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Chapter 1 
Language Interoperability Mechanisms 

for High-Performance Scientific Applications* 

Andrew Clearyt Scott Kohnt Steven G. Smith+ Brent Smolinskit 

Abstract 

Language interoperability is a difficult problem facing the developers and users 
of large numerical software packages. Language choices often hamper the reuse and 
sharing of numerical libraries, especially in a scientific computing environment that uses 
a breadth of programming languages, including C, c ++, Java, various Fortran dialects, 
and scripting languages such as Python. In this paper, we propose a new approach to 
langauge interoparability for high-performance scientific applications based on Interface 
Definition Language (IDL) techniques. We investigate the modifications necessary to 
adopt traditional IDL approaches for use by the scientific community, including IDL 
extensions for numerical computing and issues involved in mapping IDLs to Fortran 77 
and Fortran 90. 

1 Introduction 
In recent years, the scientific computing community has seen a proliferation of languages 
used for numerical simulation. The tradiational Fortran mainstay, Fortran 77, has 
been joined by Fortran 90. C and C++ have become popular because of their support 
for dynamic memory allocation, data structures, and-in the case of C++-object oriented 
abstractions. The popularity of Java has driven standards proposals for Java numerical 
libraries [8]. Computational scientists have also experimented with the use of high-level 
scripting languages such as Python to coordinate large numerical simulations [4]. 

Language interoperability in this multilanguage environment is a difficult problem for 
developers of new large numerical software packages and also for users of legacy software. 
For library developers, the choice of one implementation language over another may 
severely limit the reuse of their numerical software, especially considering the breadth 
of programming languages used in the scientific computing environment. Users of legacy 
software may be required to adopt the language of the legacy package for future applications 
development, even though better alternaives may exist. If language interoperability is 
desired, numerical software developers and users are often forced to write “glue” code 
that mediates data representations and calling mechanisms between languages. However, 
this approach is labor-intensive and in many cases does not provide seamless language 
integration across the various calling languages. Fortran 90 is a particular challenge for 
language interoperability, since Fortran 90 calling conventions vary widely from compiler 
to compiler (see Section 3.3 for details). 
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Laboratory under Contract W-7405-Eng-48. This work has been funded by both ASCI PSE and DOE2000. 
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One interoperability mechanism used successfully by the distributed systems commu- 
nity [7, 12, 141 and the operating systems community [5, 6, ll] is based on the concept of 
an Interface Definition Language or IDL. The IDL is a new “language” that describes the 
calling interfaces to software packages written in standard programming languages such as 
C, Fortran, or Java. Given an IDL description of the interface, IDL compilers automati- 
cally generate the glue code necessary to call the software package from other programming 
languages. 

In this position paper, we propose to explore the IDL approach to language interoper- 
ability and modify it for use by the scientific community. We begin with the object oriented 
CORBA IDL specification [12] as a starting point and investigate the modifications neces- 
sary for high-performance scientific computing. 

Although IDLs are a proven technology for other communities, IDL techniques have 
not been applied to high-performance scientific computing. We anticipate three primary 
research issues in adopting IDL technology, First, we must determine what features are 
needed in a scientific IDL to support numerical computing. For example, standard IDLs 
such as that defined by CORBA do not include basic scientific computing data types 
such as complex numbers or dynamic multidimensional arrays. Second, we must address 
performance considerations. Our goal it to make the overhead of calls through the IDL 
about as expensive as the invocation of a C++ virtual function. Finally, we must determine 
how IDL features such as objects and their methods are to be mapped onto the various 
Fortran dialects. 

This paper is organized as follows. We begin with a survey of common interoperability 
mechanisms. Section 3 describes our design goals for language interoperability, features 
needed in a scientific IDL, language mappings, and run-time issues. Finally, we conclude 
in Section 4 with an evaluation of our proposed IDL interoperability approach. 

2 Survey of Interoperability Mechanisms 
Language interoperability-the problem of connecting software modules written in different 
programming languages-is a somewhat imprecise term. Programming languages provide 
differing degrees of support for data abstraction, object oriented design, dynamic memory 
allocation, or array-based computation. Such differences limit the level to which language 
interoperability can be supported. For example, there are limitations to interoperability 
between C and Fortran 77 since Fortran 77 does not support C’s notion of a pointer. 

