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Abstract 

This report addresses the problem of determining the layer thickness of a wall probed with 

a monostatic, hand-held implementation of Lawrence Livermore National Laboratory’s Mi- 

cropower Impulse Radar (MIR) [l, 21. Our goal is to locate the layers of the wall, and 

measure its overall thickness. The physical constraints require the device to be held fixed or 

swept rapidly over the wall. Thus an insuficient amount of backscattered data are collected 

to use diffraction tomographic [3] techniques to form images. The problem is therefore one of 

determining the wall layers from a set of time series reflection data. We develop two channel 

signal processing algorithms to determine the location of the layers of a wall, using as inputs 

the time series returned from the wall and the incident pulse. 

We study the problem using a finite difference time domain (FDTD) computer code to 

simulate the electromagnetic propagation within and scattering from a wall probed with five 

pulses. We use the results to develop and test signal processing procedures for locating the 

individual layers. We study two classes of algorithms: a deconvolution approach to determine 

a layered impulse response, and a correlation approach. After testing the algorithms on the 

FDTD results, we down-select to a suitable method. 
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1 Introduction 

The Office of Special Technologies (OST) Wall Surveyor Radar is a hand-held monostatic 

implementation of Lawrence Livermore National Laboratory’s (LLNL) range finder Microp- 

ower Impulse Radar (MIR) [ 1, 21. It is intended to be held fixed or rapidly swept against 

the surface of a wall in order to transmit and collect backscattered data. Using this reflected 

data, the problem under investigation is to determine the location of individual layers and 

overall thickness of the wall. 

The constraint that the device must be held fixed or swept rapidly over the surface 

of the wall results in an insufficient amount of backscattered data being collected to use 

diffraction tomographic [3] techniques to form images. Additionally, the lack of relative 

antenna positioning when swept over the wall makes imaging very difficult. Thus, we reduce 

the complexity of the problem from that of electromagnetic reconstruction and imaging, to 

one of one-dimensional signal processing due to the physical constraints of the hand held 

MIR measurement system. The issue becomes one of determining the layers from a collection 

of time series of reflection data. 

The MIR range finder is a fundamentally different type of radar that was invented and 

patented by Lawrence Livermore National Laboratory[4]. It is a pulsed radar like other ultra- 

wideband radars, but it emits much shorter pulses than most and, because it is constructed 

out of a small number of common electronic components, it is compact and inexpensive. 

One unique feature of the MIR is the pulse generation circuitry, which, while small and 

inexpensive, had never before been considered in radar applications. Each pulse is less 

than a billionth of a second and each MIR emits about two million of these pulses per 

second, Actual pulse repetition rates are coded with random noise to reduce the possibility 

of interference from other radars, while each is “self-tuned.” Three direct advantages of the 

short pulse-width are: 

1. With pulses so short, the MIR operates across a wider band of frequencies than a con- 

ventional radar, giving high resolution and accuracy, but also making it less susceptible 

to interference from other radars; 
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Figure 1: Two typical M IR range finder pulses: a  standard range finder (RF) and a high 
speed radar (HSR) range finder. (a) Pulse time  series. (b) Fourier spectra. 

2. Since current is only drawn during this short pulse time  and the pulses are infrequent, 

there are extremely low power requirements. For example, one type of M IR unit can 

operate for years on a  single AA battery; 

3. The m icrowave power emitted by the pulses is at m icrowatt levels and therefore med- 

ically safe. 

Probably the main unique feature of this radar is the cost. The current version uses 

off-the-shelf electronic components so that a  standard M IR board can be assembled with 

less than $20 of parts. 

The M IR range finder has a  typical 3  GHz bandwidth with a  center f requency of 3  GHz [2] 

pulse. As stated above, it operates with a  pulse repetition frequency (PRF) of 2  MHz. Each 

pulse is range-gated back to fill in a  single time  bin. By sweeping the range gate over time, 

a  complete time  series is acquired. Figure 1  shows two typical M IR range finder pulses: a  

standard range finder (RF) and a high speed radar (HSR) range finder, along with their 

respective Fourier spectra. 
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Figure 2: Forward and inverse electromagnetic problems. “DE” is the differential wave 
equation of Eqn. 1. (a) In the forward problem, all functions are known except the field, 
u(r,t), which is to be determined. (b) In the inverse problem, the permittivity, e(r) = 
l/(pov(r)), is to be determined. The IC, BC, and field may not be completely known. 

The transmission and scattering of electric fields are governed by the wave equation [5,6], 

with appropriate initial conditions (IC) and boundary conditions (BC), where V2 E a: + 

ai + L$!, v(r) = l/dpoe(r) is the speed of light (u(r) = c in free space), u(r,t) is the total 

electric field both in the wall and in free space, and p(r,t) is the transmitted pulse. We refer 

to this as a forward problem when all functions in Eqn. 1 are known except the field, u(r, t), 

which is to be determined. 

The electrical properties of the medium are contained in the permittivity distribution, 

t(r) from which we may usually infer part or all of the physical and geometric properties of 

the medium. When E(r) is unknown, techniques exist to invert Eqn. 1 in order to determine 

it [7]. This is known as an inverse problem and is complicated by the fact the field u(r,t), 

IC, and BC are not completely known either. Figure 2 shows a graphical description of 

forward and inverse elecfromagnetic problems. The problem of using the MIR range finder 

to determine the layers of a wall is an inverse problem. 

In the case of the MIR, assumptions must be made before attempting to solve either the 

forward or the inverse problem presented in Figure 2. The first is that we assume the IC 

are zero. This is valid since all fields have dissipated between pulses. We briefly discuss two 

methods for solving the forward problem, since the results serve as the basis for solving the 

inverse problem. The two solution methods are: frequency domain, and time domain. 
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1.1 Frequency Domain Solution 

If we Fourier transform Eqn. 1 in time, we obtain the Helmholtz equation [5, 61: 

[V2 + k2(r, 41 u(r, 4 = p(r, 4, (2) 

where Ic(r,w) - w/u(r) is the wavenumber, and w is the temporal frequency of the field. 

The solution to Eqn. 2 is governed by the Green’s function [5, 6] which is the solution to: 

[V” + k2(r, w)] G(r, r’, w) = -S(r - r’). (3) 

The Green’s function, G(r, r’, w), depends upon the BC and problem geometry. In theory, 

if we had the Green’s function, the inverse problem would be solved. Given the Green’s 

function, the solution to Eqn. 2 is 

u(r,cJ) = - v 
s 

dr’ G(r’, r, w) p(r’, w) + 

/ s dr’ [G(r’, r, w) %u(r’, o) - u(r’, w) &G(r’, r, w)] , (4) 

where V is the volume of integration, S is the surface enclosing the volume, and a, is the 

partial derivative with respect to the surface outward normal. We have now converted the 

differential equation of Eqn. 2 into an integral equation. Eqn. 4 is alternatively referred to 

as the integral form of the Helmholtz equation or a volume integral [7]. 

