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LINEAR STABILITY OF AN ACCELERATED 

WIRE ARRAY 

J.H. Hammer, D.D. Ryutov 

Lawrence Liverrnore National Laboratory, Liverrnore, CA 9455 1 

Abstract. The linear stability of an array of a large number of thin wires is considered. 

The wires form a cylindrical surface which is accelerated towards the axis under the action 

of a current excited in the array by an external source. General equations governing 

stability of this system are derived and a complete classification of all the modes present in 

such a system is presented. In agreement with an earlier analysis by Felber and Rostoker, it 

is shown that there exist two types of modes: medial modes, in which the wires experience 

deformation in the rz plane, and lateral modes, in which only a purely azimuthal 

deformation is present. For a given axial wave number k, the maximum growth rate for 

medial perturbations corresponds to a mode in which all the wires move “in phase” (an 

analog of an axisymmetric mode for a continuous cylindrical shell), whereas for the lateral 

perturbations the maximum growth rate corresponds to the opposite displacements of the 

neighboring wires. Numerical analysis of a dispersion relation for a broad range of modes 

is presented: Some limiting cases are discussed. In particular, it is shown that a traditional 

k’” scaling holds until surprisingly high wave numbers, even exceeding the inverse inter- 

wire distance. In the limit of long-wavelength perturbations, a model of a continuous shell 

becomes valid; the presence of the wires manifests itself in this model by a strong 

anisotropy of electrical conductivity, high along the wires and vanishing across the wires. 
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The resulting modes differ considerably from the modes of a thin perfectly conducting 

shell. In particular, a new mode of “zonal flows” is identified. 

PACS 52.55.Ez, 52.35.P~ 

I. INTRODUCTION 

Remarkable progress. has been made in recent years in experiments on Z-pinch 

impIosions of cylindrical wire arrays [l-3]. A typical geometry for such experiments is 

shown in Fig. la. A cylindrical shell is initially made of hundreds of individual fine wires 

(which later in the pulse may merge together). An axial current reaching tens of 

megamperes is driven through the shell by the external power source. Under the action of 

the JxB force the shell is accelerated towards the axis and, after the run-in phase, collapses 

on axis. The pinch kinetic energy is thermalized and converted to an intense pulse of short- 

wavelength radiation. The radiation pulse-width is determined by the quality of the 

implosion, which to great extent depends on the development of instabilities of the 

imploding shell. 

It is commonly recognized that the most detrimental instability of the imploding 

shell is similar to the Rayleigh-Taylor instability of two superposed fluids in the 

gravitational field [43. In a co-moving frame, the shell may be thought of as a thin slab of 

gravitating fluid resting on another, massless fluid (the magnetic field). Although there are 

similarities .with the usual Rayleigh-Taylor instability, there are also considerable 

differences caused by the differences in the structure of the stress tensor of the ordinary 

fluid (isotropic) and Maxwell stress tensor of the magnetic field. Because of this, the term 

“magnetic Rayleigh-Taylor instability” is sometimes used to make a distinction with respect 

to the “ordinary” instability. First assessments of the magnetic Rayleigh-Taylor instability 

trace back to the 1960’s [S]. More recently, in conjunction with progress in the area of fast - 



Z pinches, many tens of publications devoted to analytical and numerical studies of this 

instability have appeared (see, e.g., [6-81 and references therein). 

One part of the problem that has received insufficient attention is the stability of the 

early stage of the implosion, before merging of the wires occurs. The wires are initially 

very thin and well separated from each other, making them well defined entities. In a 

typical experiment at the Z facility [2], the initial diameter of the tungsten wire-array is 4 

cm, the number of the wires is 240, and the diameter of an individual wire is 7.5 pm. In 

other words, the inter-wire distance a is approximately 60 times greater than the wire 

diameter 2r,. The distance D to a return-curent conductor (Fig. 1) is typically a few 

millimiters, much greater than the interwire distance. Very early in the pulse, the wires are 

melted; for this reason, one can neglect the effect of elastic forces on the motion of the 

wires. 

We will consider perturbations with a length-scale in the axial direction much 

greater than the diameter of an individual wire r,,,. In this case, one can essentially neglect 

the structure of each wire and characterize it by the mass per unit length and the shape of 

the curve representing the wire (there is a caveat here: the effect of a self magnetic field on 

the wire motion logarithmically depends on the wire radius; we will take this effect into 

account at the appropriate point). Such an approach can be called a “thin wire model”. In 

the past, this model was employed in the papers by Felber and Rostoker [9], and Samokhin 

[lo]. The first paper was concerned with oscillations and instabilities of a small number of 

wires, and .low modes of oscillation. In the second paper, the author considered an 

arbitrary number of wires, but only for the modes of mutual translation, which keep the 

wires straight and parallel to the axis. Later, a similar study was carried out by DeGroot 

and M. Liberman [ 111. In our study, we will concentrate on the case of a large number of 

wires in the array and will cover all modes possible in the thin-wire model. 

In some of the recent experimental studies it was found that, early in the pulse,- 

rsome small fraction of the wire material forms a hot “halo” around cold wire cores where 
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most of the mass resides (e.g., [12-141). The halo may intercept a considerable fraction of 

the current in the case of an isolated wire. Since the halo expands rapidly to distances of 

order the interwire gap, this brings into question the utility of the thin wire model. For a 

realistic wire array, however, there is a large collective azimuthal magnetic field outside of 

the array and small collective field within the array. In the presence of the collective field, 

the behavior is expected to be quite different than in the single wire case. The JxB forces in 

the collective field blow the halo plasma radially inward past the wire cores, exposing the 

cores to the applied electric field and thereby transferring much of the current to the cores. 

