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Abstract 

In a number of plasmas of practical interest, including the scrape-off layer 

of a tokamak with a divertor or toroidal limiter, some gas discharge devices, 

and in the vicinity of spacecraft, magnetic field lines intersect bounding sur- 

faces at shallow angles. Under these circumstances a number of interesting 

and important effects arise. Drifts can compete with parallel flows in es- 

tablishing the boundary conditions for plasma mass-flow and current (sheath 

current-voltage characteristics) . We derive the mass-flow constraints includ- 

ing both poloidal and radial drifts, review the current boundary conditions, 

and survey the consequences, including along-field density and heat-flux asym- 

metries, convection created by a wavy surface, generation of electric fields and 

surface currents associated with shadows from surface structures, and modi- 

fication of instability growth rates. 
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I. INTRODUCTION 

In magnetized plasmas, there is inevitably a region in which magnetic field lines are in 

contact with material walls. The properties of this interaction have profound consequences 

for the properties of the open-field line region, and this can in turn appreciably affect the 

behavior of the entire plasma. The plasma-wall interaction becomes particularly rich in the 

case of near-grazing incidence of magnetic field lines on walls, as then drifts can compete 

with parallel flows in their contribution to the mass and current flows to the walls. Near- 

grazing incidence occurs in the scrape-off layer of a tokamak with a divertor or toroidal 

limiter, some gas discharge devices, and in the vicinity of spacecraft. 

Most of the relevant phenomena have been treated previously: the mass-flow bound- 

ary conditions without1 and with2 drifts, the current boundary conditions314, the effects of 

drifts on asymmetries2*5-8, induced convectiong, surface structure irregularitieslOJ1, and the 

effect on instabilities12-lg. The primary purpose of the present paper is to present a uni- 

fied picture of th ese phenomena, clarifying their interactions. In the process, we add some 

new pieces to the picture, and clarify some misconceptions, apparent contradictions, and 

in some cases errors that have appeared in the earlier literature. The main new ingredi- 

ents are a derivation of the mass-flow constraints (often mistaken for boundary conditions) 

that includes the effects of radial drifts and poloidal temperature and magnetic-field gradi- 

ents, and a description of poloidal-drift-induced asymmetries that accounts for temperature 

and magnetic-field nonuniformities; these additions can substantially change, even reverse, 

the predicted asymmetries, and provides a picture in general agreement with experimental 

observations. 

We consider a heated, magnetized device with a closed magnetic field lines or flux sur- 

faces, surrounded by a region (the scrape-off layer, or SOL) where magnetic-field lines in- 

tersect walls. In order to have a specific reference point for nomenclature, we consider a 

toroidal magnetic-fusion device such as a tokamak (see Fig. l), but the concepts apply to 

the other examples as well. 
.- 
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Rapid heat conduction along field lines to heat-absorbing physical or effective (e.g. dense 

neutral gas) walls leads to steep cross-field temperature gradients in the SOL, with a scale 

length smaller than that in the core plasma by order (Dl/Dll)1/2 where Dl and Dll are 

thermal diffusivities across and along field lines. In contrast to conditions in the core plasma, 

the potential in the SOL is set primarily by physics along magnetic field lines: the sheath 

potentials adjust to admit a current of the order of the ion saturation current or smaller 

to the walls , and the potential variation from the walls to the interior of the SOL is set 

by electron pressure balance. The net result is a mid-SOL potential CD of order 57,/e, with 

a radial-gradient scale length L4 comparable to the radial electron-temperature-gradient 

length XT~. This gives rise to a sizeable poloidal E x B drift velocity VEp N P~c,/XT~. 

When magnetic field lines lie nearly in a symmetry direction (the toroidal direction, for 

a tokamak) and where field lines intersect walls which extend in this symmetry direction, 

then what is of interest is the projection of these flows into a plane perpendicular to the 

symmetry direction (the radial-poloidal plane) and we immediately see that the poloidal 

drifts can compete with parallel flows in establishing mass asymmetries, current and energy 

fluxes to the walls, etc, their ratio being of order ppol/X~e where pPol is the gyroradius 

calculated using only the poloidal projection BP of the magnetic field. Intuitively one might 

expect a poloidal drift to drive a density asymmetry with higher density in the direction 

pointed to by the drift, but we will see that, when account is taken of magnetic-field and 

temperature variations, the reverse can also happen. For a single-null-divertor tokamak, the 

“standard” direction of the magnetic field is the one in which the poloidal drifts in the SOL 

point to the outer divertor plate; experimentally, the higher density is often at the inner 

plate. 