Techniques exist to invert Eqn. 4 when large amounts of measured data are available [3,8, 

9, lo] and when the relative antenna positions are known. These techniques “backpropagate” 

the backscattered fields measured at the antennas to the scatterers, in order to form images 

of the scattering object being probed. In the case of the Wall Surveyor, we assume we only 

have a limited number of backscattered data measurements in the form of several time series 

and the antenna positions are not known. Fundamentally, the problem is not one of imaging, 

but rather determining the layers of a wall in real time. For these reasons, we eliminate the 

backpropagation techniques in determining the layer locations. 
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1.2 Time Domain Solution 

Assuming the IC are zero, the time domain solution to the forward problem of Eqn. 1 is 

given by [5]: 

dr’ G(r, tlr’, t’) p(r’, t’) + 

dr’ [G(r, tjr’, t’) &u(r’, t’) - u(r’, t’) &G(r, tlr’, t’)] , (5) 

where V is the volume of integration, S is the surface of V, 8, is the partial derivative with 

respect to the outward normal to S, and G(r, tl, r’, t’) is the Green’s function of the problem 

which is the solution to 

V2 - --bf 
v2 (4 1 G(r, tl , r’, t’) = S(r - r’)S(t - t’). 

As in the last section, the Green’s function depends upon the geometry of the problem and 

the BC. In the time domain framework, it also depends upon the IC. 

Determining the precise BC in Eqn. 5 and Green’s function of Eqn. 6 is virtually impos- 

sible without some imposing two additional assumptions. The second assumption is that we 

may ignore the BC. This implies we are operating in free space which, although not true for 

the Wall Surveyor, is acceptable in low scattering conditions. The third assumption is that 

we assume the Green’s function can be expressed as 

G(r, tl, r’, t’) = G(r - r’, t - t’) (7) 

which implies a shift invariant input/output relationship. With these assumptions, Eqn. 5 

reduces to a convolution integral in space and time: 

u(r, t) = / dt’/ dr’ G(r - r’, t - t’) p(r’, t’). (8) 

As in the case of the frequency domain solution of Section 1.1, we have an insufficient quantity 

of data to invert Eqn. 8. We simplify this by making the transmitted pulse independent of 

space, ignoring the spatial convolution, and defining a propagation operator of time and 

antenna position only. We impose 

P(U) --+ p(t), (9) 
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and define 

Thus Eqn. 8 reduces to 

h(r, t) E /dr’ G(r - r’, t). 

u(r, t> = J dt’ h(r, t - t’> p(t). (11) 

In this form, the geometry of the wall is contained within the impulse response, h(r, t). In 

performing this simplification we have also ignored any antenna pattern as well as the volume 

distribution of the field within the wall and the wall complexity itself. 

The problem is now that of one-dimensional deconvolution. By Fourier transforming in 

time Eqn. 11, the convolution in the time domain becomes a multiplication in the frequency 

domain [ll]: 

W, w) = W,w) P(W), (12) 

so that, in theory, the impulse response is given by 

h(r, t) = F;” U(r, 4 
i I 34 ’ 

(13) 

where Fil {e} is the inverse Fourier transform with respect to w. 

2 Physical Model 

In order to test the model of Eqn. 11 before collecting real data from a real wall, we developed 

a numerical, two-dimensional, three layer wall model which we probed using the full wave 

equation of Eqn. 1. The advantage of computer simulations is that they represent ideally 

controlled environments: noise can be non-existent or included in a known manner using 

thoroughly understood statistics, and there are no issues due to hardware limitations or 

malfunctions, or other physical limitations. The wall model is presented in Figure 3. It 

shows a three layer “cinder block” wall with dimensions consistent with those of an actual 

two- to three- block long wall. The domain consists of three regions, labeled 0, 1, and 2. For 
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Table 1: Permittivities of the simulation domain. 

Property 
Physical dimensions 
Grid origin 
Wall origin 
Distance from xmtr/rcvr line to wall 
Region 1 thickness 
Region 2 thickness 

Value 
96.0 cm x 39.2 cm 
(-48.0,-19.6) cm 
(-25.0,-9.6) cm 
8.0 cm 
3.6 cm 
12.0 cm 

Table 2: FDTD wall simulation physical dimensions. 

the simulations presented here, regions 0 and 2 are air. The simulation domain permittivities 

are listed in Table 1. The domain physical dimensions are listed in Table 2. Figure 3 also 

shows a vertical slice through the center of the wall. All the simulations were multimonostatic 

at a fixed vertical location of -17.6 cm which is a distance of 8 cm above the wall. That 

is, at each spatial location, the transmitter/receiver launched the pulse and collected the 

backscattered data. We anticipate reflections from each of the layers as indicated in the 

cross-sectional plot in Figure 3. Knowing the permittivities, we may calculate the round- 

trip travel time and predict the expected single reflection or primary reflection arrival times 

from each of the individual layers. The travel one-way time within each layer is given by: 

dn yw r=-- 
C c ’ (14) 

where d is the layer thickness, n is the index of refraction, c is the speed of light in a vacuum, 

and E, = ci + i$ are the permittivities from Table 1. The “primary reflection” arrival times 

are computed by summing the travel times through each layer. They and are presented in 

Table 3 and are noted in Figure 13, and serve as a benchmark for locating the layers in the 

returns. 
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Figure 3: The electromagnetic wall propagation simulation domain. The transmit- 
ter/receiver line is indicated at the top of the image. The simulation is multimonostatic: in 
succession, the simulator launches a pulse and collects the backscattered field at each of the 
xmtr/rcvr positions. We expect to see reflections at each of the layer interfaces as indicated. 
The simulation parameters are listed in Table 4. 

Layer Thickness One-Way Arrival at 
b-4 Travel Time (ns) RCVR, r,, (ns) 

Antenna to wall 8.0 0.267 0.534 
1 (Region 1) 3.6 0.360 1.254 
2 (Region 2) 12.0 0.400 2.055 
3 (Region 1) 3.6 0.360 2.775 

Table 3: Primary reflection receiver arrival times from each of the layers. 
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Incident Pulse I 

Parameter 18 cm DOG 4 cm DOG 5 GHz Chirp 
L 18 cm 4 cm 2.4 m 

480 x 196 
2000 
4.69 ns 
0.2 cm 
2.34 ps 
91 
10 

1 960 x 392 
7200 
3.75 ns 
0.1 cm 
0.52 ps 
91 
20 

960 x 392 
15000 
20 ns 
0.1 cm 
1.33 ps 
11 
10 

RF HSR 
1.5 m 2.3m 
480 x 196 480 x 196 
6000 2500 
6.39 ns 12.63 ns 
0.2 cm 0.2 cm 
2.10 ps 2.56 ps 
91 91 
10 10 

Table 4: FDTD wall simulation parameters. L, is the free space length of pulse. N, is the 
number of samples in x. N, is the number of samples in z. Nt is the total number of time 
steps. Ns is the number of transmitter/receivers. N,, is the xmtr/rcvr vertical location in 
pixels. The incident pulses are described in Section 2.1. DOG is derivative of a Gaussian, 
RF is the MIR range finder, and HSR is the MIR high speed radar. 