Of course, one of the reasons that language interoperability is so desirable is that it 
enables programmers to exploit the various strengths of different programming languages. 
No language has been shown to be the single best language for scientific computing. 
Fortran is an excellent language for efficient array computation, but does not provide the 
data abstraction and object oriented features of a languge such as C++ or Java. Scripting 
languages such as Python provide a powerful environment for experimenting with scientific 
simulations [4], but do not offer the performance of a compiled lanauge such as C. 

2.1 Multiple Language Bindings 
Probably the most common method of language interoperability for scientific libraries is 
through the use of hand-generated library bindings. In this approach, library designers 
select a (typically small) set of supported languages that will be able to call their library. 
For each of these supported languages, the designers write a language binding specification 
that describes the library interface-the objects (if any), functions, and data types-in 



LANGUAGE INTEROPERABILITY MECHANISMS 3 

that particular language. Essentially, library interfaces are redesigned for every supported 
language. Finally, the library developers implement this language binding specification, 
typically using glue code that connects the target language to the language used in the 
implementation of the library. MPI [lo] is one scientific library that takes the multiple 
language binding approach; the MPI specification describes bindings for both C and 
Fortran 77. 

The advantage to generating language bindings by hand is that the binding can be 
tailored to the style and conventions of the particular language. For example, the MPI 
specification dictates that MPI routines in C return error codes as function return values 
whereas Fortran routines return error codes through an integer parameter in the argument 
list, which follows the standard programming conventions for these two Iangauges. 

The primary disadvantage of this approach is that is is very labor-intensive. Both the 
language binding and the glue code must be generated by hand for each supported language. 
Although the generation of glue code is typically straight-forward, many lines of glue code 
will be needed to wrap every object, function, and data type that is to be accessible by the 
calling language. 

Furthermore, the use of multiple language bindings does not necessarily ensure 
simultaneous cross-language use of the library. For example, the MPI language bindings 
for both Fortran and C contain routines that create MPI communicator objects. However, 
there is no well-defined mechanism for sharing MPI communicator objects between Fortran 
and C. Therefore, a C application that allocates an MPI communicator cannot pass that 
communicator to a Fortran numerical library routine. A careful design of the language 
bindings can address these issues, but the difficulty grows with the size of the library and 
the number of supported languages. 

2.2 Bilateral Language Interoperability 
Another technique for langauge interoperability uses libraries or automatically generated 
glue code to support calls among a small set of targeted languages. For example, the SWIG 
package [3] reads C and C++ header files and generates glue code so that these rougintes may 
be called by scriptiong lagnugae such as Python. Pyf f le [13] is similar in approach to SWIG 
and supports an almost seamless integration between Pythonand C++. The Java Native 
Interface [9] defines a set of library routines that enables Java code to interoperate with 
applications and libraries written in C amd C++. Python supports a calling interface for C. 
These approaches solve part of the interoperability problem by developing custom solutions 
that link particular languages; however, they do not address the larger issues involved with 
interoperability for all of the scientific computing languages. Indeed, N languages could 
potentially require O(iV2) different software packages for full interoperability. 

2.3 Interface Definition Languages (IDLs) 
The IDL approach to interoperability is somewhat similar to the approach described in the 
previous section except that it unifieis all languages through a common mechanism. The 
basic idea behind an IDL is to create a new language-the Interface Definition Langauge- 
to provide a description of the interface for a software routine. an IDL language mapping 
is defined for each supported language that maps constructs in the IDL into the target 
language. For example, an interface in an object oriented IDL might be mapped onto 
a class in C++ or an interface in Java. Glue code is generate automatically by an IDL 
compiler that takes as input the IDL description of a software comoppnent and a language 
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mapping for the target language. The IDL approach reduces the O(N2) potential language 
mappings to only O(N), since every langueg get mapped to the IDL, from which every 
other langauge is accessible. 

