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Description of a parallel, 3D, finite element, 
hydrodynamics-diffusion code* 

A. I. Shestakovt J. L. Milovicht M. K. Prasadg 

Abstract 

We describe a parallel, 3D, unstructured grid finite element, 
hydrodynamic diffusion code for inertial confinement fusion (ICF) 
applications and the ancillary software used to run it. The code 
system is divided into two entities, a controller and a stand-alone 
physics code. The code system may reside on different computers; 
the controller on the user’s workstation and the physics code 
on a supercomputer. The physics code is composed of separate 
hydrodynamic, equation-of-state, laser energy deposition, heat 
conduction, and radiation transport packages and is parallelized 
for distributed memory architectures. For parallelization, a SPMD 
model is adopted; the domain is decomposed into a disjoint 
collection of subdomains, one per processing element (PE). The 
PEs communicate using MPI. The code is used to simulate the 
hydrodynamic implosion of a spherical bubble. 

1 Introduction 
This paper describes the ICF3D code system, initially written to simulate 
inertial confinement fusion (ICF) experiments generating high tempera- 
ture plasmas. The system consists of two separate entities, a controller 
and the physics code itself. However, in the following, ICF3D refers to 
the physics code while controller refers to the code with which the user 
interacts. The controller is used to define problems, construct meshes, 
visualize results, and for runs on massively parallel platforms (MPP), to 
partition the domain into a collection of subdomains, one per processing 
element (PE). The controller runs on the user’s workstation. ICF3D, on 
the other hand, may reside on another computer; possibly a remotely 
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located MPP. This design allows maximum utilization of a supercom- 
puter as a number cruncher by not taxing it with tasks more suited to 
workstations. 

Once the problem is specified (proper input files created, etc.), 
control is passed to ICFSD. This requires establishing a link over the 
network between the user’s interactive session with the controller and 
the physics code. After passing control, ICF3D performs the calculation 
then returns the results to the controller. Control passing is made via 
UNIX socket programming. The controller and ICF3D are written in 
different languages in order to take advantage of features specific to 
them. Controller modules are themselves written in several languages, 
Python [I], FORTRAN, and C++. The physics code, on the other hand, 
is entirely written in C++. 

The remainder of this paper is organized as follows: The following 
section describes the controller. Section 3 gives a brief overview of the 
physics code, its modules, and the parallelization methodology. Only 
ICF3D is parallelized since that is the computationally intensive part. 
Section 4 contains a simulation of a hydrodynamic implosion and 5 5 is 
a summary. 

2 ICFSD controller 
ICF3D’s execution is controlled via the object oriented (00) scripting 
language Python [l] which also provides a very limited steering capability. 
Steering allows the user to directly interact with the code modules and 
data. Unfortunately, this requires that the controller and physics code 
be tightly coupled, something difficult to fulfill on MPP. In addition, 
since controllers use interactive languages, a tightly coupled system puts 
the additional burden of having those languages on the supercomputer. 
Consequently, for our limited steering, we have chosen a loosely coupled 
model that provides for flexibility in running the physics code on a 
variety of architectures without requiring coupling the physics code to 
the controller thereby obviating portability problems. Our approach - 
ICF3D controlled by Python running on a local workstation - evokes a 
distributed computing model, relegates supercomputers exclusively for 
computations and leaves the problem generation and post-processing 
chores to the desktop. 

By taking advantage of Python’s extendability we have written scripts 
that read the user’s (Python) input file that describes the problem, 
generate and partition the mesh, direct code execution to the machine of 
choice (by dispatching appropriate input files and recovering the output 
files), and analyze the results. In addition, during execution we can query 
the code’s progress, e.g., its time cycle and time step, create restart files, 
create output visualization files, and halt and restart the calculation 
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at will. While this is not as flexible as a truly steerable code, it has 
given us an invaluable means to develop and debug ICF3D and provided 
easy access to the number cruncher of choice. The interface is the same 
regardless of the computing engine, MPP or uniprocessor. Consequently, 
the parallelization is completely transparent to the user. Once control 
is returned to the user, results from an MPP are indistinguishable from 
those from a uniprocessor. 

One of the controller’s principal responsibilities is mesh generation. 
Since the generation of unstructured 3D finite element (FE) meshes is a 
difficult task, the controller provides the option of generating two types. 
For unstructured, Cartesian, tetrahedral grids, the controller uses the 
LaGriT code [Z] of the Los Alamos National Laboratory and for MPP 
runs, LaGriT is linked to the METIS code [3] of Karypis and Kumar to 
partition the mesh into a collection of subdomains, one per PE. Python 
scripts and C++ functions interface with the FORTRAN LaGriT code 
and the METIS code, written in C. 