2.1 Wall Electromagnetic Propagation Simulation 

In order to understand the problem and its limitations, we investigated the underlying physics 

by performing several computer finite difference time domain (FDTD) [12, 131 simulations 

which numerically solve Eqn. 1 given a complete description of the wall and the incident 

pulse. 

Explaining the details of how an electromagnetic FDTD code functions is beyond the 

scope of this report, however we can motivate an understanding by considering a one- 

dimensional example. We start with the one-dimensional wave equation: 

[a-? - &j%] u(x,t> = PW>. 
The goal is to discretize Eqn. 15 so that it can be implemented on a computer. The first 

step is to lay out a space-time grid as in Figure 4 with selected space and time intervals, Ax 

and At, respectively. 

The second step is to consider a Taylor series expansion of U(X, t) about the point (x, + 

Ax, t,): 

u(xm + Axe, tn> = +m, tn) + Ax &u(xm, tn) + ;(Ax)~ a;u(x,, tn) + 

;(Ax)~ &(x,, tn) + ;(Ax)~ +(xm., tn) + a.. . (16) 

10 
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Figure 4: A  finite difference time domain grid. 

Similarly, consider the Taylor series expansion about the point (x, - Ax, t,): 

u(xl7l - Az, tn) = u(xm, tn) - Ax &u(xm, tn) + ;(Ax)~ 8$(x,, tn) - 

;(Ax)~ D;u(x,, tn) + &(az)” Z&(x,, tn) +a +. . (17) 

Adding Eqns 16 and 17, we obtain 

u(x, + Ax, tn) + u(x, - Ax,t,) = 2u(x,, tn) + (Ax)” +(xm, tn) + 

&Ax)’ @ (x,, tn) + . . . . (18) 

Rearranging the terms in Eqn. 18 to isolate the second partial spatial derivative, we find 

&(G7L, tn) = u(x, + Ax, tn) - %4x,, tn) + u(x, - Ax, tn) 
(W2 

+ 0 [(Ax)‘] . (19) 

Eqn. 19 states we can approximate a,“u(x m , tn) by finite differences with an error of up to 

order ( Ax)~. 

We may develop a similar expression for the time derivative: 

&hn, tn) = u(x,, t, + At) - 224(x,, tn) + u(x,, t, - At) 
w2 

+ 0 [(At)‘] . (20) 
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By substituting Eqns 19 and 20 into the wave equation of Eqn. 15, we obtain 

u(x, + Ax, tn> - 2u(x,, t,J + u(x, - Ax, tn) 
VW2 

+ 

1 u(x,, t, + At) - 2u(x,, tn) + u(x,, t, - At) 
v2(x?n) w2 

= PbrL, tn>* (21) 

Solving for the most current (in time) value of u at the spatial point x,, we find 

u(x,, t, + At) = 2 [u(x; + Ax, t,J - 2u(x,, tn) + U(X, - Ax, tn)] 

+2+,, tn) - +n, t, - At) + v2(x&(xm, tn). (22) 

This is an explicit, second-order accurate (in both time and space) expression for u(xm, t, + 

At), since all quantities on the right hand side the equation are known from either the 

previous time step, or the IC. Although not serious in the one-dimensional case, there are 

mathematical issues in correctly handling the BC which, in free space, must absorb the fields 

incident on the boundary. We refer the reader to the topic of absorbing BC in [13] and [14]. 

Finally, there is an issue of numerical stability. For stable solutions, Ax and At cannot be 

arbitrarily chosen but must be related by[13]: 

g L v(x), (23) 

that is, the sample intervals must be chosen so that the numerical propagation of the field 

(Ax/At) is less than the electromagnetic propagation within the medium. This relationship 

can be derived from the Nyquist sampling theorem [15]: if X(x) and f are, respectively, the 

shortest spatial wavelength and highest, temporal frequency, we need, in order to sample the 

field without aliasing, 

Ax < T, and - 

At 5 $. 

(24 

(25) 

Combining Eqns 24 and 25, results in 

g 5 X(x)&f = v(x). (26) 
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We ran five wall simulations using an undocumented, in-house two-dimensional FDTD 

codel. It models a linear multimonostatic array of transmitter/receiver pairs with fixed ver- 

tical offset from the wall. In turn and at each horizontal position, the transmitter/receiver 

launches the user specified pulse, p(t), and records the backscattered field. The wall proper- 

ties and transmitter/receiver location were identical in each simulation. The incident pulses, 

p(t), however, were different. The five selected pulses were: 

l An MIR range finder (RF) pulse digitized from a calibration data set as shown in 

Figure 1; 

l An MIR high-speed radar (HSR) pulse digitized from a calibration data set as shown 

in Figure 1, 

* A spatially long, with respect to the dimensions of the wall, derivative of a Gaussian 

(DOG) pulse of 18 cm; 

l A 5 GHz bandwidth chirp; and, 

l A spatially short DOG pulse of 4 cm. 

The DOG wave form is described by 

(27) 

where 0 = 0.075 ns for the 18 cm pulse, and c = 0.0166782 ns for the 4 cm pulse. The 5 

GHz chirp is governed by 

p(t) = sin (27r(fo + at/2)t), (28) 

where 

f0 = 2.5GHz, and 

a = 1.25GHz2. 

lThe code, simply called ‘fdtd’, is a two-dimensional code written by Dr. J. E. Mast. 

13 



Figure 5 shows plots of each of the five incident pulses as a function of time, space, along 

with their respective spectra. The 18 cm DOG was chosen because it approximately covers 

the same spectral region as the two MIR pulses. It is a reasonable model of the actual 

MIR pulses although the latter have a more significant amount of ringing. A detailed plot, 

comparing only the MIR pulses with the 18 cm DOG is shown in Figure 6. The short, 4 cm, 

DOG was chosen since it is spatially short enough so that its “primary reflection” returns 

from the individual layers are easily discerned without any signal processing. This serves 

as a sanity check for any signal processing algorithm. The chirp was chosen because its 

autocorrelation approximates an impulse and is thus ideal for a cross-correlation approach 

in identifying the layers in a pulse-echo environment. 

Using the results from the simulated environment, we developed a signal processing 

algorithm to determine the locations of the layers of a three layer cinder block wall using the 

one-dimensional temporal convolution model of Eqn. 11. The point being if we were unable 

to determine the layers in the ideal case, it would be pointless to examine real data collected 

from a physical cinder block wall. 

2.2 FDTD Simulation Results 

The results of the FDTD simulations are presented in Figures 7 to 11. Each of these figures 

consist of a time series graph at the top and two images at the bottom. The images represent 

the solution to the wave equation of Eqn. 1, ~(5, x, t) at a fixed x-offset from the wall, ~0. 