Recent 2D MHD simulations show that the array retains an azimuthal structure with 

relatively cool, current carrying plasma cores well into the implosion [ 151. Regardless of 

the detailed structure of the halo/core wire array plasma, we believe that the thin-wire model 

provides valuable insight into the effects of azimuthal nonuniformity on pinch instability. 

Of prime concern in the implosion are modes with high growth-rates. These modes 

correspond to the perturbations whose axial and azimuthal extent is much less than the 

radius of the wire array. For such modes, one can replace the cylindrical wire array by an 

infinite curtain of wires. This is illustrated in Fig. lb where the coordinate system is also 

introduced. Unless stated otherwise, we will use this approximation. 

The further organization of the paper is as follows: in Sec. II, we consider the 

formulation of the problem and basic equations. The periodicity of the wire array allows 

one to find a universal relationship between displacements of the wires in the eigenmode. 

In Sec. III; we evaluate the perturbation of the magnetic field produced by an individual 

deformed wire, perform a summation over the wires and arrive at the equation for linear 

oscillations. In Sec. IV we derive and analyse dispersion relations for medial and lateral 

eigenmodes. We discuss some limiting cases and, in particular, a long-wavelength case 

which, as it turns out, differs significantly from the case of a continuous conducting shell 

[5]. For perturbations with azimuthal and axial scale-length exceeding the distance D 

between the wire array and return-current conductor, the presence of this conductor appears 
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to be important and causes a stabilizing effect. In section V we present the summary and 

discuss possible generalizations. In the Appendix we derive dispersion relations for long- 

wavelength modes based on a model of a quasicontinuous shell. 

II. BASIC EQUATIONS 

The geometry of the planar problem is illustrated by Fig. lb. The wires intersect the 

z=O plane in the points x=0, y=na, where n is an integer, n=O,fl,... .The current per wire 

is I,,,, the vertical current per unit length of the array is J=Z,,/u. At distances of the order of a 

the magnetic field of the wire array becomes uniform; this uniform field has only a y 

component, equal to -p JD (at x4), and ,U J/2 (at ~0) where pLo is the magnetic 

permeability of the vacuum. Superimposed on this field is the magnetic field B,, of the 

return current conductor, which has only the y component [equal to ,U J/2 (at K-D) and 

-,u JD (at x>-D)]. As a result, the smoothed magnetic field B, is present only in the gap 

between the wire array and the return current conductor. It is equal to: 

B,=B=/LJ (1) 

These considerations are necessary only in the case of me planar model. For a cylindrical 

array of Fig. la, it is obvious from the outset that the unperturbed magnetic field is present 

only in the gap between the array and the return current conductor. The magnetic field in 

the gap and near the wire array is equal to (1). 

In the planar model, the x component of the force acting on a wire from the other 

wires in the unperturbed state is, obviously, zero (because of the symmetry of the 

problem). Therefore, the acceleration of the array in the direction x>O occurs under the 

action of the magnetic field created by the return-current conductor, namely, by the 

magnetic field 
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B ref =-/.J J/2 (2) 

The force acting per unit length of a single wire is equal to 

f,=-I,,,BR=,u&J/2=a p J2L.?=aB2L2po (3) 

and causes the acceleration of the array: 

jt= f,l?h. (4) 

where & is a mass of a unit length of an individual wire. In the frame co-moving with the 

array in the x direction, the array is under the action of the two forces, the force f,, and the 

effective gravity force acting in the negative direction of the axis X. The effective gravity 

acceleration is 

We will use these alternative representations for g in our further analysis. 

In the co-moving frame, the unperturbed wires are at rest. We impose small 

perturbations on this initial state and analyze their evolution in the linear approximation. As 

is known from the analyses of the Rayleigh-Taylor instability, the growth rate increases 

with decreasing length-scale. For this reason, we will concentrate on the analysis of 

perturbations with length-scales much shorter than the gap, D, between the wire array and 

return current conductor. In this case, perturbations of the magnetic field by the perturbed 

image currents are exponentially small and for now will be neglected (in Sec. V we discuss 

the case of larger wavelengths, where this effect is essential). 

Consider a perturbation of the line representing an initially straight wire (Fig. 2). 

Following an approach first proposed by Ott in the analysis of a stability of a thin 

continuous sheet, we use the Lagmngian description, where the displacement of a certain 

point of the wire having the initial coordinate z is characterized by the displacement vector 

e,(z,t). The subscript n refers to a particular wire. We consider two points on the initially 

straight wire separated by a small distance, AZ. The mass of the co~ttsponding segment of 
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the wire is dm= ~&AZ and remains constant in the course of the subsequent motions. At 

time t, the ends of the segment AZ will be situated at the points ep+&,(z,t), and 

ep+k,(z, t)+(e,+d~,(z,t)/dz)dz, respectively. In other words, the length of the initial 

segment becomes (1 +~~,,,(z,t)/dzMz and changes by 

(6) 

compared to its initial length (we retain only corrections of the first order). 

The equation of motion of the wire has the form: 

Ai?g=& (7) 

where 6f is a perturbation of the force acting on the chosen element of the wire. To 

simplify notation, we skip here and in a few further equations the subscript “n”. Because 

the mass of the Lagrangian element does not change, the perturbation of the gravity force is 

zero. We therefore need to find only the perturbation of the magnetic force. It consists of 

several contributions: 

The first term represents the variation of the force acting on a certain Lagrangian element of 

the wire; this variation is caused by the change of the length of the element (Eq. (6)). The 

second term describes the variation of the force caused by the variation of the direction of 

the current: 

(9) 

For the reasons that we describe shortly, we assume that the magnitude of the current in the 

wire does not change. Note that the contribution to the first two terms in the r.h.s. of Eq. 