IDL’s have been in use for a long time in the distributed computing field. Sun RPC 
IDL and OSF/DCE IDL have been standard mechanisms for specifying remote procedure 
call interfaces and have been widely used for both UNIX and Windows NT client/server 
programming [RPC REF, 111. Microsoft borrowed heavily from the OSF/DCE IDL for its 
COM IDL specification. Microsoft’s Component Object Model (COM) is the most widely 
used component framework. CORBA . . . The ILU (Inter-Langauge Unification) project [7] 
is apply 

The drawback to the IDL approach is that language interoperability is limited to the 
facilities and types described in the IDL, which may be a subset of the capabnilities in the 
native languges. For example, a C poiter cannot be described in an IDL interface for an 
IDL that doesn’t support the pointer type. However, this does not necessarily mean that 
IDLs represent the lowest common demoninator for al the languages of interest. Many IDL 
capabilities, such as object oriented constructs, can be supported throu a combination of 
clever language mappings and run-time library routines, even for simple languages such as 
C or Fortran 77. 

3 IDLs for Scientific Applications 
Of the three interoperability approaches described in the previous Section, we believe that 
IDL techniques offer the most potential for the automated, seamless interoperability of 
scientific libraries. In this section, we describe the modifications necessary to adapt existing 
IDL methods for the scientific computing environment. We begin with a description of how 
our approach would be viewed from the perspective of both a library developer and a library 
user. 

The developer of a numerical software library would perform the following steps. 

1. Specify an interface to the library in the IDL. The IDL specification provides a high- 
level, language-independent description of the library interface. For example, the 
following is an IDL specification for a Vector object in a hypothetical Solver library. 

package Solver C 
interface Vector ( 

// data access to the vector 
void setData(in double data) ; 
void setData(in array<double, l> data) ; 
void getData(out array<double,i> data); 

// standard vector functions 
double dot(in Vector y> ; 
void scale(in double a> ; 
void axpy(in double a, in Vector y>; 

2. Compile the IDL specification using the IDL compiler to generate skeleton glue code 
in the implementation language of the library. 
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3. Write the functions that implement the interface. In doing so, the library developer 
must ensure that the function signatures match those expected by the skeleton 
glue code. For example, the CORBA language mappings for C specify that 
the dot 0 member function given above would be implemnted by C function 
Solver-Vector-dot 0. For implementors of a new library, these namimg conventions 
are not particularly difficult to follow. However, library developers that wish to wrap 
existing libraries in the IDL for interoperability may need to write a small amount of 
glue code to convert between the expected IDL function names and the names used 
by the library. Note that this glue code need be written only once to map the IDL 
to the library, as opposed to writing glue code for every language as in the approach 
described in Section 2.1. 

4. Deliver the library code along with the skeleton glue code generated by the IDL 
compiler. 

To create an application that uses the library described above, a library user would: 

1. Compile the IDL specification provided by the library developer for the application 
target language. The IDL compiler will generate stub glue code that will connect the 
applications code to the library. 

2. Write the applications code. The library user will reference the library interface as 
specified language mappints and the stub glue code. For example, using CORBA 
conventions, the IDL function dot 0 given above would be mapped to method 
Solver: :Vector : : dot 0 for C++ and to function Vector-dot 0 in module Solver 
for Fortran 90. 

3. Compile and link the applications code with the stub and skeleton code generated by 
the IDL compiler, the library code, and the small run-time library needed by the IDL 
system. 

3.1 Design Considerations 
Our IDL approach must not introduce significant overheads at run-time; otherwise, it will 
not be used in a high-performance computing environment. Traditionally, IDLs have been 
used for distributed applications spanning multiple address spaces. Because there can be 
no data sharing across multiple address spaces, distributed run-time systems must marshal, 
communicate, and un-marshal data arguments during method invocation. Such overheads 
would be prohibitively expensive for the large scientific data sets found in high-performance 
computing. Therefore, we require that all software modules linked by our IDL must share 
the same address space. Within a single, shared address space, data can be passed between 
modules via reference without expensive data copies. 

Note that this design constraint does not preclude the use of our approach for 
high-performance parallel computation using MPI. The traditional SPMD approach to 
parallelism already assumes a single address space for each MPI process, and our design 
fits naturally into this programming model. Indeed, the interoperability needs of numerical 
libraries for massively parallel computation is the driver for much of this work. 