In terms of the solution of Eqn. 5: 

+G 20, t) = ~tdt’/ddldz’ G(z,xo,tJz’,x’,tr) p(d,d,t’) + 

t 

I I 0 
dt’ sdR(z’, x’) [G( z, x0, t lx’, z’, t’) a&(x’, x’, t’) - 

u(z’, x’, t’) t&G(z, x0, tJd, x’, t’)] , (2% 

where we set r = (z, ZO) and dfl(z’, z’) is a differential element of the volume surface area. 

The images on the left show the raw simulation output, u(z,zs, t). The large returns 

across the top of the images are due to transmitter/receiver antenna coupling. We refer 
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Comparison of Simulation Pulses 
Time 

Time (ns) 

Free Space 
1.2 
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- 18cmDOG 
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Figure 5: The five FDTD simulation pulses shown as a function of time, their free-space 
pulse length, and their spectra. 
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Comparison of MIR and 18 cm DOG Pulses 
Time Domain 

1.2 , I I I I I I , I I I 
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Figure 6: Comparison between the two digitized MIR pulses extracted from calibration data 
sets and the 18 cm DOG pulse. Spectrally, the DOG approximately covers the same region 
as the MIR pulses, however, temporally, the DOG only models the first cycle of the MIR 
pulses with no ringing. 

16 



to this as the “bang.” We remove it by averaging over space, five to ten time (vertical) 

returns on the left hand side of the image (where the scattering from the wall is negligible) 

and subtracting this from the whole image. This technique is known jointly as either “sub- 

averaging” or “de-banging,” and the resulting image is call the “de-banged” image. The 

right images show the de-banged results. 

Note: In the actual Wall Surveyor which operates with a monostatic antenna, the “bang” 

in the data is due to the reflection from the surface of the wall. This can be easily removed 

since the antenna has fixed spacer of known offset in front of it. Thus the “bang” can be 

removed knowing the time of flight and incident pulse length. 

We extracted the center return from each of the “de-banged” results and used these five 

time sequences as our test cases. In terms of our model in Eqn. 11, the extracted center 

return is 

r(t) = u(xo, x0, t) = /dt’ h(zo, x0, t - t’) p(t’), (30) 

where we set r = (~0, zo), the xmtr/rcvr location above the center of the wall. 

It is clear from the results of Figures 7, 8, and 9 (the RF, HSR, and 18 cm DOG pulses, 

respectively) we are unable to discern the primary reflection returns from the layers in the 

center return, r(t) (top graph). This is due to the free-space length of the pulse which is 

longer than the wall, the ringing, and the reverberation due to multiple reflections. These 

factors contribute to the occluding of the primary reflection returns. Figure 10 shows the 

chirp results. Because of its long, ringing nature, the returns from the individual layers are 

completely lost in the FDTD center return, r(t). The layers are easily identified in the 4 cm 

DOG pulse plots of Figure 11. Although not a problem with the short (4 cm DOG) pulse 

the reverberations are seen as the damped oscillations in the time series. 

All five cases reveal an issue with attenuation: there is insufficient power to measure the 

reflections from the deeper layers. Only in the 4 cm DOG case can the third layer be located 

without any signal processing. Next we discuss the signal processing techniques required to 

estimate the wall layer locations and overall wall thickness. 
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Transmitted RF Pulse and Normalized Center Return 
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Figure 7: Range finder FDTD simulation results. The top plot shows the transmitted pulse 
and the return extracted from the center of the de-banged result. The left image is the raw 
code output. The right images is the de-banged result, that is, with the large antenna-to- 
antenna coupling pulse removed. The de-banged image shows the location of each layer as 
computed with Eqn. 14. The simulation parameters are listed in Table 4. 
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Transmitted HRS Pulse and Normalized Center Return 
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Figure 8: High speed radar FDTD simulation results. The top plot shows the transmitted 
pulse and the return extracted from the center of the de-banged result. The left image is 
the raw simulation output. The right images is the de-banged result, that is, with the large 
antenna-to-antenna coupling pulse removed. The de-banged image shows the location of 
each layer as computed with Eqn. 14. The simulation parameters are listed in Table 4. 
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Transmitted 18 cm DOG and Normalized Center Return 
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Figure 9: 18 cm DOG FDTD simulation results. The top plot shows the transmitted pulse 
and the return extracted from the center of the de-banged result. The left image is the raw 
simulation output. The right images is the de-banged result, that is, with the large antenna- 
to-antenna coupling pulse removed. The de-banged image shows the location of each layer 
as computed with Eqn. 14. The simulation parameters are listed in Table 4. 
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Transmitted 5 GHz Chirp and Normalized Center Return 
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Figure 10: 5 GHz chirp FDTD simulation results. The top plot shows the transmitted pulse 
and the return extracted from the center of the de-banged result. The left image is the raw 
simulation output. The right images is the de-banged result, that is, with the large antenna- 
to-antenna coupling pulse removed. The de-banged image shows the location of each layer 
as computed with Eqn. 14. The simulation parameters are listed in Table 4. 
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Transmitted 4 cm DOG and Normalized Center Return 
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Figure 11: 4 cm DOG FDTD simulation results. The top plot shows the transmitted pulse 
and the return extracted from the center of the de-banged result. The left image is the raw 
simulation output. The right images is the de-banged result, that is, with the large antenna- 
to-antenna coupling pulse removed. The de-banged image shows the location of each layer 
as computed with Eqn. 14. The simulation parameters are listed in Table 4. 
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3 Signal Processing 

The problem of reflection from multiple layers is presented in Figure 12 for the case of four 

layers. The incident field is A(w)e ik~Oz At each layer there will be reflected and transmitted . 

fields as indicated by the amplitude scattering coefficients, &, n = 0, . . . . and T,, n = 1, . . . . 

respectively. These coefficients are determined by the boundary conditions at the interfaces. 

For an N layer system , the total field is given by 

u(z) = 

where k,, 3 wpoen is the x component of the wavenumber within the n-th layer. The 

boundary conditions imposed at the interfaces are [7] continuity of the field and its first 

derivative. That is, at each layer, we impose 
lim u(x) = zly+~(z), lim u(x) = zly+~(z), and and 

.Z+L, .Z+L, n n 

This results in N equations for the N unknown coefficients. The general solution for an This results in N equations for the N unknown coefficients. The general solution for an 

N-layered medium is 

R. = (kzo - WA(w) + 2b1& 

kzo + k%l 

R, = %,+u 
ei(kzn-k ~(n+l))~nfl&+~ + (k,, - kZ(n+l))&2k~~L~+1Tn 

km + kz(n+l) 

T 
1 

= 2kzoA(cJ) + (kz, - ho)& 

kzo + k,l 
e-i2kzn Ln 

T, = (( 
k,, - k,(,-I))& + 2k,(,_l)ed(k”(‘-l)+kl”)L,Tn-1> 

km + kz(n+q 

TN = 
2k,(N_l)ei(k,(N-1)-k,N)LNTN-l 

kzp-1) + bv 
, 

where n is the n-th layer. This recursive solution has built into it the multiple reflections 

and transmissions at each layer. Specifically, for the four layer wall, we have 

R 
0 

= (kzo - kzl)A(w) + 2kzlRl 
kzo + k.sl 
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R 
1 

