.

THE ANDERSON LATTICE HAMILTONIAN

The Periodic Anderson Model is,

H = �tdd
X
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Here dyi� and f
y

i� represent the creation operators for d and f electrons of spin � on site i.
nid and nif are the total number of up and down spin electrons on the d and f orbitals
at lattice site i. tdd and tfd are the intersite valence and f{valence hybridizations,
Uf is an on{site repulsion for the f electrons, �f is the position of the f level, and �
is the chemical potential. The interaction is written in particle{hole symmetric form
which has the convenience that at � = �f = 0, both orbitals are precisely half{�lled,

n
f
i = ndi = 1, for any choice of tdd, tfd, Uf or temperature T . The choice �f = 0 is

often referred to as the \symmetric" limit of the PAM. We will present results mostly
for this case.

Writing the one{body terms in momentum space, the PAM becomes,
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In this paper, we will study the properties of the PAM on a simple cubic structure for
which,

�k = �2tdd [cos kxa + cos kya+ cos kza] ;

Vk = �2tfd [cos kxa+ cos kya+ cos kza] ; (3)

where a is the lattice constant. Often the PAM is de�ned with an f{valence hybridiza-
tion on the same site, leading to a momentum independent Vk. With that choice, even
in the non{interacting limit Uf = 0 the PAM is an insulator at half{�lling owing to
the opening of a hybridization gap at the Fermi surface. We believe our choice of
near-neighbor intersite hybridization in Eq. 1 is physically well motivated, as strictly
onsite one{body terms in the Hamiltonian do not couple di�erent angular momenta.
However, it is likely that, while the positions of critical coupling and temperatures are
somewhat di�erent, the underlying physics is similar between the two choices.
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In numerical solutions of Eq. 2, we have assumed parameters which are roughly
characteristic of the rare earths. Speci�cally, we have taken tdd = 1 eV, Uf = 6 eV, and
considered a range of tfd values. The expression for �k in Eq. 3 yields a d band of width
12tdd, and for convenience we shall similarly de�ne an f band width, Wf = 12tfd.
Parameter calculations show the ratio Uf=Wf has roughly quadratic dependence on
atomic volume, due primarily to the variation of tfd with volume. [8]

As we shall describe in detail below, the central issue in numerical and analytic
work on the PAM concerns magnetic and thermodynamic properties. As the on{site
repulsion Uf increases, double occupancy of the f orbitals is suppressed, and local
moments form. This phenomenon is most marked in the symmetric limit where there
is on average one electron per f orbital, so that as double occupancy is reduced, each
f orbital individually has a single electron and hence a spin. In addition, the Fermi
wavevector of the conduction band is kF = (1; 1; 1)�=a which is optimal for staggered
order. The central question is then whether the f moments align. In the absence of
any direct f{f hybridization, ordering can occur via an indirect RKKY interaction
mediated by the conduction electrons. However, there is also a competing tendency.
As tfd is increased, d and f electrons can form local singlets, suppressing long range
antiferromagnetic order. The local moments are not destroyed through the magnetic
transition, instead they remain rather well{formed, but simply lose their coherence.

We will present new QMC results for magnetic order in the three dimensional case.
However, we will also focus on the thermodynamics of the transition. We expect that
as singlets form, the entropy of the system will be signi�cantly reduced, a phenomenon
which might show up as a prominent feature in the energy, speci�c heat, and free
energy. As we will see, observing this is complicated in the symmetric case since one
must disentangle the e�ects of singlet formation from those of magnetic ordering.

CALCULATIONAL TECHNIQUES

Over the last �fteen years, Quantum Monte Carlo techniques have made great
progress in simulations of the equilibrium charge, spin, and pairing correlations of two{
dimensional correlated electron systems. [9] The usefulness of the approach is that it
treats interactions exactly. The main limitation is that only �nite size systems, typically
a few hundred electrons, can be treated. Equivalently, the orbital complexity of models
that can be studied is highly constrained. Systems of a few hundred sites or orbitals are,
however, an order of magnitude larger than can be studied by exact diagonalization,
and large enough so that �nite size scaling can often be performed to analyze the
thermodynamic limit. A second limitation is that, unless symmetries prevent it, the
\sign problem" restricts the accessible parameter range and precludes studies of low
temperatures and strong coupling. This, however, does not occur in the symmetric
limit of the PAM. In this section we will discuss a particular approach, the determinant
QMC algorithm. [10]