(8) comes only from the interaction with the magnetic field of the return current conductor 

(2) (because the unperturbed magnetic field of the wire array in the unperturbed location of 
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the wire is zero). The third term arises from the interaction of the unperturbed current with 

the magnetic field perturbation in the location of the Lagrangian element, 6B,. For 6B, one 

has: 

6B, = SB+$VB (10) 

where 6B is the perturbation of the magnetic field in the initial location of the Lagrangian 

element (at t=O) by all the wires except the one whose displacement we study. Finally, the 

fourth term in the r.h.s. of Eq. (8) describes the force acting on the wire because of the 

magnetic field perturbation produced by deforming this wire itself. The reason for singling 

out this term is that, in evaluating it, one has to take into account the finite radius of the 

wire (which, as we will see, enters expression for c$$ only logarithmically). 

The r.h.s. of Eq. (8) is a linear functional of the displacements 6, of the wires. As 

the system is assumed to be uniform in the z direction, one can apply a Fourier transform 

over this coordinate, and seek a solution =exp(ikz). After having done that, one arrives at 

the set of 3iV ordinary second-order differential equations (in time) for the functions c,,(t), 

k,,(t), and t,,(t) W is the total number of the wires in the array). As the time does not 

explicitly enter this set of equations, we will seek the solution proportional to exp(yj; the 

positive real part of ycorresponds to the instability. A solution varying as exp(vJ is only 

formally valid for time-invariant coefficients in the equations, however the analysis 

remains valid if the coefficients vary on a time scale z >> 3/l, and the time dependence of 

the solution becomes approximately exp IJ&). ( We expect this approximation to be well 

satisfied for the rapidly growing modes under consideration. 



For perturbations having an exp(ikz) dependence on z, with k nonzero, the 

magnitude of the current in each wire remains unperturbed. This can easily be seen since a 

perturbed current magnitude, SIZ, must be independent of z by current continuity and a 

51,xB,,, force independent of z would appear in eq.(8), violating the assumed exp(ikz) 

variation. Alternatively, a z-independent current perturbation would require a net z- 

averaged axial electric field, which is inconsistent with expcikz) eigenfunctions. The special 

case, k = 0, was treated by Samokhin and will not be discussed further here. 

The eigen-solutions of the set of equations possess a general property that stems 

from the periodicity of the system in the azimuthal (y) direction: one can show that 

5 n+l =exp(2nim/N) J&, m = O,+,l,... + ?,;a (11) 

where N is the number of the wires in the wire array; we assume that N is an even number. 

Each value of m corresponds to some eigenfunction of the aforementioned set of the 

dynamic equations. 

To prove Eq. (1 1), one can use the following arguments (essentially identical to 

those used in the derivation of Bloch-wave solutions in the problem of eigenfunctions in 

crystals, e.g.[16]): let 5, be some eigenmode of the problem, with a certain dependence of 

5, over n. Let us turn the whole array by an angle 2&V. This transformation maps the 

array into itself, whereas the eigenfunction becomes the one with in+,-+& The new 

eigenfunction, obviously, corresponds to the same eigenvalue as the old one and can 

therefore differ from the old one only be a constant multiplier, 

cn+,=c 5” (12) 

Having performed the same transformation N times, we return to the initial eigenfunction. 

Therefore, the coefficient C in (12) should be a solution of the equation 



(13) 

C,=exp(2tim/N) , m = 0,&l ,... -I - -. 
2 ¶2 (14) 

In the problem under consideration, this result was first used in [9, lo]. We will find that 

cV=I 

This equation has N solutions, corresponding to various eigenfunctions: 

N-2 N 

the eigenvalues are degenerate for m-+-m, so that alternate representations of the 

eigenfunctions consisting of linear combinations of Am eigenfunctions are also possible. 

We are interested in the behavior of the array consisting of a large number of wires 

N>>l (15) 

In this case, small mode numbers m correspond to smooth azimuthal perturbations. In 

particular, the m=l mode corresponds to a kink perturbation of a cylindrical conducting 

shell. In these modes the neighboring wires experience almost the same displacements. It 

goes without saying that the mode m=O corresponds to an axisymmetric perturbation, 

where all the wires experience the same displacement (at a given z). We will discuss these 

issues in more detail in the next section. 

The mode numbers with large m correspond to the perturbations in which the 

neighboring wires experience considerably different displacements. In particular, for 

m=NB, one obtains a mode in which the neighboring wires experience oppositely directed 

displacements (Fig. 3). 

In Sec. 3 we also show that the last term in the r.h.s. of Eq. (8) can be presented 

as: 

&ey = -k2Nk)(&, / 470&. 

where A(k) is a function weakly (logarithmically) dependent on k (see Sec. III for the 

derivation). 
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With these observations made, it is clear that the three components of Eq. (8) can be 

written as: 

Y2%?lX = ;k&J,B- I,,,sBy + k2h(k)(,u,/4n)Z;5,, (17) 

Y2~~rl~ = -;kt&,J,,,B; (1% 

the definition of 6~ is given after Eq. (4). As will be shown in Sec. III, the y component 

of the wire displacement does not perturb the y-component of the magnetic field in the 

plane x=0, whereas the x-component of the displacement does not perturb the y component 

of the magnetic field. This means that 6B, (SB,) in this set of equations contain only C& 

(&,). This in turn means that, in the system under consideration, there exist two separate 

modes. The first, where only the y component of the displacement is non-zero, can be 

called a “lateral” mode (Eq. (18)), i.e., displacements lie within the plane of the wire array. 