The second type of mesh is logically structured; each vertex corre- 
sponds to a (Ic, I, m) triplet of positive integers. Such meshes may be 
constructed in any of the three coordinate systems allowed in ICF3D, 
Cartesian, cylindrical, or spherical. For MPP runs, these meshes are eas- 
ily decomposed by slicing along any of the (k, 1, m) logical planes. An 
additional flexibility is allowed whereby the user may describe the mesh 
in one coordinate system and instruct the controller to generate it and 
run the problem in another. For example, with one function call, the 
user discretizes a sphere into uniform radial concentric spherical shells 
with uniform polar, and azimuthal angles, and gets the grid in Cartesian 
coordinates. In this case, the controller automatically removes duplicate 
copies of the center point and those along the axis and constructs cells of 
all admissible types: tetrahedra, pyramids, prisms and hexahedra. After 
the conclusion of the run, the controller reformats the results into the 
user’s original coordinates which eases visualization of the results. 

We emphasize that the duality of meshes, structured and unstruc- 
tured, is limited to the controller. The physics code is based on only un- 
structured grids. The ICF3D input file describing the mesh is in the Ad- 
vanced Visual System (AVS) Unstructured Cell Data (UCD) format [4]. 
For MPP runs, the format is extended by tagging each cell with the PE 
number which “owns” it, and both cells and vertices are assigned unique 
“global” indices. 

3 ICFSD physics code 
ICF3D stems from an effort to apply the discontinuous finite element 
(DFE) method to solve the Euler equations for compressible hydrody- 
namics. For early work on DFE, we refer to works of Cockburn et al, [5], 
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[6], and [7]. Details of the ICF3D hydrodynamic scheme and early results 
on 3D problems are given by Kershaw et al [8]. 

After the initial successes on hydrodynamic test problems, the code 
was expanded to include equations-of-state of real materials, laser en- 
ergy deposition, heat conduction, and radiation transport. The first de- 
scription of ICFSD as a physics design code was given by Shestakov et 
al [9]. The code modules were later parallelized to take advantage of the 
promise of modern supercomputers with hundreds, eventually thousands 
of PEs. Shestakov and Milovich [lo] describe the parallelization of the 
hydrodynamic and diffusion modules while Shestakov et al [II] describe 
the entire parallelization strategy, including the laser ray tracing mod- 
ule. The parallelization does not inhibit portability; the same code runs 
on uniprocessors, and both types of MPP: distributed as well as shared 
memory architectures. 

ICF3D solves equations for the conservation of mass, momentum, and 
total matter energy densities, p, pv, and E: 

(1) &p+V-F, = 0, 

(2) &(Pv) + V.F,v = pg , 

(3) &(E)+V+FE = pg~v+H,+S,+K,,;. 

Equation (3) is coupled to the transport (diffusion) equation of the 
radiation field energy density 

(4 dE,./dt = V.D,,.VE, - E(,., . 

In (l), (Z), and (3), Fi denotes the flux of i, i.e., F,,, = pw,v + p, where 
ZI, is the z velocity component and p is the pressure. In (2) and (3), pg 
represents an external force density. In (3), E denotes the matter internal 
energy, and H, is the negative divergence of the heat flux, 

H,=V.D,VT, 

where D, is the thermal coefficient, and T is the matter temperature. 
The term S, is an external source of energy (e.g., due to a laser), KrE 
denotes the radiation-to-matter coupling. In (4), d/dt is the Lagrangian 
derivative, and D, is the diffusion coefficient of the radiation field. 

The equations are solved using operator splitting. The time cycle 
begins by solving the hyperbolic conservation laws, i.e., (1) to (3) with 
the rhs, except for the pg terms, set to zero. Next, material properties 
such as the specific heat, 

&/aTlp = cv 

are computed. If the problem involves laser energy deposition, that 
module then tracks the beams through the domain and computes the 
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energy source S,. After determining SE, the heat conduction module 
advances the equation, 
(5) c,&T = HE -I- S, . 

Heat conduction is followed by the final operation, radiation transport 
and coupling to the matter temperature. This effect is simulated by 
simultaneously advancing (4) and 

c&T = KT, . 

The radiation-to-matter coupling is given by, 

Km = -cm@(T) - ET) , 

where c is the speed of light, up is the Planck averaged opacity, and 
S(T) = (4a/c) T * is the spectral average of the Planck function, 0 is the 
Stefan-Boltzmann constant. 