We will also describe the \Maximum Entropy" method which has recently been
developed to take QMC data and extract dynamical information like the density of
states, [11] our approach for obtaining the speci�c heat, and analytic Hartree{Fock
calculations with which we will compare our results.
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The Determinant Quantum Monte Carlo Method

The central quantity in classical or quantum statistical mechanics is the partition
function,

Z = Tre��H : (4)

Just as a trace over any potential energy which is a quadratic form in the position
operators can be done in a classical statistical mechanics problem, the trace over a
quantum mechanical Hilbert space can be performed analytically for Hamiltonians
which are quadratic in the fermion operators. However, the interaction term Uf is
quartic, and prevents us from doing the trace. The determinant QMC method is a
technique which develops an exact reformulation of the original problem so that only
quadratic terms appear.

We can isolate the interaction term by discretizing the inverse temperature, � =
L�� . The exponential of the full HamiltonianH = K+V , now has a small parameter in
its argument, and we can approximate the full exponential by the product of individual
exponentials of the kinetic and potential energies.

Z = Tr[e���H ]L � Tr[e���Ke���V ]L: (5)

This \Trotter" approximation [12] becomes exact as �� ! 0. In practice, simulations
are conducted at several �nite �� and the limit then extracted.

The interaction term can then be decoupled by introducing a discrete \Hubbard{
Stratonovich" �eld, [13]

e���U(ni"�1=2)(ni#�1=2) =
1

2
e���U=4

X
Si�=�1

e�Si� (ni"�ni#); (6)

with coupling constant � given by cosh(�)=e��U=2. The Hubbard{Stratonovich �eld
is indexed both by a spatial variable i labeling which of the interaction terms in the
Hamiltonian (one for each site) is being decoupled, and an \imaginary time" variable �
which speci�es which of the L exponentials of the potential energy is being considered.

The right hand side of Eq. 6 is now quadratic in the fermion operators, so the
trace can be performed analytically. The physical content of the procedure is that
the set of interacting electrons has been replaced by independent electrons moving in
an appropriate 
uctuating classical �eld. The result for the partition function is the
product of two determinants, one for each spin species.

Z =
X
fSi� g

detM"detM#: (7)

These determinants depend on the particular values of the Hubbard{Stratonovich �eld.
The matrices M� have dimension the number of spatial sites, N , in the original lattice.

One is really interested in evaluating ratios of traces which represent speci�c expec-
tation values. Traces which involve additional operators reduce to a similar product
of determinants, but with additional matrix elements of the inverse of M . Thus, for
example, the equal time fermion Green's function is given by,
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G"ij = hci"c
y

j"i = Z�1Tr[ci"c
y

j"e
��H ] = Z�1

X
fSi� g

M�1
"ij detM"(S)M#(S): (8)

Here c is a generic Fermi operator. This takes precisely the form of a classical Monte
Carlo problem: If the classical variables Si� are generated with a \Boltzmann weight"
given by the product of the two determinants, for example with the Metropolis algo-
rithm, the Green's function is given by simply accumulating a simple average of the
values of M�1

"ij in the sequence so generated. From G come all quantities of physical
interest. Setting i = j allows us to evaluate the occupation n"i = 1�G"ii. Making i; j
near neighbors determines the kinetic energy. More complicated expectation values of,
for example, two particle Green's functions like spin and density correlations can be
reduced, via Wick's theorem, to appropriate products of the single particle G.

The Boltzmann weight, the product of the two determinants, is extremely compli-
cated. Speci�cally, the computation a change in its value, required to do the Monte
Carlo, scales as the square of the number of sites in the lattice, N2. Thus to update all
the NL variables requires a computation time which scales as N3L. It is this fact that
limits the size of the simulations that can be performed.

While there are many re�nements to this method, [14,15] the above description
contains the essence of the methodology.

The Maximum Entropy Method

Above, we described how the determinant QMC method allows the measurement of
equal time Green's functions G. It is straightforward, but time consuming, to measure
imaginary time displaced Green's functions:

G"ij(�) = hci"(�)c
y

j"(0)i = he�Hci"e
��Hc

y

j"i: (9)

Such quantities are needed to measure susceptibilities, where the generalization of the
classical 
uctuation{dissipation result, �A = �[hA2

i � hAi2], to quantum problems is
�A =

R �
0 d� [hA(�)A(0)i � hAi2].