With the increasing use of shared memory multiprocessors in scientific computing, we 
plan on supporting threads. The runtime system will be designed to be thread safe. Library 
writers will be responsible for thread safety of components. An open issue is which thread 
model to use; both OpenMP and Pthreads will likely be in widespread use. At the current 
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time we do not know how to implement the runtime system to support the simultaneous 
use of both thread models so we will initially target Pthreads. We do not address the issues 
regarding the interaction of MPI and threads. 

Finally, our design must support the standard numerical programming languages, 
including C, C++, Fortran 77, Fortran 90, Java, and Python. Additionally, we plan to 
investigate support for mathematical prototyping tools such as MatLab. 

3.2 Scientific IDL 
For this approach to work, we must choose an IDL that is expressive enough to represent the 
abstractions and data types common in scientific computing. Unfortunately, no such IDL 
currently exists, since most IDLs have been designed for distributed client-server computing 
in the business domain. 

Thus, we have decided to begin with the object oriented CORBA IDL specification 
[12] as a starting point and then modify it as necessary for high-performance scientific 
computing. The CORBA IDL was chosen for several reasons. It is fairly simple and 
elegant with a syntax similar to Java or simplified C ++, object oriented, and supports an 
error-reporting exception mechanism. It provides a module construct that helps manage 
the namespaces for different libraries (e.g., to ensure that the Vector object from library 
A does not clash with the Vector object from library B). It is an industry standard and 
supported by a large user community. With the exception of Fortran and MatLab, lanuage 
mapping specificationsh hae been written for all of our targetd scientific languages. In 
our work, we can leverage these language mappings and the other work in the CORBA 
community. 

In the following sections, we describe some of the issues in adopting the CORBA IDL 
for scientific computing. 

3.2.1 Unnecessary CORBA IDL Constructs The CORBA IDL contains a number 
of constructs that are either inappropriate or unnecessary for scientific computing. For 
example, the oneway method attribute only makes sense in a distributed environment. To 
simplify the development of our prototype, we have also eliminated support for struct and 
union. Both of these constructs can be represented easily using objects, as is done in Java. 
These constructs may be included later, if warranted. 

3.2.2 New Types for Scientific Computing The CORBA IDL specification lacks 
both complex numbers and dynamic multidimensional arrays, and both are essential to 
numerical and scientific computing. Complex numbers are failrly trivial to add to the 
IDL. The only issue is the mapping of the complex numbers into lanugages without a 
built-in complex type, but complex number libraries either exist or are straight-forward to 
implement for all languages of,interest. 

We have also added dynamic multidimensional arrays to the CORBA IDL. CORBA 
currently only supports fixed-length arrays and sequences. A sequence is similar to an array 
but is limited to one dimension. In CORBA IDL, varying-levntgh multidimensional arrays 
are gererally built from sequences of sequences. However, this representation is similar 
to an C array of pointers to arrays and is not as natural for most scientific computing as 
multidimensinal arrays. As illustrated in the IDL sample code in the beginning of this 
Section, we have specified arrays as array<TYPE,N>, where TYPE is the type of the array 
(e.g., double) and N is the array dimension. 

Another issue is the representation of arrays in the various targeted programming 
languages. For efficiency, IDL arrays should map onto native array constructs. However, 



LANGUAGE INTEROPERABILITYMECHANISMS 7 

the native representation of arrays in Fortran (column major) is different from C and C++ 
(row major) and also Java and Python, which have their own representations. There are 
three potential solutions we plan to evaluate. The first is to automatically convert the array 
to the representation assumed by the implementation language. Thus, arrays passed to a 
Fortran library from a C application would need to be transposed in memory. This is the 
simplest solution, but also the most expensive, since arrays would need to be copied on every 
call between languages with different native representations. Second, layout attributes such 
as column or row could be added to the IDL to specify the format of the array expected 
by the implementation. This would provide more flexibility for the library developer and 
would force data copies only when needed. Finally, the IDL run-time system could provide 
simple routines that would convert array representations at run-time at the request of the 
library implementation. 

