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where u and v are Fourier domain variables and I(u; ti) is the Fourier transform of 1(x; ti). 
The bispectrum phase of the object source distribution is, remarkably, equal to the average 
bispectrum phase of the specklegrams: 

aw{OB(u, VI} = arg{(lB(u, v; ti))iJ 

This is because point sources obey the property arg Pn(u,~; t) ? 0, which is roughly 
explained by the fact that coherent phase fronts, although distorted by the path through 
the atmosphere, have zero integrated phase over all closed triangles in the apert,ure plane, 
,v’, (4). and (-G) - v’. See Lohmann, et. al. for a complete derivation. 

Fourier phase is recovered from bispectrum phase by inverting the recursion relation 

arg{On(u, u)} = argd(u) + argb,(w) + argb(--21 - n) 

‘The_recursion is started with three assumptions: argG((O,O)) = 0, arg6((1,0)) = 0, and 
argO((0,l)) = 0. The starting conditions have physical interpretations: 1) wavefront 
piston is arbitrary so is arbitrarily set to zero, 2) wavefront tip and 3) wavefront tilt 
only shift the image without changing any other aspect of its structure, and so it can be 
arbitrarily centered at 0,O. 
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Figure 2.1 - Speckle image formation compared to traditional long exposure image 
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Figure 3.1: Speckle processed images of Titan. Figure la shows the leading hemi- 
sphere at K’ (2.1 microns); Figure lb is the leading hemisphere at, II (1.6 microns): and 
Figure lc is the trailing hemisphere at K’. The central longitude for the leading hern- 
sphere is 125”; and for the trailing hemisphere 320”. Titan north is up and west. is t,o the 
left. The mapping of intensity to color is the same for la and lc; lb has a different color 
mapping since Titan’s integrated intensity is greater in the H band. Units of scale are flux 
in 10-‘8Watts/m2/~/pixel 
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Ott 10 97 H band speckle 

Ott 10 97 1.3 microns (011) Ott 10 97 1.6 microns (FEII) 

Ott 10 97 2.1 microns (H210) Ott IO 97 2.3 microns 
Fig. 4.2: Images ol 

(CH4) 
Neptune frolrl Oct. 10 1997 
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Fig. 4.3: Images of Neptune from Oct. 11 1997 



Fig. 4.4: Images of Neptune from Oct. 12 1997 
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lo Eclipses at K [2.2 microns] 
W.M. Keck Telescope Speckle Imaging O.O2”/pixel 

All images displayed with logrithmic intensity 
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Figure 5.1 IO volcanic hotspots identified in Keck speckle data 
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