Unfortunately, one is also very much interested in the Green's functions in real time
and frequency, but operators like e�iHt are di�cult to deal with numerically because
of their rapidly 
uctuating phases. Thus a crucial task is to relate the imaginary time
Green's functions which can be measured in the simulations to real frequency response
functions. In principle such relationships are known. For example, the single particle
Green's function G(p;�) = hc(p;�)cy(p;0)i; is given by an appropriate convolution of
the spectral weight A(p; !),

G(p;�) =
Z

1

�1

d!
e��!

1 + e��!
A(p; !): (10)

We want to invert this expression and get the spectral weight from the known Green's
function. This inversion, or analytic continuation, is di�cult to perform numerically
because the kernel is small at large absolute values of the integrand !: Additionally, the
Green's function values obtained from QMC are known only to within statistical error
bars. These are small, a tenth of a percent of less typically, but nevertheless because of
the ill{conditioned nature of the kernel, signi�cantly di�erent A(p; !) will be consistent
with the data.
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The method of Maximum Entropy [11] circumvents the problem of the ill{de�ned
integrand and noisy Green's function data by utilizing an analytic model of the high
energy behavior in combination with a �t to the Green's function data obtained from
QMC. The approach has had considerable success for the Hubbard and periodic An-
derson Hamiltonians in two dimensions. Here we will apply it to our three dimensional
simulations.

Fitting E(T) to Obtain the Speci�c Heat

The speci�c heat C = dE=dT can be evaluated from determinant QMC by calculat-
ing the energy at two closely spaced temperatures and doing the derivative numerically,
or else by measuring �[hH2

i � hHi2]. In practice, both approaches run into serious
di�culties. The former has large 
uctuations as typically occurs when one takes a
numerical derivative of data with statistical errors. The latter approach involves high
order Green's functions which are rather noisy, and also some non{trivial considerations
concerning the Trotter approximation. [16]

A more promising technique is to take the QMC data for the energy, �t to a reason-
able analytic form, and then di�erentiate the resulting expression. This approach has
been applied to the single band Hubbard model in two dimensions to obtain the peaks
in C associated with charge and spin 
uctuations. [17] Here we will use a similar idea,
with, however, a rather di�erent analytic form for the �tting. Speci�cally, we chose,

E(T ) = E(0) +
NX
n=1

cne
��n� ; (11)

where � and cn are free parameters. The number of terms N was chosen to be about
half of the number of QMC data points �t by this expression. We have veri�ed that
other �tting forms give similar results. Various further checks of the procedure come
out of the physics, and are described below.

Hartree{Fock Approach

The Hartree{Fock (HF) approach is the simplest analytic technique to incorporate
interaction e�ects. HF takes an interaction term like Ufnif"nif# in Eq. 1 and expresses
it in the decoupled form Uf [nif"hnif#i+ hnif"inif#�hnif"ihnif#i]. Typically, one makes
an ansatz for the form of the expectation values, hni�i = �+�mu+(�1)i�ms. Here � is
the electron density per spin, mu represents a uniform (ferromagnetic) di�erence in up
and down spin occupation, andms represents a staggered (antiferromagnetic) di�erence
in occupations. The resulting Hamiltonian is quadratic in the fermion operators and
can be diagonalized by going to momentum space. The expectation values �;mu; and
ms are computed self{consistently by �lling the resulting single particle levels. One can
either compute a global minimum of the free energy by allowing mu and ms to take
arbitrary values, or restrict them to special values, for example mu = ms to get the
paramagnetic solution.

HF has a number of well{known drawbacks, some of which are quite disastrous.
This is illustrated in Fig. 1 where we show the N�eel temperature TN as a function of
the ratio Uf=Wf for a single band Hubbard model corresponding to a simple cubic
lattice. [18] The Hamiltonian is like that in Eq. 1 except with a single f orbital, which
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has a non{zero f{f hybridization tff , and an f -band width, Wf = 12 tff . The on{site
repulsion is �xed at Uf = 6. TN is grossly over{estimated at large Uf=Wf . This is
a consequence of the fact that the sole magnetic energy scale in HF is set by Uf , the
energy for the formation of moments. However, the exchange energy J = t2ff=Uf is the
appropriate scale of the N�eel temperature at strong coupling. HF does not know about
J and hence at large Uf=Wf has a TN which goes into the temperature axis at Uff=4
instead of going to zero as 1=Uff . As can be seen in Fig. 1, QMC accurately describes
this strong coupling (Heisenberg) limit, the weakly coupled Hartree-Fock limit, and
crosses over naturally between these two regimes. [18,19]

There are, of course, many analytic treatments which improve over HF. In subse-
quent work, we plan on comparing QMC with those approaches. In this manuscript,
however, we will focus on the results of QMC, and compare only with HF calculations.