The second mode, where only the x- and z-components of 5, are non-zero, can be called a 

“medial” mode (Eqs. (17) and (19)) since the perturbations are directed alternately toward 

and away from the array plane. This observation was first made by Felber and Rostoker 

[9]. The structure of several lateral modes is shown in Fig. 3. 
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III. PERTURBATION OF THE MAGNETIC FIELD 

A. Perturbation from an individual wire 

Consider an initially straight wire that is directed along the z axis and intersects the 

(xy) plane in the point x=0, y=O. Let the wire be deformed in the xz plane according to 

equation 

<,=<.=p(ikz). (20) 

As we are solving a linear problem, the perturbation in the yz plane can be treated 

separately. The new current pattern can be presented as a set of infinitesimal closed current 

loops, plus the unperturbed current (Fig. 4). The perturbation of the magnetic field is 

created by current loops which are equivalent to magnetic dipoles oriented in the y direction 

and having a dipole strength (for a segment of a length dz): 

The magnetostatic potential ycreated by this set of the magnetic dipoles is (see [17]): 

= PoL5x +- 
I 

y exp( ikz’)dz’ 
4n .Jx2+y2+zf2]3’2 (22) 

It is clear from this expression that 6B,- &Y&X is indeed zero in the x=0 plane, in 

agreement With the statement made in Sec. II. The absence of the perturbation of the y 

component of the magnetic field by the y component of the displacement can be shown 

analogously. 

In evaluating the integral (22) and similar integrals, we will use the results of Bessel 

function theory (see [18], Sec. 7.12): 
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+OO exp( ikz')dz' J e[r2 +zt21e+i/2 (23) 

where K, are McDonald’s functions, and r is a gamma-function (r(1/2)=n’“; 

r(3/2)=7~“*/2; r(5/2)=3n”*/4, etc.). The perturbation of the y component of the magnetic 

field in the x=0 plane is: 

(24) 

Using the identities of the Bessel function theory [ 18, Sec. 7.111, one can represent Eq. 

(24) also in a more compact form: 

where prime means differentiation over the whole argument. 

Analogously, perturbation of the x component in the x=0 plane is: 

Bx=- 

(247 

(25) 

If we need to find the perturbed field created at the origiri by the wire situated at y=na, the 

argument y in expressions (24), (25) should be replaced by -na, and 5 by 5, . 

B. Perturbation of the magnetic field produced by the whole array 

In this section we evaluate the perturbation of the magnetic field in the location of 

some particular wire, say, the wire situated in the origin. The choice of the wire is 
* 
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arbitrary, as all the displacements in the eigenmode are related to each other by Eq. (11). 

For our specific choice of the wire, one has 

tn = co exp 7 , 
( 1 

n = Cl, 22, k3, . . 

where m, as has been mentioned in Sec. 2, characterizes the azimuthal mode structure. 

With these observations made, one immediately obtains the following expressions for the 

magnetic field perturbations in the location of the “zero&r” wire: 

6By = 

(27) 

W-9 

We extend summations over n to the infinity, because the sums are rapidly converging. 

The last step required to obtain a closed set of equations, is to find the “convective” 

term in Eq. (10). This term contains spatial derivatives of the unperturbed magnetic field at 

the position of the zeroth wire (x=y=O). Here we mean the field created by all the wires but 

the “zeroth” one. At x=y=O, one has: 

One, therefore, obtains the following expression for 6B,: 

(30) 

where SB, and &3? are determined by Eqs. (27), (28). 
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C. Evaluation of the force 6f,,, 

To evaluate &,, we have to take into account the magnetic interaction between the 

elements of the current within a single wire. We split the wire into current filaments with 

infinitesimal cross-sections (Fig. 5). Each of them is bent in the x direction according to 

Eq. (20). Consider two such filaments with the infinitesimal cross-sectional areas dA, and 

dA, carrying the currents dI, and dl, . The x component of the force acting per unit length 

of the filament 1 from the side of the filament 2 is 

(31) 

where 6By,2 is the magnetic field created by filament 2 in the location of fdament 1. The 

magnetic field perturbation can be found from Eq.(22) and has the form: 

k(Y1 -Y212 
&(kq2) 1 , 

'12 
q2 = t(.q -x2)2 +(YI -Y,)~I"~ 

The net force is equal to 

(32) 

(33) 

If in this expression one changes the place of the integration variables x and y , the result, 

obviously, does not change. On the other hand, this change of places causes replacement of 

(y,-yJ2 by (x,-x2)’ in front of the function K2 in (32). This means that in the expression 
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for C,, that enters (33) one can replace (y,-y2) 2 by [(.x~-x~)~ -~-(y,-y~)~]/Z=?,fl. Using the 

identity ([18], Sec. 7.11): 

4 (4 +2(z) = -;Ko(z) (34) 

one arrives at the following simple expression for @$ 

ef xself = - “z2 IK,(kr,,)j(r,)j(?)dA,dA, (35) 

We perform the further calculations for a uniform distribution of the current over 

the cross-section of the wire. Instead of evaluating @&, we evaluate an equivalent quantity 

A defined according to (16). One has: 

A = abpldpljP2dp2~Ko[k~wpi2~8: ~12 = [pf -2~1/72cosf3+~:]1’~ (36) 
0 0 

Using the representation ([ 181, Sec. 7.15) 

~Ko[krwplz]dO = 2n ~o[~r,~~]~o[~r,~2l7~* ’ P2 

0 ~0[kr,P21~0[kvPl]~ P* < P2 

and expansions of the functions K, and I,, at small arguments, 

Ko(z) = In 
0 

2 - yEule,. f ok2 lnz); lo(z) = 1 -t o(z2), 
Z 

one finds that 

- yEufer + t + O(k2rz In kr,) 

where ycu(,,.=0.5772 is the Euler constant ([ZS], Sec. 1.1). 