In addition to poloidal drifts, poloidal pressure variations (arising from momentum sinks 

and also magnetic-field variation) give rise to poloidal electric fields and hence radial drifts. 

Since the pressure is generally higher in the midst of the SOL than at either end, this drift 

changes sign over the length of a field line and contributes to asymmetry: the radial flux 

is inward over about half the flux surface and outward over the other, and is closed by a 
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return poloidal flux. Following Stangby and Chankin2’, we can estimate the importance of 

this term based on the return poloidal flux velocity it generates: vUp,ret = Jd&d/dr(n9E,) 

where I, denotes poloidal length. Since the electric drift is (apart from magnetic curvature) 

divergence-free, we can estimate v&- to be (L,/L,)vE,, where L, and L, are poloidal and 

radial scale lengths; estimating d/dr = l/L,, we find vp,,.et VQ,, i.e. comparable radial and 

poloidal effects. We shall see in Sec. II that there are situations in which one or the other 

drift dominates. 

When magnetic field lines intersect a bounding surface at a shallow angle, then we may 

expect the electric drift to play a significant role in establishing the mass flow conditions 

near the wall. It was pointed out in Ref. 2 that the mass flux at the wall is a property of 

the hydrodynamics equations and the degree of reflection at the wall, and has nothing to do 

with sheath dynamics, for example the condition 21f22 of a monotonic laminar sheath. For the 

simple case of a uniform poloidal drift and an absorbing wall, analysis of the hydrodynamics 

continuity and momentum equations indicates2 that vllb + epol + VEp = fc,b . epol at the 

bounding surface or, if one exists, at a “nozzle” upstream. (See sec. II for a definition of 

“nozzle”.) Here b and epol are unit vectors along the magnetic field and in the poloidal 

direction, and c, = [(Te + ~‘;)/rn;]l/~ is the sound speed. Thus, the poloidal velocity at the 

critical point is the same as in the absence of the drifts, while the parallel velocity itself is 

altered. A more general case which includes radial drift and poloidally varying poloidal drift 

is considered in Sec. II; then, the critical poloidal velocity is itself altered from the case with 

no drift. 

In addition to mass flow at the wall, the drifts can have a significant impact on the 

current-voltage characteristics of the sheath. In particular, contrary to common experience, 

the E x B drift leads to an ion current to the surface, as ions subjected to E x B drift can 

simply flow to the wall, whereas electrons are mostly repelled. The resulting sheath-voltage 

characteristics are then dependent on the angle of incidence of the field lines on the bounding 

surface. 

There still remains misconceptions about the role of diamagnetic drifts in such consid- 
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erations. As pointed out in refs. 2 and 4, diamagnetic drifts result from motion of particles 

about stationary gyrocenters and so do not transport mass, momentum or heat. They do 

on the other hand represent a real current (which, however, is divergence-free, apart from 

curvature effects). Thus diamagnetic terms do not enter into the mass flow conditions, but 

do enter into the current boundary conditions, as will be seen in the next section. 

The organization of the remainder of this paper is as follows: Section II contains a 

derivation of the hydrodynamic constraints on mass flows and the current boundary condi- 

tions. In section III we examine in detail the asymmetries produced by poloidal drifts, and 

also review the role of radial drifts. Section IV discusses several other consequences of the 

mass flow constraints and current boundary conditions, including the possibility of creating 

convection by making the bounding surfaces wavy, the phenomenology of shadows cast by 

surface structures, the generation of toroidal current, and effects on instabilities. Finally, 

Sec. V contains overall discussion and conclusions. 

II. MASS FLOW CONSTRAINTS AND CURRENT BOUNDARY CONDITIONS 

A. Mass flow 

As noted above, the mass flow conditions follow from the hydrodynamics equations 

themselves, not from a sheath analysis. We confine ourselves exclusively to the case of 

axisymmetry. Then, taking into account that the E x B drift velocity is divergence-free, the 

continuity equation can be written in the form: 

navll [ ;Illdn+v d” = s +nvlldlnB 
dS dS ‘al- n dS 

where v,. is the radial (normal to flux surface) E x B drift velocity, 611 = 011 + (B/&)V&,, S, 

is the particle source, and BP is the poloidal magnetic field component. We consider BP/B 

small and so neglect the distinction between B and the toroidal field B. 