Operator splitting lets us compartmentalize the operations and 
thereby reuse modules written for simpler equations. For example, the 
original ICF3D hydrodynamic scheme is unchanged. A separate laser en- 
ergy deposition module of Kaiser et al [la] computes S,, and a diffusion 
module discretizing equations of the type, 

(6) g&u = V. DVu - au -I- s 

advances (4) and (5). 
ICF3D is written in the 00 programming language C++ and the 

pdes are discretized using FE. These two features complement each other 
nicely. For example, in both the DFE and standard FE methods, one 
computes integrals of the type 

s fdv c 
where, C denotes a computational cell. Thus, once one cell integrator is 
written, it may be used (called) by other modules. 

The modularity extends to a low level. Using the C++ lexicon, the 
ICFSD mesh is described in terms of cell, face, and vertex objects, made 
at the start of the run by the constructor for the appropriate class. The 
concept of inheritance is used by allowing different cell types: tetrahedra, 
pyramids, prisms, and hexahedra. Similarly, two types of faces arise: 
triangular and quadrilateral. Since the mesh is allowed to move (the 
hydrodynamic scheme is ALE), the cells are allowed to distort and the 
quadrilateral faces need not be planar. When integrating a function f 
over the entire domain, we cycle through the cells and use (7). Each cell 
knows its type and calls the appropriate Gaussian formula to approximate 
the integral. A similar procedure is used for integrals over cell faces. 



6 

3.1 Numerical details 
Except for the novel DFE scheme for the hydrodynamics, ICF3D uses a 
standard Galerkin formulation for the spatial discretization of parabolic 
equation. Equations such as (6) are advanced using backward Euler 
except the coefficients g, D, and a are fixed at the previous time level. 
The function u is given in terms of the usual piecewise “linear” basis 
functions, 

u(Lc, P) = c qqx) uj” 
j 

The number of unknowns equals the number of vertices and we use an 
isoparametric mapping to compute integrals such as (7). Hence, on tetra- 
hedra, u is linear, while on hexahedra, ZL has a trilinear representation. 
The discretization leads to large, sparse, SPD linear systems. Since the 
diffusion equations advance inherently positive quantities, we lump ev- 
erything but the transport term in order to obtain an M matrix [9]. On 
uniprocessors, the systems are solved using ICCG. On MPP, we use an 
ICCG variant in which the preconditioner neglects coupling across inter- 
PE boundaries [lo], [ll]. 

The DFE hydrodynamic scheme differs from the above since it 
allows for discontinuous functions. The scheme is compact. Instead of 
integrating over the entire domain, the hydrodynamic system is multiplied 
by a test function, and integrated only over a cell. The flux divergence 
term is integrated by parts yielding two integrals, 

The first integral on the rhs of (8) is a sum of the contributions from 
each cell’s face and represents the flux across the face from the cells on 
either side. Thus, the rhs is computed by first looping over the faces and 
solving the appropriate Riemann problems, then looping over cells [8]. 
The discontinuity arises since hydrodynamic variables such as p vary 
within each cell, but are discontinuous across the faces. For a first order 
scheme, this reduces to cell-centered variables, and is an extension of the 
method of Godunov [13]. The ICF3D second order scheme, has hefty 
storage requirements. Because of the allowed discontinuities, for each 
hydrodynamic variable, the number of unknowns equals the number of 
cells times the number of vertices of each cell. Thus, for a mesh consisting 
of N, similar cells, with N, vertices per cell, since both the conserved 
variables: p, (pv), and (pE) and the fundamental ones: p, v, and p and 
their cell averages are stored, the hydrodymanic scheme alone requires 

(9) (10 x N, + 10) x NC 

locations to store one time level. Even though (9) could be reduced 
by not storing the nodal p variable twice and by using nodal values to 
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recompute the cell averages (needed in several places in the code), the 
storage requirement is still large. 

3.2 Parallelization 
Since this subject has already been discussed in [lo] and [ll], here we 
present only an overview. ICF3D parallelizes by decomposing the domain 
into a collection of disjoint subdomains, one per PE. Each PE receives 
a description of its subdomain (comprised by its owned cells) and a 
surrounding one cell-wide layer of ghost cells owned by other PEs. There 
is no restriction on the shapes of the subdomains (SDS) and indeed with 
NIETIS and unstructured grids, the SDS have ragged boundaries. 

The PEs communicate using functions from the NIP1 message passing 
library. The actual calls are made by member functions of special message 
passing objects (MPO) which ICFSD constructs at start-up. 