(37) 

(38) 

(39) 

For the other distributions of the current over the cross-section of the wire, the term 

l/4 in (39) should be replaced by a form-factor F. In other words, in a more general case, 
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- yEale,. + F + O(k2rz In kr,) (39’) 

For the current flowing only over the surface of the wire (strong skin effect) F=O. 

D. The accuracy of e-baluating the force terms 

Errors in evaluating force terms on the equations of motion are caused by the 

finiteness of the wire radii, rw. These errors grow with the growth of the wave number. In 

our further analysis, we will restrict ourselves to the first three terms in the r.h.s. of Eq. 

(39’). The relative error in A is then of the order of (krw)2. A 10% error would correspond 

to kr,-0.3. This means that, even for wires with r,/a -0.25, i.e., for the wires occupying 

a half of the interwire gap, a 10% accuracy can be guaranteed even for ka= 1. 

One more source of error stems from the effect of a finite wire radius on the force 

acting between neighboring wires. For example, the force acting between two neighboring 

wires of finite radius is larger by a factor [ 1 + a( rw / a)‘] than the force acting between two 

wires of zero radius (a is a numerical factor depending on the current distribution over the 

cross-section ,.e.g.,- 0.5 for uniform current). For rw /a -0.25 this error does not exceed 

-10%. So, we conclude that our predictions will have a quantitative meaning even for 

relatively thick wires, occupying a half of the inter-wire distance. 
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V. DISPERSION RELATIONS 

A. General dispersion relations 

Substituting expressions (27) and (30) into Eqs. (17)-( 19), and taking into account 

Eqs. (1) and (5) one finds the following dispersion relations for the medial (M) 

jT4+&jT2-i2 = 0 (40) 

and the lateral (L) 

y2+FL =0 (41) 

modes. We have introduced the dimensionless growth rate, 

+Ya, (42) 

and the dimensionless wave number 

(43) 

The functions FM and FL are: 

FM = (4.4) 

FL = -!$+2EEcos(2y)$L~ (45) 

Equation (40) is a quadratic equation in y and, therefore, for any given m, describes two 

modes; Eq. (41) describes one mode. As m runs from 0 to N-l, the total mode number (for 

a given k) is 3N, as it should be. In other words, our solution covers all the possible 

modes in the set of thin wires. 

As a curiosity, one can mention that the functions F for the medial and the lateral 

modes with the same value of m are related to each other by the following equation which 

is a consequence of Eqs. (44), (45), and (39’): 
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(46) 

The unstable solution of Eq. (40) is: 

FM Fi 
Yii 2 =--+ 

d 
T+i2 

At a given k, the maximum (over the azimuthal mode number m) growth rate corresponds 

to a minimum (over m) value of Fw As is known from the theory of the Bessel functions, 

the derivative K{ is.universally negative. This, in turn, means that the maximum growth 

rate of a medial mode corresponds to m=O (“axisymmetric” perturbation). As is clear from 

(41), for the lateral mode the maximum growth rate is also reached at a minimum of F,. 

One can show that the minimum of FL (the maximum growth rate) in this case corresponds 

to m=N/2, i.e., to the opposite displacements of the neighboring wires. 

B. Asymptotic properties of the functions F, and F, 

At large i’s, k^>>l, the McDonald’s functions are exponentially small, and so are 

the sums over n in the expressions (44) and (45). In addition, one can neglect the last term 

compared to the first term in each of these expressions. Therefore, we conclude that 

FL = FM 
lc2A I--, /$>>I 
2n 

It goes without saying that we still assume that k is smaller than the inverse radius of an 

individual wire, i.e., ~<A-,. (for the numerical example given in the Introduction, the 

r.h.s. is -60). To find the trends of the instability behavior with decreasing (although still 

large) i’s, one can retain the last term in Eqs. (44) and (45), as well as the first (n=l) term- 
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in the sums over n (this term is proportional to exp(-in), while the next term is 

proportional to exp(-2 in) and is, therefore, much smaller). In this improved 

approximation one finds that 

FL = -~+~cos(~)Kl(i)-; 

(48’) 

(48”) 

These expressions should have an accuracy of - 10% at k^ as low as 1 (because the next, 

n=2, term will be -exp(-2)). Note that K{(i) < 0, so that the sign of the second term in Eq. 

(48’) is opposite to the sign of the cosine multiplier. 

Consider now the case of small i’s, i << 1. The leading terms in the expansion of 

the McDonald’s function at small values of the argument are: 

K, k> = i + ~lnjzl+ O(Z); X;‘(Z) = -i + :lnlzj + O(z) (4% 

To the lowest order in k^ one, therefore, finds: 

2- 
FL =-FM =rr c 

cos(27wnnl N) IC 

n=l n2 -T 

The sum in (50) can be found from the following identity: 

m coszn c 7r2 KIZl+Z2 

n=O 
7=7-y y-, -nlzlz 

(50) 

(51) 

(outside the interval -nlzS~ the sum can be found by a periodic continuation of the 

r.h.s.). At small m’s, when 

A3tm 

q=Nccl (52) 
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the azimuthal dependence of the displacement becomes quasi-continuous (displacements of 

the neighboring wires are almost the same). In this case the quantity q = 4 /a plays the role 

of azimuthal wave number. 

