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Abstract: We report on the laser performance of a Nd:phosphate glass (Nd:10G-1)
channel waveguide laser fabricated by electric field assisted Ag® diffusion. Lasing was
achieved in two different size channels, 29 x 9 mm? and 50 x 9 nm?, on a sample of
length 8 mm. Slope efficiencies of ~ 15% with respect to incident pump power were
measured. Losses in the 29 um wide channel were measured to be in therange 0.2 — 1.1
dB/cm and in the 50 mm channel, 0.2 — 0.4 dB/cm. The laser spectrum, centered about

the emission peak of 1053 nm, was multimode and randomly polarized.
OCIScodes. 140.3480, 140.3530, 140.3580, 140.5680

Solid-state waveguide lasers [1-5] offer severa attractive features that may make high efficiency
and effective thermal management possible. The waveguide region is typically several microns thick,
leading to high intensities of the pump light over distances much longer than the Rayleigh range. Good
overlap is maintained between the pump and signal modes over the entire guiding region, leading to
efficient operation with high slope efficiency. The effects of heating are of less significance than in
typical solid-state lasers because mode confinement is maintained by an index of refraction difference,
usually much larger than that induced by dn/dT or stress-optic effects. The high NA of the waveguide
is also suitable for diode pumping.

We report on laser performance in a Nd:phosphate glass (Nd:10G-1). The fabrication process
for the waveguides used for the laser experiments has been reported previoudly [6], but is summarized
here for convenience. A thin film of Ag was evaporated on a 1 mm x 50.8 mm square Nd:phosphate
glass substrate. Another metal film (Ag or Al) was evaporated on the opposite side. Photolithography
was used to define Ag lines, varying in widths from 2 nm to 400 mm. The thin lines (2 — 8 nm) did not
adhere well to the substrate and were removed during the etching process. Once the lines of Ag were
formed on the substrate, an Al cap layer was evaporated on top to ensure good electrical contact during
the next step. An electric field was then applied across the sample, which was placed in afurnace. The
diffusion time and temperature were 30 minutes and 300°C, respectively. The remaining metal films
were removed by placing the sample in a dilute solution of nitric acid (69% assay). Planar waveguides,
fabricated under the same conditions, were characterized by the prism coupling method and electron
microprobe analysis [7]. The channel waveguide samples were then cut and laser grade polished to
various lengths. The waveguide ends were parallel to within 30" as judged from interferograms.

The laser resonator was set up in a Fabry-Perot configuration. Index matching oil (n = 1.512)
was used to butt-couple the mirrors to the substrate (ng = 1.52401, V4 = 67.27). The surface tension of
the oil held the mirrors in contact with the waveguide. Aspheres, NA = 0.5, f = 8 mm, were used to
focus light into the waveguide and collimate the output beam. An SDL 8630 diode laser served as the
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pump source, with a pump wavelength of 806.5 nm. At this wavelength, the pump absorption
coefficient is 3.3 cm™ leading to an estimated 93% pump absorption efficiency. Fig. 1 shows the slope
efficiency for a 50 x 9 mm” channel with a 62% output coupler reflectivity. The slope efficiencies
obtained are 14.6% and 14.1% for TE and TM polarized pump beams, respectively; the difference
between the two being minor.
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Fig. 1. Slope efficiencies of 50 x 9 mm? channel waveguide |aser.

Knowledge of the amount of lossin the laser cavity is essentia in understanding the performance
of the laser. One standard method of measuring loss in a four level laser is the Findlay-Clay [8]
analysis, where the threshold power is measured as a function of varying output coupling. Three output
coupler reflectivities of 97%, 82%, and 62% were used in the experiment. The losses measured for the
50 nm channel with this analysis are 0.28 - 0.39 dB/cm (Loss [dB/cm] = Loss/4.34 [L/cm]). The
measured losses in the 29 um channel were much higher, from 0.58 - 1.12 dB/cm. No lasing was
observed with lower reflectivity mirrors.

Another method to measure loss was reported by Caird, et. a. [9], where inverse slope
efficiencies are plotted as a function of inverse output coupling (Fig. 2). Starting from

.
h,=h, —— 1
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one can invert the above equation to obtain
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where hgisthe ope efficiency, d is the round trip loss (2al), T is the output coupling, and ho represents
the intrinsic slope efficiency. hg is inclusive of efficiencies for pump delivery, pump absorption, the
overlap of the pump and signal modes, and the quantum efficiency of the lasant ion. The round trip loss,
d, neglects losses due to scattering off the resonator mirrors. This assumption is valid since both the HR
and the OC are butt coupled directly to the waveguide, thus mitigating any diffraction losses. With this
analysis, general agreement is reached with the Findlay-Clay analysis for the 50 mm channel, with losses
of 0.21 - 0.26 dB/cm. For the 29 nm channel |osses were measured to be 0.21 - 0.23 dB/cm, comparable
to those of the 50 mm channel, as expected.
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Fig. 2. Caird analysis for the 50 x 9 mm? channel waveguide |aser.

The intercept, hy, obtained from the Caird analysis allows the determination of the pump
delivery efficiency into the waveguide.
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Since the waveguide is multimode, the assumption that the overlap efficiency is unity is valid. The
pump radiation should excite several laser modes, thus completely overlapping with the signal radiation.
The absorbed pump efficiency is 0.93 as stated previoudly. The laser and pump wavelengths are 1053
nm and 806.5 nm, respectively. From Eq. 3, an average pump delivery efficiency of ~ 19 % for both
channels is obtained.

The laser operated at a single wavelength, as resolved by an optical spectrum analyzer (DI = 0.5
nm) at threshold output power as shown in Fig. 3. As the input pump power was increased, other laser
lines began to oscillate, with each line having a FWHM ~ 0.5 — 1.0 nm. The signal was randomly
polarized for both input pump (TE and TM) polarizations. The multiple lines and random polarization
of the signa light were expected since the waveguide can support many transverse modes at both
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polarizations. Also, the inhomogeneously broadened laser transitions of Nd:glass allows more than one
line to oscillate.
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Fig. 3. Laser spectrum of 50 x 9 mm? channel waveguide |aser.

In summary, Ag diffusion is an attractive choice for waveguide fabrication because its
corresponding monovalent ion easily displaces, under proper conditions, a Na" present in the glass. The
Ag’ for Na" exchange results in arelatively large increase in the local index of refraction, thus providing
the waveguide with a high NA suitable for coupling of diode pump radiation. However, a possible
disadvantage of using Ag is that during fabrication the ionic Ag may be reduced to colloid form through
aredox interaction with refining agents or antisolarants present in the glass matrix. The presence of Ag
colloids in the guiding region leads to increased losses from scatter and absorption. The 10G-1 glass
from Schott is designed to eliminate Ag colloids, which should therefore lead to low loss waveguides.
We have measured losses as low as 0.2 dB/cm at the laser wavelength. The losses reported for Nd:10G-
1 are very good for a diffused channel waveguide laser since sample lengths required for efficient
operation are very small (~ 1 cm). Improvement in the processing should further decrease the losses.
The results are promising for waveguide lasers in other rare-earth doped 10G-1 glasses, thus allowing
the possibility in the near future for novel compact solid-state laser sources.
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