Despite the cautionary message of Fig. 1, when properly interpreted, HF is a useful
guide to the e�ects of interactions. Furthermore, it is worth emphasizing that while HF
theory gets TN qualitatively wrong at strong coupling, one can get at the energy scale
J by examining the energy di�erence between the ferromagnetic and antiferromagnetic
HF solutions. This di�erence does come down as 1=Uff at strong coupling. We will
exploit this fact later when we suggest further directions for QMC, in particular when
suggesting what might occur in the non{symmmetric PAM, where we have yet to carry
through detailed QMC simulations.

MAGNETIC CORRELATIONS OF THE
SYMMETRIC ANDERSON LATTICE HAMILTONIAN

We �rst describe the nature of the local moments in the PAM. In Fig. 2 we show
the enhancement of the square of the local moment �2 = h(n"i � n#i)

2
i over its value

�20 in the absence of interactions. The x{axis is the ratio of the on{site interaction Uf

to the f bandwidth Wf = 12tfd. Moment formation occurs at a temperature set by
the \charge 
uctuation" energy scale T=Uf � 1=4 so that in the range shown here, the
moment enhancement is temperature independent. Thus, features we will subsequently
identify for these temperatures in the speci�c heat are not caused by entropy associated
with moment formation.

As described above, one of the features of the physics of local moments interacting
with a delocalized band is the extent to which they form singlets. In the language of
the PAM this is measured by the correlation function,

cfd = h~S
f
i �

~Sd
j i=[h(S

f
i )

2
ih(Sd

i )
2
i] (12)

Here i and j are near neighbors, and ~S is the vector whose components are ~Si =
(cyi"c

y

i#)~�(
ci"
ci#
): That is, cfd is just the spin{spin correlation function normalized to the

size of the magnetic moment on the two sites. In Fig. 3 we show this quantity for
various interaction strengths and temperatures. As the system is cooled at �xed Wf ,
we see that singlets form. The most rapid variation in cfd is at Uf=Wf � 0:6.

Measurements of the spin correlations between the f electrons on di�erent sites

cff(l) = h~S
f
i �

~S
f
i+li (13)
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allow us to determine whether long range antiferromagnetic order is present. In Fig. 4
we show the phase diagram which results from a consideration of the behavior of cfd
and cff . Note, however, that a rigorous treatment of magnetic long range order, such
as has been done in two dimensions, [7,20,15] requires simulations on a range of system
sizes and an appropriate �nite size scaling analysis, Here we have looked only at 43

lattices, so our antiferromagnetic phase boundary is only approximate.

THERMODYNAMIC PROPERTIES OF THE
SYMMETRIC ANDERSON LATTICE HAMILTONIAN

The results of �tting the energy to the form Eq. 11 for various values of the f{d
hybridization are shown in Fig. 5, and, with higher resolution at low temperatures, in
Fig. 6. It is useful to compare these results with those of a Hartree{Fock calculation.
On the rather coarse energy scale of Fig. 7 it is seen that the antiferromagnetic HF
solution appears fairly good. Indeed, it is guaranteed to be exact both at tfd = 0 and
at Uf = 0.

We show the di�erence between the antiferromagnetic HF and QMC energies in
Fig. 8. With the resulting better resolution, we see the two break apart at large tfd
(small Uf=Wf) as already suggested by Fig. 7.

The speci�c heat obtained by di�erentiating the analytic �ts in Fig. 5 is shown
in Fig. 9. The points of divergence of the antiferromagnetic HF and QMC energies
correlate fairly well with the positions of the sharp peaks in the speci�c heat of Fig. 9.
This is consistent with the notion that HF accurately re
ects the charge 
uctuation
energy scale Uf , but is less good at picking up smaller energy scales associated with
more subtle magnetic ordering, whether antiferromagnetism or singlet formation.