One can show (see Appendix 1) that, at both ,6 and ;i small, the following 

representations are valid: 

FL x ,/m;FM z ii2 (53) 

C. Instability in some limiting cases 

1. Kink instability of individual wires ( k^ >> 1) 

In the limit of i >> 1 (i.e., for the axial wave numbers greatly exceeding the inverse 

inter-wire distance), one can retain only the first term in the asymptotic expansions (48’) 

and (48”). The dispersion relation for the medial mode predicts an instability with the 

growth rate 

fM = ykink z iJ= (54) 

This is a familiar kink instability of individual wires (see, e.g. [19]). 

The lateral mode in this approximation has the same growth rate as the medial 

mode: 

?L z Ykink (55) 

One sees that the two modes are in this approximation degenerate. 
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At large but finite values of i’s, two new effects surface: first, degeneracy 

disappears. Second, interaction between the neighboring wires comes into play. This is 

signified by the appearance of the dependence of functions FM and FL on m. For the lateral 

mode, one finds: 

AL = Ykink (56) 

(see (48”)). For m=Nn which corresponds to opposite displacements of the neighboring 

wires (Fig. 3), the .growth rate increases compared to the case where the interaction is 

neglected. A qualitative explanation of this fact is as follows: When two neighboring wires 

bend in the opposite direction (as it happens in the lateral mode m=N/2, Fig.3b) the 

attraction between the parts that are closer to each other increases, thereby causing the 

increase of the growth rate. For the other lateral modes (other m's) the interaction between 

the wires gives a smaller increase in the growth rate (or even a decrease, as for the mode 

with m=O, Fig. 3a). 

We will not write down a lengthy solution of Eq. (40) for the medial mode with FM 
A 

as in (48’). We just note that, for a given k , the growth rate is bigger for the modes where 

the cosine multiplier in (48’) is positive. Therefore, the growth rate for an antisymmetric 

mode (m=NB) is smaller than for a symmetric mode (m=O) - opposite to the case of 

lateral modes. 

2. Axisymmetric modes (m=O) 

At m=O and small k’s one can use expansion 

- fqq 7r2 nlk^l 
a Y-m=-- 

n=l n 6 2 

Therefore, at small k, the growth-rate of the m=O medial mode is 

(57) 

_ 
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j&= i $ (58) 

In other words, we recover growth rate of the Rayleigh-Taylor instability of a continuous 

conducting shell (e.g., [5]). At larger k^‘s approaching unity, FM becomes non-zero, and 

the growth-rate increases compared to Eq. (58). At i>l, one can use Eq.(48’) to evaluate 

FM. In this domain, the growth rate is determined by Eq. (47) with m=O. 

An axisymmetric L-mode can be called a “zonal flow mode” mode (Fig. 6b), by 

analogy with the patterns of atmospheric circulation forming rings of easward or westward 

flow. Its growth rate at small k’s is, according to (57), 

fL= lc II- (59) 
At higher k’s, one can use Eq. (56). This mode is of interest in that it causes a twisting of 

the array and may serve as a source of spontaneously excited zonal flows (azimuthal flows 

with directions alternating along the axis). In the course of the implosion, these zonal flows 

may be enhanced by virtue of the conservation of the angular momentum. 

3. Perturbations without axial dependence 

We emphasize that we cannot just put i =0, because then we would have to take 

into account the possibility of the current variation in the wires. This latter case was 

considered by Samokhin [lo]. As for this paper, we simply assume that the axial 

wavelength is much less than the azimuthal wavelength. 

At i +O, according to Eqs. (40), (50), and (51), the medial modes are stable, 

whereas the lateral modes are unstable. Therefore, we concentrate on the latter. Consider, 

first, the modes of highest symmetry, mLN=1/2. For these modes the neighboring wires 

experience displacements in the opposite directions (Fig.3). It is clear from Eq. (11) that 
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” m/iV=lL2 correspond to z=?r. Then, Eqs. (49) and (51) yieldF, = -FL = z/2. The 

growth rate for the lateral mode is (the medial mode is stable): 

p =&iE (60) 

The superscript “l/2” signifies the fact that m/N=I/2. The mode can be called a 

“coalescence” mode, because it corresponds to coalescence of pairs of wires. It is clear 

from the discussion of Sec. II1.A and Eq. (51) that the mL!V=1/2 mode has maximum 

possible growth rate. among the i +O modes. 

4. Perturbations with small wave numbers (k^, 4 << 1) 

Consider now waves with small azimuthal mode numbers (small m/N). 

Displacements of the neighboring wires in this case differ only by a small amount (see Eq. 

(11)) and the mode becomes quasicontinuous (Fig. 3d). It can be characterized by the 

azimuthal wave number (51). The y dependence of the displacement is proportional to 

exp(iqy). The dimensionless mode number is G = qa. At small k and q, one can use 

expressions (53) for FL and FrM’ This gives rise to the following dispersion relations: 

Y 
A2 42 =O (M - mode) (61) 

p2 -dm = 0 (L-mode) (62) 

The long-wavelength lateral mode is universally unstable. Note that the lateral mode 

was absent in the model of a perfectly conducting continuous shell [5]. The reason for this 

difference is a strong anisotropy of the electrical conductivity of the wire array (considered 

from a macroscopic point of view): there is an infiite conductivity along the wires, but 

zero conductivity across the wires (in the y direction in the unperturbed state). 
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The anisotropy of the conductivity is significant also for the medial mode: in the 

approximation k +O the medial mode is stable. This result is in sharp contrast with the case 

of a perfectly conducting thin shell, where the growth rate for the modes with k<<q is 

(e.g., [51): 

$qzj. (63) 

The difference with the model of a perfectly conducting shell is caused, again, by the 

anisotropy of the electrical conductivity. 