The radial drift v,. depends on the poloidal (or equivalently, the parallel) derivative 

of the potential 4, which we eliminate in favor of the parallel derivative of the electron 
.- 
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pressure pe and the thermal force, neglecting the ohmic contribution to the electron parallel 

momentum equation (a good approximation for a tokamak SOL.) This allows us to re-write 

the continuity equation as: 

dp”-()71Tc? =s + dln B 
8s * e th n nvll r (2) 

where A, = n(dn/dr)-l. Note that this expression applies for an arbitrary radial density 

variation and parallel electron pressure variation. 

In a similar fashion we can write the plasma parallel momentum equation, 

dull 3P vII 8PfZ c3n 
mn$---- = - - n ds - 0.71Tez 

dS as ( 
+ S, 

czp 2, ) 
(3) 

where p = pe + pi is the total pressure, A, G vll(dvll/dr)-l, and w+ is the ion cyclotron 

frequency in the poloidal field, eB,/ mc. We note that, in this non-conservation form, the 

velocity source S, is -nvllS, plus the physical momentum density source source (for example, 

charge exchange on cold neutrals). 

Finally we close the system with a model for the electron and ion pressures. For simplicity 

we assume that the effective charge Zeff M 1 so that we can neglect the distinction between 

the electron and ion densities, and we assume that pe is proportional to the total pressure 

p (the ratio is l/2 in the limit of high electron-ion collisionality). Then we consider two 

models: (1) isothermality along magnetic field lines, ap/ds = Tdn/ds; and (2) a model in 

which the heat flux along field lines is flux-limited and its parallel derivative balances an 

explicit heat sink term (the sum of radiation, charge exchange, and radial losses): 

Q + (a/as) (vT,c,) = o . (4 

where Sh is the explicit (negative) energy sink term and q is a constant of order 10. The 

isothermal model is relevant to a moderate-recycling attached divertor; the flux-limited 

model is applicable to the divertor leg of a present-day device in a high-recycling regime. 

We proceed by eliminating t?p/t’?s and an/as from Eq. (3) using Eq. (2) and one or the 

other pressure model. For the isothermal model, this gives: 
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where 6 = $11 + cse~se,p/L, & = cs + P~~,~vII/&,, c,, = (Te/mi)1’2) C, = [(Te + Ti)/mi] 

Pse,p = cse /w&l * 

For the flux-limited model, we obtain, from Eq. (4)) the relation 

8P lpdn 2 dln B 2 Sh -=--- 
dS 3nd.s +SPds+:3rlc, 

(5) 

‘i2, and 

(6) 

and then, from Eqs. (a), (3) and (6)) we obtain 

~ll(1-~-5F)$=-[ii’+~+c~(~+~)!y+~ (7) 

where Cfl = Cl1 - O.l4p,,c,,.X,, ~1 = 1 - O.42ullp,/~,&,p, and e2 = (2/3)(1 + 

1.71q~~/+A~) - O.~~QP,~G,/&&~, and 62 = ~1 (1 - 1.14p,,cse/kq). 

A third model that can straightforwardly be done is one where the divergence of the heat 

flux balances classical sources and sinks, but the flux is collisional heat diffusion. The result 

is identical to Eq. (5)) b u with additional (integrated in s) source terms on the right-hand t 

side. 

Equations (5) and (7) have the same structure, namely, a coefficient times dull/& equals 

an effective source (physical sources plus a logarithmic derivative of the field strength). We 

consider the case of an absorbing wall (recycling is included in the sources). This is equivalent 

to extending the domain infinitely beyond the wall, with no sources and a decaying field 

strength. The outflow solution is one in which ‘~11 continuously increases (for increasing s) 

in this region as B decreases and a flux bundle expands. In order for this to happen, the 

coefficient of dvll/ds must therefore be positive in this region, and thus zero or positive at 

the boundary. For isothermality and no drifts (611 + ~11, X,, X, -+ 00) this is the familiar 

“Bohm” inequality (but unrelated in its origins to sheath physics): vll > c, at the wall. 