The entropy of the system can be computed by evaluating the integrated area,

Z
1

0
dT

C(T )

T
=

NX
i=1

cn

n�
= 4 ln 2� S0 : (14)

Here the term S0 arises from the fact that on a �nite periodic cluster characterized
by the dispersion, Eq. 3, the entropy does not go to zero at T = 0. For our 43 PAM,
S0 = 0:4332, as may be directly calculated using HF, since this is a one-body e�ect.
As shown in Fig. 10, we �nd the sum rule on the total entropy, Eq. 14 is obeyed to
within less than 2 percent for tfd � 0:8, which is a good check both on our QMC
simulation and on our �tting procedure for the energy. For smaller tfd the integral
instead approaches 3 ln 2 � S0, which implies the presence of some missing entropy.
That is, for small tfd, the system orders magnetically at temperatures below those
accessed in the simulations, T � 0:1tdd, which would account for the missing ln 2 in the
entropy.

DYNAMIC PROPERTIES OF THE
SYMMETRIC ANDERSON LATTICE HAMILTONIAN{
THE DENSITY OF STATES
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The evolution of the f density of states with changing f{valence hybridization is
given in Fig. 11. For tfd = 0 we have completely isolated localized sites, and therefore
expect to have two delta function peaks at �Uf=2 = �3. That is, we have two in�nitely
narrow Mott bands, separated by a Mott gap Uf . Our choice of the form of the
interaction places these symmetrically about ! = 0. As tfd is made non{zero, the f
electrons increasingly hybridize with the conduction band and their density of states
widens. Eventually a structure appears which has both broad remnants of the Mott
bands, but also Kondo resonance peaks near ! = 0.

It is also interesting to examine the temperature dependence of the f density of
states at �xed tfd. We show this in Fig. 12. At high temperatures there is only a pair
of Mott peaks associated with charge 
uctuations on the f orbital. As T is lowered,
sharp Kondo resonances split o� of these broad structures. The suppression of the f
density of states at ! = 0 which separates the sharp peaks can arise either as a result
of the development of an antiferromagnetic gap, or as a Kondo gap associated with the
energy required to break a singlet pair.

The Kondo resonance in Nf (!) is a further signature of singlet formation in the
PAM. It develops at a temperature which coincides with that for which the static
spin{spin correlation function cfd shows antiferromagnetic correlations are developing
between the f and d electron spins. Similarly, the resonance develops at a temperature
in rough coincidence with the peak in the speci�c heat shown in Fig. 9. However,
because in the same temperature range antiferromagnetic correlations among the f
moments are also developing, we cannot as yet unambiguously attribute the thermo-
dynamic signature to singlet formation.

We have seen that the Hartree{Fock technique overestimates TN and also fails to
capture the thermodynamics of spin ordering at low temperatures T � J . It is inter-
esting to ask what HF theory predicts for the density of states. The answer is that HF
theory can describe the strong coupling case where two Mott bands exist at ! = �Uf=2
as well as the weak coupling metallic limit where a single broad feature in Nf (!) is cen-
tered about ! = 0. However, it cannot correctly capture the intermediate case where
a Kondo resonance develops.

CONCLUSIONS

The periodic Anderson Hamiltonian is the fundamental model of interacting lo-
cal bands and delocalized conduction electrons. It contains the essential competition
between the tendency towards singlet formation of the local electron and conduction
electron spin, and antiferromagnetic order in the local band, and has been used as a
qualitative model of heavy fermion and other systems. Here we have presented new
results for its magnetic and thermodynamic properties in three dimensions.

In this concluding section of the manuscript we turn to a more specialized appli-
cation of the PAM, namely to the problem of volume collapse transition in rare earth
systems.

Several Lanthanides exhibit phase transitions under pressure characterized by ab-
normally large volume changes (14% for Cerium and 9% for Praseodymium), as has
recently been reviewed. [8] The physical mechanisms responsible for these transitions
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have been debated since discovery of the Cerium phenomenon over 50 years ago. Cur-
rently, the two main viable conjectures [21] are a Mott transition of the 4f electrons
accompanied by magnetic ordering, [22] and a \Kondo volume collapse" due to rapid
change in the 4f{valence electron coupling. [5] While some estimates of the free energy
changes in the two scenarios have been made which indicate that the size may be in the
right ball{park to drive the transition, it is useful to have exact treatments of speci�c
correlated electron Hamiltonians to test the ideas more quantitatively.

We have demonstrated sharp thermodynamic signatures in both the low-
temperature speci�c heat and in the tfd (or atomic volume) dependence of the total
energy for the PAM, and correlated these features with structure in the f electron den-
sity of states. These features are not reproduced in simpler Hartree{Fock calculations.
The former is absent also in more sophisticated approaches [23] we have attempted,
where, however, there is some suggestion of similar tfd dependence in the total energy.
Whether these e�ects are su�ciently large, and su�ciently abrupt, to drive the volume
collapse transitions is still unclear. In the symmetric limit that we have studied to date,
the situation is also complicated by the presence of antiferromagnetic ordering in the
model.