3.2.3 New IDL Constructs We have added two new method modifiers to the CORBA 
IDL: static and final. Static methods may be invoked without an explicit object reference 
and are supported by both Java and C++; they can be thought of as a standard function 
call in a non-object oriented language. Static methods are not supported by CORBA 
since distributed computing environments require object references to specify the execution 
context. Static methods will be essential in the generation of IDL descriptions for legacy 
subroutine libraries that were written without an object model. 

The final qualifier is taken from Java and indicates that the specified method may 
not be redefined in subclasses. By default, we adopt the Java convention that all non-static 
methods may be redefined in subclasses unless they are declared final. This is the opposite 
of the C++ convention, which assumes that methods must be explicitly declared virtual 
to be redefined by subclasses. There is a slight overhead cost associated with dynamic 
function dispatch for virtual (i.e., non-final) methods. The final keyword will enable the 
stub code and run-time system to optimize away these overhead costs. 

3.2.4 Inheritance Issues Unfortunately, the CORBA specification does not currently 
support method redefinition in subclasses nor a useful model of multiple inheritance. We 
consider both of these necessary capabilities for the object oriented design of general and 
extensible-scientific libraries. It is straight-forward to support method redefinition in the 
run-time system (see Section 3.4); however, multiple inheritance is more problematic. 

There are two potential models for multiple inheritance, which we shall call the C++ 
model and the Java model. The C++ approach allows a subclass to inherit both interface 
and implemenation from multiple superclasses. Unfortunately, multiple inheritance of 
implemenations causes difficulties when superclass methods share the same signature; 
references to such methods are generally ambiguous, since the compiler does not know 
which method implementation to invoke. C++ solves this problem by requiring unambiguos 
references in the implemnation that is enforced by the compiler. Such an approach does 
not work with an IDL, since the IDL cannot force the compilers used for the library 
implemntations to check the semantics for multiple inheritance. 

Thus, we have chosen to implement Java’s model for multiple inheritance. In this model, 
a subclass may inherit multiple interfaces but only one implementaion. This appears to be 
a much more elegant model for multiple inheritance and it does not share the limitations 
of C++‘s model. Following the Java model, we have also added an abstract qualifier that 
indicates that a method does not have an implemenation and must be defined by a subclass. 
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3.3 IDL Language Mappings 
An IDL language mapping determins how IDL features are mapped onto the target 
language. Language mappings for the CORBA IDL have been defined by the CORBA 
specification for C, C++ and Java[l2]. The ILU project [7] has defined a mapping between 
the CORBA IDL and Python. Obviously, these mappings must be extended for the features 
that we have added to the base CORBA IDL, but the mappings for these additional 
extensions are fairly straight-forward. 

Unfortunately, IDL language mappings to Fortran dialects do not exist. For the most 
part, the mapping between IDL and Fortran will be similar to the mapping between IDL 
and C with the exception of the representation for objects, strings, and arrays. Objects 
in Fortran 77 are generally represented using integer identifiers in the same fashion that 
MPI [lo] uses intergers to represent MPI communicators; objects in Fortran 90 can either 
be represented using the same approach or the expanded Fortran 90 type system. Strings 
that are char * arrays in C ++ will become character * (*> arrays in Fortran with different 
termination conditions (NULL for C but an explicit length for Fortran). Arrays mappings 
for Fortran 77 are straight-forward, although Fortran 90 mappings are problematic, as 
described below. 

The primary problem in mapping to Fortran is that calling sequences, name mangling, 
and Fortran 90 array descriptors vary greatly from compiler to compiler. Thus, in order 
to generate glue code for Fortran, the IDL compiler system must be aware of the low-level 
details of Fortran compiler conventions. For example, consider the following potential 
Fortran 90 mapping of the sample IDL code given in the beginning of this Section. 

module Solvers 
. . . 
contains 

subroutine Vector-setData(this, data) 
type (Vector) this 
real *8, dimension (: > : : data 
. . . 
end subroutine Vector-setData 

end ‘module Solvers 

Calling this Fortran 90 code from another language requires that we understand how the 
Fortran 90 compiler represents the function name and how data is passed into the function. 
Figure ?? illustrates the differences in naming and parameter passing conventions for two 
f 90 compilers. There are two important points. First, the compilers generate different 
symbols for the function Vector-setData0. Second, the compilers use different array 
descriptor structures to represent the array argument, including different definitions of 
bounds and stride (e.g., byte-based for the SGI but word-based for the Sun). 