Considering poloidal, but not radial, drifts (which applies in the limit that X, and X, are 

large compared to the electron temperature scale length and hence the potential radial scale 

length), the condition becomes 611 > c,, i.e. the poloidal velocity (projections of parallel and 
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E x B flow) equal or exceed the poloidal projection of sonic parallel flow. For the flux-limited 

model, c, is replaced by c,/3l/’ (which is the speed of sound waves in such a medium). With 

the radial drift terms included, the condition is more complicated but is still supersonic-like. 

Somewhere upstream, 611 = 0. (For the flux-limit model, this may occur inside the heat 

source region where the model doesn’t apply, but typically 611 will be sub-sonic somewhere 

in the region of applicability). Hence, at the wall or somewhere upstream, there must be at 

least one place where the coefficient of dvll/a s vanishes, i.e., a sonic-supersonic transition. 

This must occur at a location where the right-hand side of Eq. (5) or (7) vanishes; more 

specifically, at a region where the effective source transitions from being postive downstream 

to negative further up. In a source-free region this can occur at a magnetic-field maximum, 

i.e., at a magnetic nozzle, where the area of a flux bundle has a local minimum. More 

generally the presence of sources displaces the effective nozzle. (Interestingly, in a tokamak 

divertor leg there may be regions of both positive and negative S, corresponding to ionization 

and recombination; the region in between may be the effective nozzle.) 

What, then, constitutes an appropriate boundary condition for a fluid code? The con- 

tinuity and momentum equations are a pair of first-order equations, and hence we need to 

specify two boundary conditions, total, on n and 011. A suitable pair is 011 at both ends of 

the field line. Mathematically, there is a range of allowed subsonic choices, but the only 

sonic/supersonic choice allowed, and the only choice overall corresponding to absorbing 

walls, is values that produce a sub- to supersonic transition at an effective nozzle. 

B. Current-voltage characteristics 

The current at the plasma boundary has contributions from both parallel and drift 

components. The problem without drift components was treated by Chodurachordura. For 

small angles of incidence, the drift components are significant4*24. The role of electrons and 

ions is very different, owing to the presence of the sheath which confines the electrons. (We 

assume that the angle of incidence is not so small [< (m,/m;)“/“] that the ions become the 
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electrostatically confined species.) We review here the treatment presented in Ref. 24. The 

geometry is indicated in Fig. 2 

Since the sheath pushes ions which approach it toward the wall, the poloidal projection 

of the ion current on the plasma side of the sheath is simply 

j2’ = aneq + ii (jam + &i) (8) 

where j,, and j,,; are the poloidal components of the ion E x B and diamagnetic currents, 

respectively: j,, = (cne/B)d+/dr, j,,; = (c/B)dp;/d r, cx is the sine of the angle between 

the field line and the bounding surface (divertor plate, etc.), and 13 is cosine of the same 

angle. If the bounding surface is toroidally symmetric, then ct is just BP/B. The ion current 

on the wall side of the sheath is different, because radially varying radial surface currents 

flow in the sheath region. These arise4 from radial E x B drift of ions while traversing the 

sheath and from uncompensated ion gyro-motion current (uncompensated because of the 

scrape-off of ions with gyro orbits that touch the wall). We can calculate the ion sheath 

current as follows: The momentum balance condition is, without approximation, 

alrg aq3 -- 
o = - dy 

en- - j,;B 
ay (9) 

where y is the direction normal to the wall, and $$ - m;n;(wi). For the small angles of inci- 

dence under consideration, most of the sheath potential drop occurs in a quasineutral region 

with thickness of order of the ion gyoradius, rather than the non-neutral Debye sheath im- 

mediately adjacent to the wall. Within the quasineutral region electrons are strongly magne- 

tized, so that the electron stress tensor can be characterized by just two pressure components 

pie and pile, and the parallel electron momentum equation implies that en&b/ay = apll,/ay. 