= 2k,2ei(kd1-k~2)L2R2 + (kzl - kz2)ei2kzlL2Tl 
kzl + kz2 

R 
2 

= 2kZ3ei(kz2-kz3)L3R3 + (kz2 - kZ3)ei2kzzL3T2 
kz2 + kz3 

R3 = (kz3 - k,4)ei2kz3L4T3 
kz3 f kzli 

T 
1 

= 2’boA(w) + (kzl - k,o)Rl 
ho + kzl 

e-i2kzzLz k 

T2 = 0 22 - k,l) R2 + 2kZlei(kal+ka2)L2Tl > 
kz2 + kz3 

e-i2kz3L3 
T3 = 0 kz3 - kZ2)R3 + 2kZ2ea(kz2+kz3)L3T2 

> 
b + k3 

T 
4 

= 2kz3ei(kz3-kz4P4T3 

JEz3 + kz4 ’ 

For the purpose of identifying the layers in a wall, we are not interested in all the mul- 

tiple transmissions and reflections but rather only the primary reflections as indicated in 

Figure 13. The figure shows the primary reflections for a four layer medium using the phys- 

ical parameters of the cinder block wall of Section 2. Only primary reflections are modeled 

here: at each interface there will be reflected and refracted wave components which we have 

ignored. At time t = 0, the pulse is launched. After propagation delays, the primary reflec- 

tions or ethos are received from each layer. h(r, t) in Eqn. 11 models these delays. Thus, 

we view the problem as that of a one-dimensional “pulse-echo” problem in which we launch 

the pulse, p(t), into a medium, h(r, t), and wait for the ethos, u(r,t). The time delay be- 

tween transmission of the original pulse and the reception of the ethos determines the layer 

thickness. We shall show that despite the problems and limitations of the model of Eqn. 11, 

these issues do not prevent us from determining the layer locations. 

Given the one-dimensional convolution model of Eqn. 30 and the expectation of seeing 

the primary reflections from each of the layers as shown in Figure 3, the problem becomes 

one of signal processing to perform time delay estimation [16] on the results of the FDTD 

simulation. With this in mind, we develop an algorithm to locate the layers. We anticipate 

being able to match the calculated time delays of Table 3 with features in the returns. 

As an additional test, we created an ideal, homogeneous environment with point reflectors 
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x 

Figure 12: Planar, multi-layer reflection and transmission for the case of four layers. The 
incident field is A(w)e ikzOz At each interface there will be reflected and transmitted fields. . 

1 , I I I I 

I=0 0.524 ns 1.254 ns 2.055 ns 2.775 ns xmtrhcvr line 

Layer Ll 

Layer L2 

Laver L3 

Layer L4 

I 
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time (ns) time (ns) 

Figure 13: Primary or single reflections from four layers for the simulated cinder block wall 
of Section 2. The slope of the arrows is the electromagnetic propagation velocity within the 
layer. The numbers on the transmitter/receiver line are the single reflection arrival times 
from each layer. 
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Figure 14: Down and up going transmitted and reflected field coefficients for the n-th layer. 

using the delays from Table 3: 

hi@) - fy an qt - Tn), (33) 
n=l 

where the Q~ are related to the transmission and reflection coefficients for the primary 

reftecEions from each layer. To determine the Q,, consider the fields traveling downward and 

upward at layer L,: 

+ R+le-ikz(n-l)z Lnvl < x < L, 
JL < 2 5 L+1 

ut(4 = 

T’ e- z(n-I)% ik n-l Ln-1 < Z < Ln 
TAemikznZ + Rheikznz L, < x 5 L,+l 

(34) 

(35) 

as shown in Figure 14. UJ(X) and ut(x) represent the total downward and upward traveling 

fields, respectively, resulting from single reflections at the n-th layer. Using the boundary 

conditions of Eqn. 32, the relationships between the transmission and reflection coefficients 

for this layer are found to be 
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R:, = -Tkr,e -i2L,k,, 

T’ n-1 = T’(1 - rn)eiLn(k,(+l)-km) 

(38) 

(39) 

where 

r, 3 kz(n-1) - km 
kz(n-1) + km ’ (40) 

Using these relationships, we can calculate the primary reflection coefficients of Figure 13. 

For the downward traveling fields, they are: 

Tl = A(w)(l + rl)eiLl(kzO-k~l) 

T2 = T,(l + r2)eiL2(kzl-kr2) 

T3 = T2(l + r3)eiL3(kx2-k*3) 

T4 = T3(1 + rp)eiL4(kx3-k*4) 

(41) 

(42) 

(43) 

(44 

Ro = A(u)rleiLlkro 

RI = Tlr2e iL&l 

R:! = Tgse iLsk,z 

R3 = T3rAe if&,3 . 

(45) 

(46) 

(47) 

(48) 

For the upward traveling fields, we find: 

Tlo = R1(l _ rl)eiLl(k~o-k~l) 

7’21 
= R2(l _ r2)ei-Wk~l-k~2) 

q2 = R3(1 - r& iL3(kz2-kz3) 

T20 = T21(1 _ rl)eiLl(b-kzl) 

5731 = T32(1 _ r2)eiL2(kzl-kz2) 

(49) 
(50) 
(51) 

(52) 
(53) 

T30 = T31(1 _ rl)eiLl(kzO-k*l). (54) 
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We may combine Eqns. 41 through 54 to obtain the the primary reflection coefficients at the 

receiver line of Figure 13: 

R. = A(+-&lk”o (55) 

Tlo = A@)(1 _ TH)TZei(2Ll(kxo-k,1)+L2k,l) (56) 

7’20 = A(w){1 - $)(I - r;)r3e i(2L1(lc,o-k,1)+2Lz(k,l-k,z)SL31C,z) (57) 

T30 = A(u)(l - T:)(I - T~)(I - r$)r4e i(2L1(Ic*0-k,1)+2L2(Ic,l-k,2)42L3(k,2-rE,3)+LqIct3) 
* (58) 

The sum of these coefficients yield the transfer function of the four layer system: 

J&(w) = &I + Zo + 5720 + T30 
4 

= 
c aneiwr” . (59) 
n=l 

Transforming back to the time domain we obtain Eqn. 33 where the Q, are the amplitudes 

of the primary reflection coefficients for each layer, that is: 

a1 E A(w)rl (60) 

a2 3 A@)(1 - 7$7-z (61) 

a3 zz A@)(1 - rT)(l - 4r3 (62) 

Q4 E A@)(1 - $)(I - r;)(l - $7-4, (63) 

and the rn are obtained from the argument of the exponentials. 