Fortunately, we need to determine these Fortran 90 calling conventions only once and 
then catalogue them within the IDL compiler system. Once the conventions are established, 
the IDL compiler will automatcailly generate the glue code necessary to tie the Fortran 90 
code with other languages. Note that it would be exceedingly tedious to generate this glue 
code by hand considering the significant differences in Fortran 90 calling mechanims. 

3.4 Run-Time Support Library 
Difficult to support such things by hand. Talk about PETSc. Get a reference to a 
description of what PETSc does or COM tables or C++ virtual function tables. Support for 



struct vector ( 
struct f90-array 

double *data; 
. . . 
short flags ; 
short rank; 
. . . 
. . . 
int lower0; 
int upper0 ; 
int stride0; 

3; 
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. . 3; struct vector C . . . 3; 
C struct f90-array C 

. . . 
double *data; 
. . . 
short flags; 
short rank; 
. . . 
int LowerO; 
int upper0; 
int stride0 ; 

3; 
void vector-setdata.in.solvers-( void solvers$vector-setdata- ( 

struct vector *this struct vector *this 
struct f go-array *data) struct f go-array *data) 

< iI 
. . . . . . 

3 3 
FIG. 1. This figure gives a pseudo-C representation that is equivalent to the assembply code 

generated by the f90 compilers on the Sun (~1.2, left) and the SGI (~6.2, right). Note that his is 
not valid C code since neither “. n nor “$” are vaild characters within C identifiers. 

multiple inheritance. 
As mentioned previously the runtime system must be thread aware due to the 

possibility of multiple threads manipulating components. There should be no significant 
implementation difficulties, as the design is a similiar to a producer/consumer model. Since 
library writers are responsible for thread safety of components, additional overhead in the 
runtime system is only need for object creation, deletion, and reference counting. This 
additional overhead should be minimal if the relative frequency of object, creation is low 
compared- with the amount of computation. This should be the case for the application 
domains we are considering. 

4 Analysis and Future Work 
We have proposed a new approach to language interoperability for high-performance 
scientific applications based on Interface Definition Language (IDLs) techniques. IDL 
technology would enable computational scientists to use the programming language most 
appropriate for the task at hand, or to mix legacy software libraries, without concern about 
implementation laguages and interoperability. Furthermore, IDL approaches may solve the 
very difficult problem of interoperability with Fortran 90 codes. 

In this paper, we have emphasized the advantages of IDLs for language interoperability. 
We see other advantages, as well. Object oriented IDLs provide a common language for 
specifying object oriented interfaces to numerical libraries. The IDL run-time system 
also provides support for advanced object oriented features-such as run-time type 
identification, cross-language error reporting mechanisms, and multiple inheritance-even 
for those languages that do not directly support object oriented features, such as C or 
Fortran. Object oriented features have been built into C libraries by hand [l, 21, but an 
IDL compiler automates this tedious process. 
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We see two potential weaknesses in the IDL approach. First, the overheads of the IDL 
run-time system and glue code may be too high for high-performance scientific computing. 
We believe that the overheads can be limited to about the cost of a C++ virtual function call; 
most function bodies will contain sufficient work to amortize this small overhead. Second, 
scientific programmers-traditionally a very conservative group-may not be willing to 
accept the naming conventions dictated by the IDL compiler or may not be willing to rely 
on yet another software library. We believe that the benefits of language interoperability 
and support for object oriented abstractions in C and Fortran will more than outweigh 
these disadvantages. 

To date, we have completed a parser that reads the IDL grammar described in this 
paper, and we are currently implementing the IDL type checker. Implementation of the run- 
time system will be straight-forward, since it provides only basic facilities for error handling, 
run-time type identification, and object reference counting. Next, we will implement the 
glue code generation routines for the various target languages. We will begin with C, C++, 
and Fortran 77 to validate our approach and study inter-language performance overheads. 
Finally, we will implement the glue code generators for Java, Python, and Fortran 90. 
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