With this substitution Eq. 9 can be integrated. We then note that on the plasma side of 

the sheath, 7r$ M pli, while on the wall side, it is much smaller (by O(o)) because of ion 

scrape-off. Hence we obtain: 

L-i = --c (P,; + P,,J /B 

9 

(10) 
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where ITi is the radial current per unit toroidal length, and the pressures are evaluated on 

the plasma side of the sheath. From current continuity, -C&/I& must equal the change in 

normal ion current from the plasma to the wall side of the sheath; hence the ion current 

density at the wall is: 

B dr B dr 

where all quantities on the right-hand side are evaluated on the plasma side of the sheath. 

We consider now the electrons. For the angles of field line incidence we are considering, 

drifts can compete with parallel acoustic flows projected on to the direction normal to the 

wall, but not with the projection of parallel electron thermal flow. The flux of electrons 

approaching the sheath is (to within corrections of order of the mass ratio) the same as in 

the absence of drifts (and also nearly equal to the flux leaving the sheath.) The flux to the 

wall is N exp(-4sheath)/~e - (me/m;) times this value, and thus the electron current at 

the wall is just 

where jes is the parallel electron current that would escape over the same height sheath 

for normal incidence; here a = BP/B. For Maxwellian electrons, jeO M (enwt,/2n)1/2. 

To get the electron current on the plasma side of the sheath, we perform a calculation 

analogous to that which we did for the ions (Eq. 10) for the sheath surface current; we 

obtain L = c (~1; - ~11~) /B, which is zero for an isotropic distribution. Hence, the electron 

current on the plasma side of the sheath is 

jg) = 
c 8(PLe - Pile) 

c&0 + - B dr (13) 

The current boundary condition on the plasma side of the sheath, obtained by summing 

Eqs. (8) and (13), is the one to be applied for fluid simulations of a divertor or as boundary 

conditions for a low-frequency instability calculation. The boundary condition on the wall, 

the sum of Eqs. (11) and (12), is useful for determining the floating potential of an insulated 

wall or the input to a flush-mounted probe. .- 
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In applying the current boundary conditions, the value of 011 is provided from the mass- 

flow boundary condition discussed in the preceding sub-section. 

III. ASYMMETRY PRODUCED BY POLOIDAL DRIFTS 

We consider in this section the role of poloidal drifts in the creation of poloidal asymme- 

tries. We depart from previous analyses (e.g., Ref. 2) by 11 a owing for poloidal variations of 

temperature and drift velocity, but we neglect radial drifts. 

We consider the situation of strong recycling near the divertor plates. In this case, the 

overall density is rather high, and there exists significant temperature asymmetry between 

the inner and outer strike points, with the temperature higher at the outer point. This 

can be explained by the larger surface area and weaker magnetic field on the outer side 

of the tokamakz5, together with a relatively low electron parallel thermal diffusivity at 

higher densities. The particle sources in this case are situated near the divertor plates, i.e., 

near the points A and B in Fig. 1 To model the temperature variation, we assume that the 

temperature is equal to T oUt in the outer divertor leg and main SOL, and is equal to Tin < Tout 

near the source A and closer to the inner strike point. With equal source strengths, at high 

enough-temperature asymmetry the plasma density at the inner strike point will obviously 

be higher than at the outer strike point. But here we ask how the direction of the poloidal 

drift affects the asymmetry. At a large temperature difference, the particles from the hot 

outer region flow both to the outer and inner divertor plate (but with relatively few to the 

outer plate because of the higher mirror ratio and longer path length), with a sonic transition 

occurring at point 1 and at the outer wall. The particles born near the inner plate, at point 

B, experience therefore a pressure directed towards the inner divertor plate. This pressure 

is affected by the particle drift: if the drift is directed towards the outer divertor plate, 

this pressure is lower, whereas if the drift is directed towards the inner strike point, the 

pressure is higher. As the total number of particles produced by the source A is given, the 

higher pressure from the outside means a higher flow velocity at the divertor plate and, 
.- 
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accordingly, a lower density, in accord with the experimental trends.26-2g. This example 

shows the richness of possible scenarios of hydrodynamic flows in the SOL and shows that 

the chains of causes and events can be quite subtle. In particular, the effect of the drifts 

on the density asymmetry contradicts the simple intuitive picture in which the asymmetry 

would follow direction of the particle drifts (weaker asymmetry for the normal direction of 

the magnetic field). I n contrast, the private flux region has no magnetic nozzles and so no 