By comparing the FDTD simulation results with the ideal pulse-echo model of Eqn. 33, 

we found it was simpler to set on = on-l where Q! - .5, rather than computing the coefficients 

explicitly. Thus Eqn. 33 reduces to 

hi(t) E 2 an-l qt - rn). (64) 
n=l 

This impulse response is presented in Figure 15 and represents an ideal pulse-echo en- 

vironment, since the returned waveform is simply attenuated and time-shifted copies of the 

transmitted pulse. This can be seen by convolving Eqn. 64 with the transmitted pulse, p(t): 
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Ideal Pulse-Echo Environmeni, hi(t) 
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Figure 15: Ideal pulse-echo environment where the impulse response is h,(t) = 
-g&=1 an-‘cqt - TV). This models the the primary reflection propagation model  of Figure 13. 
a  = -0.5. 

return using delayed and attenuated copies of the transmitted pulses: 

?-i(t) = s dt’ hi(t - t’) p(t’) (65) 
4 

= 
c Q  n-1 Jl(t - Tn). (66) 
n=l 

W e  call ri(t) of Eqn. 66 the “ideal pulse-echo return,” and in our development and selection 

of layer detection algorithms, we used both r(t) and ri(t). Note: r-i(t) lacks part of the wave 

propagation physics inherent to r(t) since it models only the primary reflection returns of 

Figure 13. 

There are a  number of time  delay estimation techniques [16]. After a preliminary inves- 

tigation, we found the two most successful methods to be those of cross-correlation [16] and 

deconvolut ion to estimate the impulse response [17]. These methods require two inputs: the 

transmitted pulse, p(t), and the returned signal, r(t). As an additional test, we studied a  

layer detection method which uses only the energy of the returned signal, Jr(t)12. W e  use 

these methods to generate test signals which are used in the layer detection procedure. 
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3.1 Cross-Correlation 

Given two signals, p(t) and r(t), their cross-correlation is defined as 

EtPp(t) = (Jdt’ r(f)& - t)) , 
where (m) indicates expectation. For deterministic signals, with no noise, Eqn. 67 is simply 

Gp(t) E Jdt’ r(qp(t’ - t). (68) 

We expect to observe peaks in h&,(t) at the shifts were r(t) and p(t) are positively correlated, 

that is where r(t) contains copies of p(t). To show this, consider r(t) to be a single, translated 

copy of p(t): 

r(t) = p(t - 7). 

The cross-correlation is then 

R&) = J dt’ r(t’jp(t’ - t> = J dt’ p(t’ - +(t’ - t). 

Evaluate Eqn. 69 at a shift of r: 

~a = J dt’ p(t’ - T)p(t’ - T), 

(69) 

and change the integration variable by setting t’ + t’ - r, 

RrP(d = J dt’ p(t’)p(t’). 

Eqn 70 is the autocorrelation of p(t), R&t), evaluated at zero shift, where 

(70) 

cm(t) = J dt’ p(t’)p(t’ - t). (71) 

The maximum of the autocorrelation is at the origin [ll], thus the maximum of Eqn. 69 

occurs at shift r. Finally, when r(t) contains multiple instances of p(t), hp(t) will have 

peaks at each of the shifts. Thus at each layer, that is at each reflection, we expect to 

see a peak in the cross-correlation where r(t) and p(t) are perfectly correlated (up to an 

attenuation). 
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Filter Name [16] Filter Function, W(w) 
Cross-Correlation 1 

Roth 

SCOT J& 
PHAT Isrriw) I 
Maximum Likelihood l%d~~l” srp(w) 

ISrp(W)I 11 - IyTp(W)(2] where yrp(w) E Spp(W)Srr(W) 

Table 5: Filter functions used in the cross-correlation time delay estimation techniques. 

1 

1 

-I 

Techniques exist to enhance the peaks when using cross-correlations to estimate time 

delays [16]. They operate by filtering the the cross-correlation R.&t). We summarize the 

techniques here but defer to [16] for the details. The Fourier transforms of Ii&,(t) and l&(t) 

are defined, respectively, as 

Srp(w) = Jdt Gp(t) eiwt, and (72) 

Spp(w) = Jdt G(t) eiwt, (73) 

and the filtering of the cross-correlation is expressed as 

&a) = &J dw W(w)Srp(w) emiwt. (74) 

The filtering techniques vary in their choice of the filter function W(w). We studied five 

filter functions including the case when W(w) G 1. They are listed in Table 5 and we refer 

to them by the names used in [16]. &,(t) serves as our test signal. Next, we discuss the 

impulse response estimator. 
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3.2 Impulse Response Estimation 

Impulse response estimation solves the problem presented in Eqn. 13 which we repeat here: 

where 3;-l {e} is the inverse Fourier transform with respect to w. In solving Eqn. 75, sin- 

gularities arise at the zeros of P(w). One method to circumvent this is to regularize the 

fraction by adding a small value to the denominator: 

(76) 

where 0 < IP(w We found this technique to have very poor performance and we proceeded 

to use the more robust Weiner solution 1171. Consider the convolution integral of Eqn. 30: 

r(t) = J d-t’ h(zo, x0, t - t’) p(t’). 

To develop the Weiner solution, we first Fourier transform Eqn. 77, 

(77) 

Multiply Eqn. 78 by the complex conjugate of P(w) and take the expectation value of the 

result to obtain 

(&p*(w)) = (fq~o, x0> 4 Ie412) 
= H(zo, x0, 4 (IWI”) ) (79) 

where H(XO,XO, w) is moved out of the expectation operator since it is deterministic. We 

recognize (R(w)P*(w)) and (lP(w)12) as being the spectral representations of the cross- 

correlation and autocorrelation, respectively. Thus we express Eqn. 79 as 

%W = H(zo, ~0d.J) Spp(w). 

Solving for the transfer function, we find 

Ill-(ao, x0,4 = SrpCw) 
%d4 + 0’ (80) 
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where 0 is a regularization parameter. Inverse Fourier transforming yields the desired esti- 

mate of the impulse response 

which serves as our test signal. Through trial and error, we chose 0 = low6 as the regular- 

izat ion parameter. 

3.3 Energy Method 

The energy method requires only the returned signal, r(t). We compute the square of its 

magnitude, /r(t) 12, and search for peaks within this signal without attempting to enhance 

them. 

Given the cross-correlation, k,(t), estimate of the impulse response, @ao, x0, t), and 

the energy signal, lr(t)12, as test signals, we now concentrate on determining the temporal 

locations of the peaks. Within the model of Eqn. 11, we expect the peaks to coincide with 

individual layers. 

3.4 Detection Method 

Before discussing the detection method, we digress briefly to cover the discretization of 

continuous signals for processing on digital computers. Let s(t) be a signal which is a 

function of the continuous time variable t. We call s(n) the sampled version of s(t) and 

define it as 

44 = s(to + nAt), n = 0, . . . . N, (82) 

where to is the time origin and At is the sample interval. At cannot be chosen arbitrarily 

but must be selected to satisfy the Nyquist sampling theorem [15] which states the sample 

rate, l/At, must at least twice the highest frequency content of the signal to be sampled as 

in Eqn. 25. 