For long-wavelength modes the presence of the return current conductor may 

become non-negligible. However, analysis shows that, in practical terms, these effects are 

usually sub-dominant. The reason is that the image currents are situated at a distance 20 

from the wire array, and perturbations produced by image current in the location of the wire 

array contain a multiplier exp(-2kD). This factor becomes non-negligible at, roughly 

speaking 2kD-1, i.e., at the axial wavelength A-47rD. Even for unrealistically small value 

of D-l mm, il exceeds 1 cm. Such wavelengths are usually of little concern in the stability 

of wire array implosions, where perturbations with A - l- 3 mm dominate. 

Note also that the presence of the image currents causes a mixing of the medial and 

lateral modes: for a tightly fit return current conductor these modes are coupled. 

D. Numerical results 

The dispersion relations contained in Eq.(40) and Eq.(41) can be evaluated 

numerically for a range of values of i, m/N , and rw /a. The normalized growth rates for 

the lateral (dashed curves) and medial modes (solid curves) are plotted in Fig. 6, as a 

function of k , for fixed values of mAV and t-,/a. The growth rate of the classical Rayleigh- _ 
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Taylor mode, y = k’“, is plotted for reference (dotted curves). The asymptotic limits 

discussed in Section VC for large or small k^ are evident, with the transition occuring near 

i - 1. The curves are terminated at irw /a = I, where the small wire approximation 

becomes marginal. 

Fig.7 shows the normalized growth rates for the lateral (dashed curves) and 

medial modes (solid curves) as a function of mLN, for fixed k^ =2 andrda = 0.1. The 

classical Rayleigh-Taylor mode growth rate, for reference, is shown as a dotted line. As 

discussed in Section VC, the medial mode growth rate is maximized at m/N=0 and the 

lateral mode growth rate is maximized at m/Rr = 0.5. From inspection of Fig. 6, we see 

that lateral modes with m/N = 0.5 grow faster than medial modes with m/N =0 at small 

values of k^, while medial modes with m/N =0 are dominant at large i .The critical value 

of k^, above which the growth rate of the fastest growing medial mode (m/n =O.) exceeds 

the growth rate of the fastest growing lateral mode (m/N = 0.5), is plotted in Fig. 8 as a 

function of a/r,. 

V DISCUSSION 

We have presented a complete classification of the eigenmodes of a wire array in a 

thin-wire approximation. Equations (40)-(45) provide the way for evaluating the growth 

rate of any linear mode. It turns out that this approximation has a reasonable accuracy even 

if the ratio of the wire radius to the inter-wire distance is not very small, -0.25. In 

agreement with the previous analysis of Felber and Rostoker, we have found that there are 

two uncoupled groups of modes, the medial modes, in which the wires experience 

displacements in the r-z (x-z) plane, and the lateral modes, in which displacements have 

only an azimuthal component. 
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It turns out that considerable deviation from the scaling y-kin occurs only at large 

wave numbers, greater than- 2 inverse inter-wire spacings and for very small wire radius, 

u/rw >20. Only here kink modes characteristic of the instability of individual wires become 

dominant. For azimuthally symmetric modes (m=O), the growth rate at ka-I is rather close 

to the (kg)‘“. For realistic conditions of wire array experiments at Sandia National 

Laboratory with - 200 tungsten wires, we expect u/rw -10 or less due to early-time 

explosion of the wires before.MHD forces become significant. Still, 20-30% increase over 

(kg)lR is possible. This may be important in the interpretation of the observed in [20] 

dependence of the implosion quality on the number of wires in the array (Desjarlais and 

Marder, [21]). Interestingly enough, the lateral modes at k-1 have a growth rate not very 

different from medial modes. 

The modes with small wave numbers probe the average, macroscopic properties of 

the array, specifically, the anisotropy of its conductivity. Because of this anisotropy, they 

have properties very different from the properties of the modes of a thin perfectly 

conducting shell: in the case of a wire array, there appears a new, lateral, mode of a zonal 

flow type, which is strongly unstable; on the other hand, the medial modes become more 

stable. In principle, this observation can be used for diagnosing the presence of the 

anisotropy of conductivity: one can, for instance, create large enough perturbations of the 

medial type and follow their evolution during the first phase of the implosion. Until the 

inter-wire conductivity becomes large, they should remain stable. 

Hot halo plasma formed early in the pulse can provide electrical contact between the 

neighboring wires. There are two mechanisms which, in fact, may cause a significant delay 

in the occurrence of inter-wire currents. The first is related to the effect of “blowing” this 

low-density plasma through the array towards the axis. The second is also related to the 

low density of this plasma: even if it is in electric contact with the cores of neighboring 

wires, when the currents through it start flowing, their interaction with the magnetic field 

leads to very fast displacements of this halo towards a kind of a force-free configuration, in‘ 
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which the current between the wires will be strongly suppressed. As these processes may 

be intimately linked with the overall performance of the wire array, an objective 

experimental assessment of the short-circuiting process seems important. In this sense, our 

analysis provides a reliable reference point. 
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Appendix. Instability in the limit of a quasi-continuous shell 

In this Appendix, we present a derivation of dispersion relations ()in a long- 

wavelength limit. We represent the array as a continuous shell of infinitesimal thickness. Its 

deformation is characterized by a Lagrangian displacement vector &x,y) in the same 

fashion as in a thin-shell analysis by Ott [22] (who considered a pressure-driven 

acceleration of the shell, so that the conductivity issues were of no importance). The current 

flows along the lines into which initial straight lines parallel to the axis z are mapped. 