sonic transition between the sources; particles from both sources reach both plates, and the 

intuitive asymmetry should apply. Since the poloidal drift is opposite in the main SOL and 

private flux regions, both can contribute in the same direction to the asymmetry. in the 

direction observed experimentally.26-2g 

To be quantitative, we consider a simple model in which there are no radial drifts, and the 

drift velocity is constant. We also assume that the inner and outer strike points are situated 

in approximately the same magnetic field, i.e., the divertor legs are short. The solution for 

the density asymmetry is given parametrically, for supersonic transition at point 1, by 

ni, R+2 cyt CE R - (1 + R/2)(M + l/M)c;sn/~~~ -=- . 
R MC? ' 

-= 
nod pLt R+l (14 s 

where R is the mirror ratio between the point 1 and the strike points and c~~~/c~ is the 

ratio of sound speeds between the two strike points. Results are plotted in Fig. 3. The 

break in the curves corresponds to the situation where the sonic transition jumps from the 

inner strike point (to the right of the brake) to the throttle (point 1). One sees that, indeed, 

at high temperature ratio the change of the direction of the magnetic field from normal to 

reversed causes a decrease in the density asymmetry. 

IV. OTHER CONSEQUENCES 

It is evident that the sheath-voltage characteristics derived above have a dependence on 

the angle of incidence of the field lines on the bounding surfaces, i.e. the wall. Hence by 

varying this angle as a function of toroidal angle and radius, we can engineer corresponding 
.- 
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variations in the mid-SOL potential. In general the procedure to determine 4 is to substitute 

the ~11 at either end consistent with the nozzle constraints derived in Sec. IIa into the current 

boundary conditions (13) at either end, and solve Ohm’s law (the electron momentum 

equation) along the field line subject to these boundary conditions and consistent with the 

other fluid equations. If we consider an iterative (perturbative) solution, starting from the 

zero-order configuration of a straight uniform field, constant T, and n, and drifts, and no 

radial current transport, the exercise is particularly simple: The (zero-order) electric drift 

current is divergence-free, so the net current entering a flux bundle at one bounding surface 

(plasma side of sheath) must equal the current leaving at the other. From Eqs. (8) and (13) 

we obtain expressions for j,, current per unit flux-tube area, at each end: 

jf1,2 = en 
K ~112 F w=~b41,2/'7')) +(VE + vi),‘q2] , (15) 

Substituting ~llr,~ = rfc, - GE, setting jfi = jf2, and subtracting the equations for the two 

ends, we obtain that the perturbation in C#J is given by 

exp(-e&/Te) N vEp2~~vdi ($ - i) (16) 

and we see that it is not difficult to get 4 perturbations of order T,. 

This observation opens the possibility of deliberately introducing toroidal (and probably 

also radial) ripples on the surface, with the goal of inducing convection9 to stir the SOL 

and broaden the heat load on the bounding surfaces. (Such stirring might also be useful for 

increasing the uniformity in magnetized plasma processing devices.) Surface ripple is one of 

several methods considered in Ref. 9 for creating toroidally varying potentials. 

Another consequence of the physics leading to the modified sheath current-voltage char- 

acteristics comes from the fact that the reflection of electrons by the sheath has the effect 

of setting up parallel currents to close/compensate for the electron E x B and diamagnetic 

currents. Hence the inclination of the field lines relative to the walls serves as a source of 

toroidal current in the main SOL ( even in the absence of any waviness). 

For near-grazing incidence, it is easy for surface deformations to be high enough that . . 
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“shadows” form behind the deformations: field lines pass through a deformation and re- 

emerge on the other side. Such deformations occur naturally on some scale. While the 

details depend on the relative scales of the surface deformations and the electron and ion 

gyroradii, in all cases the area “wetted” by plasma coming from the main volume becomes a 

small fraction of the total surface area, which has implications for sputtering. But another 

interesting phenomenon is that, for surface features of the order of the ion gyroradius or 

smaller, the wetted areas and shadows are different for ions and electrons, leading to charging 

of the surface and the shadows, trapping of cold, locally produced electron populations in 

the ion shadows, and potential structures that extend back into the SOL plasma and can 

produce convection cells with dimensions comparable to the surface deformation size. 