The detection method locates peaks in the sampled test signals hP(n), ~(xo,zo,~), or 

IT(t) It is assumed these peaks result from reflections at the layers. The detection proce- 

dure involves differencing the test signal and searching for sign changes. Since differencing 
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emphasizes noise, we smooth the signal first. Let s(n) be the test signal. The smoothed 

signal is 

3(n) = 5 s(m)w(n- m), (83) 
m 

where w(n) is a rectangular window defined by 

l/&tin 0 5 n < Awin 
otherwise. (84 

We then difference 3(n) and look for sign changes which occur at peaks above a specified 

threshold, T. The differenced signal is 

As(n) - s(n + 1) - s(n). (85) 

Thus a peak is detected at s(n) if As(n) > 0 and Aa(n + 1) < 0 and s(n) > T. The peak 

detection procedure is demonstrated in Figure 16. 

As test signals, we used the five filtered cross-correlations, Gp(t), from Section 3.1, the 

estimated impulse response, &(x0, ~0, n), from Section 3.2, and the energy signal, lr(t)12, from 

Section 3.3. We applied these methods to the FDTD returns, r(t), of Eqn. 30, and the ideal 

pulse-echo returns of Eqn. 66 for each one of the five test pulses. The results are presented 

in the next section. 

4 Results 

To facilitate comparison of detection results, we chose the averaging window size, Awin, to 

be 25 points for all methods. The threshold was set to 0.2 for the cross-correlation, impulse 

response and energy methods; and 0.15 for maximum likelihood, Roth, PHAT, and SCOT 

since their signal magnitudes were much less than the impulse response, cross-correlation, 

and energy methods. The disadvantage of using a common window/threshold parameter pair 

is that a parameter set which is favorable for one method may be unfavorable for another. 

In selecting the parameters, we tried to maximize the correct detections while minimizing 

the false detections. With these constraints in mind, we settled upon the values listed above. 
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Figure 16: Demonstration of peak detection procedure. The signal, s(n), is differenced to 
create As(n). Sign changes within As(n) which occur at values of s(n) above the threshold 
of 0.35 are considered to be detected peaks within s(n). 

The detection results are tabulated in Tables 6 through 10 as percentage error in layer 

detection. If rn is the calculated time from Table 3, and 7-A the estimated time from a peak 

detection in the test signal, the error in layer detection is 

e = 100 x 17-12 - $J 
778 

In many cases there were multiple false detections. For these cases, we chose the peak 

closest to the true value in computing the error. The maximum likelihood, Roth, PHAT, 

and SCOT methods were more prone to multiple false detections than the impulse response 

and cross-correlation methods. All methods performed better in the ideal cases with their 

simple kernels. The fourth layer was rarely detected. 

In selecting a method to locate layers, we used the criteria of low detection error with 

minimal false detections. W ith these conditions, we down-selected from seven to two meth- 

ods: impulse response and cross-correlation. The graphical results for these two cases are 

presented in Figures 18 through 21. As a reference we also include the results for the energy 

method in Figures 22 and 23. The figures show the smoothed test signal, a(n), the thresh- 

old, T, the detected peaks indicating the primary reflection from a layer, and the computed 
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4 cm DOG 

Cross-Correlation, Awh = 25 points = 0.117 ns, T = 0.2 
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Figure 17: Annotated key to reading the results presented in Figures 18 through 23. 

primary reflection arrival time. A  key to reading the result figures is shown in Figure 17. 

The results lead us to believe the current M IR pulses are not optimal for identifying 

the layers of a cinder block wall. There are two principal limitations: the long ringing and 

insufficient bandwidth. The former results in increased reverberation within the wall which 

masks the primary reflection returns from the layers. As is demonstrated in the 4 cm DOG 

results, a temporally shorter pulse with wider spectral bandwidth permits us to discern 

more easily the layers using the simple cross-correlation method. Future M IR hardware 

modifications will result in shorter pulses with wider bandwidths which will improve layer 

detect ability. 

5 Application to Real Data 

We collected data from four test cinder block walls. Each wall was four blocks high and two 

to three blocks wide. We labeled the walls 1 through 4. The voids in the cinder blocks of 

each wall were filled with a different material as follows: 

1. Empty, that is the voids were air; 
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2. Pea gravel; 

3. Cement; 

4. Cement with rebar down the middle. 

We collected data from four antenna positions, labeled ‘a’ through ‘d’, as shown in Figure 24. 

The antenna was offset from the front surface of the wall by 9.5 cm. At each position, 

100 measurements were taken and averaged to reduce noise. A background measurement 

was taken out of doors by pointing the antenna up into open space and collecting 100 

returns which were then averaged to reduce noise. This mean background measurement was 

subtracted from the mean wall returns before processing in order to reduce system noise. A 

measurement of the pulse was collected by capturing the return off of a metal plate. This 

served as the input, p(t), in the signal processing algorithms. 

The results are presented in Figures 25 through 26. For all cases, we used an averaging 

window size of 25 with a threshold of 0.2. Each plot is annotated with a vertical line 

indicating the expected primary return from the front surface of the wall. Since this line 

does not consistently align with the first peak, we conclude the radar data time origin and 

sample interval were not accurately calibrated. The .overall results are poor, however the 

plots show the cross-correlation method out-performed the other two methods. The ability to 

locate the wall layers is highly dependent upon the position of the radar as well as the content 

of the voids. The detection performance drops when the voids are filled with material which 

results in increased scattering and returned signal loss. Layer 2 is almost always detected, if 

not accurately. 

6 Conclusions 

The goal of the OST Wall Surveyor is to locate the layers of a wall probed via a monostatic 

MIR antenna. Our approach in solving the problem was to perform FDTD simulations, 

develop and down-select working algorithms based upon the simulation results. We studied 

two classes of signal processing algorithms: impulse response estimation and correlation. 
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Within the latter, we studied studied the five types of filtered cross-correlation listed in 

Table 5. As an additional test, studied the possibility of locating the layers by detecting 

peaks in the energy of the returned signal. We applied our algorithms to the FDTD results 

as well as to an ideal pulse-echo signal to determine performance. As success criteria, we 

used low detection error with minimal multiple false detection. Comparing the results using 

these criteria, we down-selected two detection procedures: impulse response and conventional 

cross-correlation. The methods have two free parameters which must be selected by the user: 

an averaging window size to reduce noise, and a detection threshold. 

We collected data sets from four cinder block test walls. Each wall was filled with a 

different material. For each wall, we collected data from four separate locations. We used 

the impulse response, cross-correlation, and energy methods for detecting the layers. 