Denoting by Am the mass of a certain surface element of the initial surface area AS, 

one can write down the following equation for the perturbations: 

A?& = -GJ,B,,,,AS - JzS%$S - SJz B,,,GAS 

Ady = J,6%$S (A.11 

Am& = -&B,,t~ 

where B,,, is the magnetic field (2) created by a return current conductor at the location of 

the array, 6Bz, is the perturbation of the magnetic field at x=0 (we will explain the meaning 

of the averaging bar shortly), and J,cJ is a surface current density (i.e., the current density 

integrated over the shell thickness) and 6JX,, are its perturbations. The quantity 6AS is a 

change of the surface area caused by the deformation of the shell: 
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(A.21 

The bar over the magnetic field perturbation refers to the fact that the presence of the 

surface current in our problem, generally speaking, causes the appearance of discontinuities 

of the magnetic field at the surface of the shell. The bar means taking a half-sum of the 

values of the perturbation at the two sides of the current sheet (only this part of the 

perturbation gives rise to a net force acting at the surface current). 

By noting that 

and assuming the exp(y+&z+iqy) form of the perturbations, one finds: 

+ ikg&; y2cY = gs; y25, = -ikg& 
yret 

To find the magnetic field perturbations, we use equations 

Vx6B=pu,6j 

v*sB=o 

The perturbation of the current density is: 

@x = iws(x){x; 

sjy = iwS(x)5,; 

(A.31 

(A.41 

(A.3 

64.6) 

(A.71 

sjz =-J F& - JG(x)iq<y 

Using x and y components of Eq. (AS), together with Eq. (A.6), one arrives at the 

following equation for 6B,: 

SB;- (k2 + q2)6Bz = -po(Gj; + iqsj,) 
04.8) 

where primes denote the differentiation over x. The perturbation of the current is localized 

at the x=0 plane; therefore, one has basically to solve a homogeneous version of the Eq.‘ 
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(A.8) in the half-spaces x>O and x<O and connect them via boundary conditions that follow 

from integrating Eq. (A.8) over the infinitesimally thin layer of the current sheath. The 

boundary conditions read: 

We first present solution of the problem for kD>I, when one can neglect the 

presence of the return current conductor. In this case, one has to impose conditions that 

perturbations of the magnetic field vanish at large distances from the sheath. After finding 

6B, and using the x and y components of Eq. (AS) to express the other two components of 

the perturbation, one arrives at the following result: 

(A. 10) 

(A.ll) 

When substituted into (A.4), these equations immediately yield expressions (53) and 

dispersion relations (62) and (63). Note that one could limit oneself to evaluating only 6B,, 

(or, equivalently, of F& and then using relationship (46) in the limit of a small wave- 

numbers to derive F,,, 

If the return current conductor is situated so close to the shell that kDd, one has to 

take its presence into account. What changes in our analysis, is that now one has to impose 

a boundary condition 

SBJ x=-D= 0 (A. 12) 

This leads to a mixing between the medial and the lateral modes: 
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gX = $-,,/~J{y[l-exp(-2~~D)]+$iqJ5,exp(-2~~D) 

)I 
(A.13) 

+ 9 iqJ&, exp( -2JwD) 

The mixing reflects itself in that & now enters equation (A.4), and C& enters the second of 

these equations. The mixing vanishes in the case q=O, in which case we find the medial 

mode growth rate is unaffected by the return conductor, y = &. However, the q=O 

lateral, zonal-flow type mode is partially stabilized by the presence of the conductor. 

Making use of (A.13) in (A.4), we find y = ,/kg(l - exp(-2kD)). We will not go further 

in the analysis of the perturbations in this case. 
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Figure captions. 

Fig. 1. The geometry of the problem: (a) The cylindrical wire array 1 enclosed within the 

return current conductor 2 (only part of the latter is shown). The current along the wires 

(shown are six wires at the front part of the array) is directed upward. The usual 

relationship between a, D, and r is: a<<D<<r . This allows one to substitute a planar 

analog for the real .system. (b) The planar analog. The unperturbed magnetic field is 

localized between the wire array and return-current conductor. 

Fig. 2. Lagrangian description of the perturbation of an individual wire. 

Fig. 3 A few lateral perturbations: m=O (a);m=N/2 (b); m=N/4 (c); m=N/lO (d). 

Fig. 4. Representation of the current perturbation by a sequence of infinitesimal current 

loops (magnetic dipoles). Shown are two loops, 1 and 2. The currents in the adjacent 

elements of these loops cancel each other. 

Fig. 5. Cross-sections of two current filaments by the plane z=O; the total current is a sum 

over such filaments. 

Fig. 6. The normalized growth rates for the medial (solid curves) and lateral (dashed . 

curves) modes as a function of the normalized wave number i for m/N=0 and m/N=1/2. 

The growth rate for a classical Rayleigh-Taylor mode f = k”’ ’ 2is plotted for reference 

(dotted line). 
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Fig. 7. The normalized growth rates for the medial (solid curve) and lateral (dashed curve) 

modes as a function of m/N, for k^=2 and rJa=O.l. The growth rate for a classical 

Rayleigh-Taylor mode is plotted for reference (dotted line). 

Fig. 8. The critical value of i vs. the parameter a/r,+,. For i values above the curve, the 

fastest growing mode is the medial mode with m/lv=O; below the curve, the fastest growing 

mode is the lateral mode with m/lv=i/2. 
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Lateral mode structure for rn/Nwire = 0.250 

Fig. 3c 

Lateral mode structure for rn/Nwire = 0.100 

Fig. 3d 
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