Finally, there are a number of ways in which drifts have an impact on instabilities in the 

SOL. There are two classes of instabilities which owe their existence to the presence of the 

sheath: in one12J3, the E x B-induced rotation of the plasma relative to the conducting wall 

leads to a negative sheath impedance which produces a drift-type instability. In another14*i6, 

the combination of sheath impedance and parallel variation of the E x B rotation rate drives 

Alfven waves. The presence of the drift terms in the boundary conditions (8) and (13) 

changes the symmetry of the modes and can produce significantly increased growth rateslg. 

For higher-frequency modes (w N c,/pp) there are corrections to the current boundary 

conditions arising from transient charging of the sheath boundary layeri’. Finally, the 

presence of a gyroradius-scale sheath with beam-like ion distribution functions allows for 

the possibility of microinstabilities within the sheath”. 

V. DISCUSSION AND CONCLUSIONS 

The question of the appropriate boundary conditions to be applied in boundary-plasma 

fluid simulations is a recurring one. The discussion in Sets. I and II should make it clear 

that the conditions on mass and momentum do not arise from an analysis of sheath physics, 

but rather from the hydrodynamics equations themselves, coupled with a statement that 
.- 
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the bounding surfaces are, for example, completely absorbing. One is naturally led to ask 

what would happen if the hydrodynamics equations yield a velocity at the wall below that 

for a laminar, quiescent sheath ( as can happen for our flux-limited model). The answer is 

that the sheath has to adjust to accommodate the flow. This might be accomplished by the 

development of turbulence within the sheath. 

We have also seen that, in the absence of viscosity, the momentum and continuity equa- 

tions combined require two boundary conditions, which logically are just the parallel veloc- 

ities at either end which give a sub- to super-sonic transition at an effective “nozzle”, at 

which the sum of d( In B)/ds pl us sources vanishes. The proper “boundary” conditions are 

then often not to be applied at the boundary: one should identify the nozzle locations and 

apply the supersonic transition criterion there. In the paper, we derived the appropriate 

criteria, including the effects of radial as well as poloidal drifts, for several different pressure- 

variation prescriptions. We note that the relative importance of radial and poloidal drift 

effects scales roughly as the ratio of radial scale lengths XT,/min(X,, X,). 

As shown in Sec. III, the supersonic transition requirements coupled with a temperature 

asymmetry can lead to the counter-intuitive result of the poloidal drifts raising (lowering) 

the density near the wall that the drifts point away from (towards), while continuing to 

drive particle and heat flux in the direction of the drift. This results from the interplay of 

drift and parallel flows dictated by the supersonic transition requirements. In the context 

of a tokamak SOL this will enhance density and temperature asymmetries in the direction 

observed in experiments. The private flux region, because of its weaker sources, shorter 

length, and different magnetic-nozzle structure, may behave in the more intuitive direction; 

this remains to be explored. 

A shallow angle of incidence of field lines on walls (or on an effective wall of neutral gas, 

in the case of an electrically detached plasma) has a significant impact on the sheath current- 

voltage characteristics when drifts are included. In particular, the ion E x B and diamagnetic 

currents are part of the current flow to the wall. These results have a number of consequences: 

(1) Convection can be deliberately created by making the bounding surfaces “wavy” in the .- 
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toroidal and radial directions. (2) If these or other-scale surface deformations are sufficiently 

steep, they form shadows in the magnetic field. The result is that only a fraction of the 

surface is wetted by the upstream plasma, and because the wetted areas for electrons and 

ions differ, pieces of the surface tend to charge up, driving surface currents, and the plasma 

acquires cross-field electric fields with scales dictated by the surface irregularity scales. (3) 

Instabilities: the modified boundary conditions can alter the structure and increase the 

growth rate of low-frequency sheath-driven modes; higher-frequency modes can be affected 

by transient charging of the gyroradius-scale sheath; and modes internal to the sheath can 

be driven by the beam-like distribution of ions there. 
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FIGURES 

FIG. 1. Poloidal cross section of a tokamak, showing SOL and locations of field maxima (num- 

bers) and sources (letters) discussed in text 

FIG. 2. Schematic representation of a field line intersecting a divertor plate 

FIG. 3. Density asymmetry vs. normalized drift velocity toward outer divertor plate 
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