The results lead us to believe the current MIR pulses are not optimal for solving such 

a problem, however the simulated results show that a shorter pulse with wider bandwidth 

could be used to detect the layers. Current MIR hardware development is toward that goal. 
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Range Finder 
Method Layer 1 Layer 2 Layer 3 Layer 4 
Impulse Response 5% 3% 4% 15% 
Cross-Correlation 4% 0% - - 
Max. Like.* 2% 1% 9% 4% 
Roth* 3% 1% 6% 10% 
PHAT* 5% 1% 4% 9% 
SCOT 4% 1% 5% 9% 
Energy 5% 13% - - 

Ideal Range Finder 
Method Layer 1 Layer 2 Layer 3 Layer 4 
Impulse Response 1% 0% 0% - 
Cross-Correlation 1% 1% - 4% 
Max. Like.* 1% 0% 4% 3% 
Roth* 1% 2% 2% 4% 
PHAT 1% 0% 0% - 
SCOT 1% 0% - - 
Energy 4% 7% - - 

Table 6: Percentage error in layer detection. “*” indicates there were multiple false detec- 
tions. “-” indicates the layer was not detected. 
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High Speed Radar 
Method Layer 1 Layer 2 Layer 3 Layer 4 
Impulse Response 6% - - - 
Cross-Correlation 2% 5% 21% - 
Max. Like. 2% 11% 6% 3% 
Roth - - - - I 
PHAT* 5% 9% 7% 12% 
SCOT* 5% 9% 2% 12% 
Energy 12% - - - 

Ii 
1 Method 

Impulse Response 
Cross-Correlation 
Max. Like.* 
Roth 
PHAT 
SCOT 
Energy 

.eal High Speed Radar 
1 Layer 1 Layer 2 Layer 3 Layer 4 

1% 0% 0% - 
1% 0% 1% 4% 
1% 0% 4% 3% 
1% 2% 13% 9% 
1% 0% 13% - 
1% 0% 0% - 
5% - - - 

Table 7: Percentage error in layer detection. “*” indicates there were multiple false detec- 
tions. “-” indicates the layer was not detected. 

40 



5 GHz Chin, 

Figure 18: Cross-correlation detection method for the five pulses. The true primary reflection 
arrival times  as listed in Table 3  are indicated by the dashed lines with the times  across the 
top. The horizontal line is the threshold. 
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Figure 19: Cross-correlation detection method for the five ideal cases. The true primary 
reflection arrival times  as listed in Table 3  are indicated by the dashed lines with the times  
across the top. The horizontal line is the threshold. 
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Figure 20: Impulse response detection method for the five pulses. The true primary reflection 
arrival times as listed in Table 3 are indicated by the dashed lines with the times across the 
top. The horizontal line is the threshold. 
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primary Figure 21: Impulse response detection method for the five ideal cases. The true 
reflection arrival times as listed in Table 3 are indicated by the dashed lines with the times 
across the top. The horizontal line is the threshold. 
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Figure 22: Energy detection method for the five pulses. The true primary reflection arrival 
times as listed in Table 3 are indicated by the dashed lines with the times across the top. 
The horizontal line is the threshold. 
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Figure 23: Energy detection method for the five ideal cases. The true primary reflection 
arrival times as listed in Table 3 are indicated by the dashed lines with the times across the 
top. The horizontal line is the threshold. 
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TOP VIEW 

3ONT VIEW Ff 

Figure 24: Four antenna positions where data were collected from each of the four test walls. 
Location ‘a’ was in front of a void in the cinder block. Location ‘b’ was at the abutting 
ends of two blocks. Location ‘c’ was in front of the divider between the block’s two voids. 
Location ‘d’ was in front of the interface of three blocks. The antenna was 9.5 cm off of the 
front surface. 
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Figure 25: Results from wall number 1 in which the cinder block voids were empty. Within 
each group of three plots, the top is the impulse response method, the middle the cross- 
correlation method, and the bottom the energy method. The four radar positions are shown 
in Figure 24. 
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Figure 26: Results from wall number 2 in which the cinder block voids were filled with pea 
gravel. Within each group of three plots, the top is the impulse response method, the middle 
the cross-correlation method, and the bottom the energy method. The four radar positions 
are shown in Figure 24. 
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Figure 27: Results from wall number 3 in which the cinder block voids were filled with 
cement. Within each group of three plots, the top is the impulse response method, the 
middle the cross-correlation method, and the bottom the energy method. The four radar 
positions are shown in Figure 24. 
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Figure 28: Results from wall number 4 in which the cinder block voids were filled with cement 
and a rebar down the center. Within each group of three plots, the top is the impulse response 
method, the middle the cross-correlation method, and the bottom the energy method. The 
four radar positions are shown in Figure 24. 
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18 cm DOG 
Method Layer 1 Layer 2 Layer 3 Layer 4 
Impulse Response 5% 4% 15% - 
Cross-Correlation 5% 4% - 2% 
Max. Like. 3% 2% - 5% 
Roth 1% - - - 
PHAT 1% - - 4% 
SCOT 1% 4% - - 
Energy 1% 1% - - 

Ideal 18 cm DOG 
Method Layer 1 Layer 2 Layer 3 Layer 4 
Impulse Response 0% 0% 0% - 
Cross-Correlation 0% 0% 0% - 
Max. Like. 0% 0% 0% 3% 
Roth 0% 10% 16% - 
PHAT 0% 0% - - 
SCOT 0% 0% - - 
Ener.w 1% 1% - - 

Table 8: Percentage error in layer detection. “-” indicates the layer was not detected. 
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5 GHz Chirp 
Met hod Layer 1 Layer 2 Layer 3 Layer 4 
Impulse Response 21% 9% 5% - 
Cross-Correlation 
Max. Like.* 
Roth 
PHAT 
SCOT 
Enerav” 

12% 7% 4% - 
18% 12% 6% 0% 
17% - - - 
18% 8% - - 
17% 8% - - 
0% - - ???A 

Method 
Impulse Response 
Cross-Correlation 
Max. Like.* 
Roth 
PHAT 
SCOT 
Energy 

Ideal 5 GHz Chirp 
Layer 1 Layer 2 Layer 3 Layer 4 
0% 0% 0% - 
0% 0% 0% - 
0% 0% 4% 3% 
0% - - - 
0% 0% - 1% 
0% 0% - 1% 
4% 26% - 4% 

Table 9: Percentage error in layer detection. “*” indicates there were multiple false detec- 
tions. “-” indicates the layer was not detected. 
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Met hod 
Impulse Response 
Cross-Correlation 
Max. Like. 
Roth 
PHAT 
SCOT 
Energv 

Method 
Impulse Response 
Cross-Correlation 
Max. Like.* 
Roth* 
PHAT 
SCOT 
Energ.v 

4 cm DOG 
Layer 1 Layer 2 Layer 3 Layer 4 
4% 3% 2% 3% 
0% 2% 1% - 
2% 12% 16% - 
2% - - - 
3% 9% - - 
3% - - - 
1% - - - 

Ideal 4 cm DOG 
Layer 1 Layer 2 Layer 3 Layer 4 
0% 0% 0% - 
0% 0% 0% - 
0% 0% 4% 0% 
0% 1% - - 
0% 0% - - 
0% 0% - - 
2% 1% - - 

Table 10: Percentage error in layer detection. “*” indicates there were multiple false detec- 
t ions. “-” indicates the layer was not detected. 
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