Hartree{Fock calculations, despite their weaknesses, can give us some qualitative
insight into the probable e�ect of going to the non{symmetric limit on the antiferro-
magnetic ordering, either by shifting f level �f away from zero or else by adjusting the
chemical potential � to go o� half{�lling. In Fig. 13 we show the results of HF calcu-
lations in the case of a shifted f level. We see that the tendency to antiferromagnetic
order is reduced. We plan, therefore, to carry out simulations in the non{symmetric
case where we can be more sure that the thermodynamic signatures are not associated
with long range magnetic order.

It remains to be established that this transition in the PAM occurs in a reasonable
place on the experimental phase diagram. This requires making a determination of
the volume dependence of the PAM parameters through, for example, a connection to
LDA calculations. [8] This connection involves either developing a mapping of the full,
many f and conduction band structure to the simpler PAM, or else QMC simulations
of more complicated multi{band models.
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FIG. 1. The N�eel temperature of the single band Hubbard model as calculated within

Hartree{Fock (solid line), Heisenberg (dashed line), and Quantum Monte Carlo simulations

(open circles).
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FIG. 2. Enhancement of the local moments on the f and d orbitals over their

non{interacting values. Local moment formation occurs at a relatively high temperature,

so that the results shown here are independent of T .
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FIG. 3. The spin correlations between the d and f electron moments is shown as a function

of Uf=Wf for di�erent temperature values. The horizontal lines give an approximate range

for the cross{over to a singlet phase.
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FIG. 4. The magnetic phase diagram of the 3D periodic Anderson model. Open triangles

are the paramagnetic phase, while solid triangles are antiferromagnetic (see comment in text).

The hatched region shows the region of cross{over to a singlet phase. Also shown are the

Hartree{Fock and RKKY results.
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FIG. 5. Energy as a function of temperature. The open circles are the results of QMC

simulations. The interpolating lines are the �t described in the text.
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low temperature points to emphasize how the �t tracks the QMC energy data. The doubling

of each QMC data point denotes uncertainty in the measured energy. Points on adjacent

curves are alternately �lled or open.
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FIG. 7. Hartree{Fock and QMC energies are compared as a function of f{valence hy-

bridization. The dashed curve is the paramagnetic solution, and the solid curve the antiferro-

magnetic solution. HF is exact at zero hybridization, and shows apparently small deviations

at large tfd.
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FIG. 8. Di�erence between antiferromagnetic Hartree-Fock and Quantum Monte Carlo

energies. When the ratio Uf=Wf is small, the QMC energies break away rather suddenly and

fall below the HF energies.
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structure at T � 1 is associated with moment formation, while the sharper low T structure

is associated with magnetic ordering (either singlet formation or antiferromagnetism). As

tfd is decreased, the sharp feature moves to lower temperature and, eventually, is no longer

captured by the temperature range accessed in our simulations.
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FIG. 10. The integrated areas under the curves of the preceding �gure are shown. This

measure captures the full entropy 4 ln2, adjusted for the e�ects of the �nite lattice, for tfd

above 0.75. Below this value there is missing entropy, indicating that there is indeed a peak

in C=T at lower temperatures. S0 = 0:4332 for a 43-site periodic lattice.
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FIG. 11. The f electron density of states for di�erent choices of tfd at T = tdd=4. At

small tfd, Nf (!) consists of the two narrow bands at �Uf=2 expected for a localized orbital.

At larger tfd, Nf (!) broadens and develops a Kondo resonance near ! = 0.
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FIG. 12. The f electron density of states for tfd = 0:6 at di�erent temperatures. As T is

lowered, the broad Mott peaks develop sharper Kondo resonances.
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FIG. 13. The Hartree-Fock phase diagram in the non{symmetric limit is compared

to the symmetric case. The region of antiferromagnetism is reduced for non{zero �f .

The real HF N�eel temperatures is shown (curves labelled Tc), as well as the ferromag-

netic{antiferromagnetic energy di�erences (curves labelled EF � EAF). For the symmetric

case (�f = 0), this energy di�erence is much closer to the actual N�eel temperature seen in

Fig. 4. The HF calculations were carried out with Brillouin zone sampling corresponding to

123 sites, for tdd = 1 and Uf = 6.
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