Since ICF3D has both a cell-centered scheme (hydrodynamics) and 
vertex centered (diffusion), there are two distributed mesh entities, cells 
and vertices. The input files tag each cell with the number of the PE 
which owns the cell. Vertex PE assignment is done by ICFSD during the 
initialization phase. This procedure itself requires some message passing 
since the algorithm that assigns a vertex to a PEs is based on a survey 
of all cells attached to the vertex. 

The domain decomposition strategy and the ICF3D code modules 
lead to four different parallelization difficulties: 

1. Embarrassingly parallel functions such as the cell-based equation- 
of-state calls which do not require message passing. 

2. Straightforward parallelization of the temporally explicit hydrody- 
namic scheme in which the “difference” stencil extends only over 
immediate neighbor cells. This is resolved by the ghost cells which 
store the latest information message-passed to the PE. 

3. Functions requiring global communication, e.g., solution of the 
large, sparse, unstructured linear systems arising from the dis- 
cretizations of the diffusion equations. The systems are solved using 
preconditioned CG [lo]. 

4. Unpredictable point-to-point communication arising in the paral- 
lelization of the laser energy deposition module in which each laser 
beam is discretized into a collection of rays or particles which tra- 
verse the mesh and deposit energy on the cells. The parallelization 
consists of collecting the rays as they cross the SD boundary and 
passing them to the PE which owns the neighboring cells. 
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4 Results 
To illustrate one aspect of ICF3D’s capability, we present a problem using 
only the hydrodynamic module. Although the problem is simple, in fact, 
has spherical symmetry, we simulate in both 1D spherical model with a 
structured grid and in 3D, Cartesian mode on a unstructured tetrahedral 
grid to demonstrate ICF3D’s versatility and robustness 

Since the problem has simple physics and uses only one module, 
readers interested in the performance of other code modules should 
consult the following references: Initial performance of the parallelization 
of the hydrodynamic and linear system solver appear in [9]. Results on 
a problem coupling hydrodynamics to non-linear heat conduction appear 
in [14] and [lo]. I n ref. [14], ICFSD was run in 1D spherical mode in both 
Lagrangian and ALE modes in which the grid points were restricted to 
move at half the fluid velocity. In ref. [lo], the same problem was run 
on an unstructured tetrahedral grid in Cartesian geometry on a parallel 
machine using 64 PEs and results compared favorably to the finely meshed 
spherical runs. In ref. [II], the hydrodynamic, heat conduction, and 
laser deposition modules were combined to simulate the implosion of a 
spherical gas bubble driven by twelve laser beams centered on the vertices 
of an icosahedron. Lastly, a simulation of an ICF capsule which uses real 
material equations-of-state, hydrodynamics, realistic heat conduction, 
and radiation transport appears in [15] 

Here, the problem consists of an imploding, spherical shock wave of 
infinite strength. Even though the problem is spherically symmetry, it is 
of interest since it is so difficult for 3D codes to maintain symmetry of 
the converging wave. In addition, codes limited to structured grids have 
the added burden of carrying the resolution (number of cells) needed on 
the outside of the sphere on the waist to the pole and center, e.g., if 
discretizing a sphere into uniform polar and azimuthal cells. This brings 
the additional complication of restrictive time steps due to the Courant 
condition as the wave reaches the center. 

Unstructured grids relieve these complications since with such meshes 
one freely puts resolution where needed. In Fig. 1 we display the 
computational domain, a tetrahedal wedge of a regular icosahedron 
bounded by the sphere of radius ~0, the two azimuthal planes: 4 = &:n/5, 
and the plane intersecting the origin and the points: (0, b) = (00, &7r/5) 
where cos 8s = l/A Such a domain allows us to easily view the 
progression of the implosion, maintain resolution where its desired, yet 
allow enough freedom for the implosion to lose symmetry with a poor 
numerical scheme. Nevertheless, even with the unstructured grid, the 
problem is relatively large. Equation (9) implies that there are nearly 
300,000 unknowns. 

‘In 3D spherical coordinates with one cell in each of the angular direction 
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FIG. 1. 30 Domazn of ideal gas implosion problem. Shading designates 
PE numbers. Grid consists of 28,208 tetrahedra (50 radial cells), 5791 points, 
and 58,455 faces. 

The implosion results when a spherical gas bubble, initially of radius 
To = 1.0 , is subjected to a boundary pressure of magnitude pb = 4/3 
The gas equation-of-state is specified using, 

p = (y - 1) PE where y = 5/3 

The initial conditions mimic a cold, quiescent gas, initially of unit density, 

po = 1 and pU = v,, = 0 

The gas motion results from the difference between pb and pe. Initially, 
the solution is similar to one with slab symmetry. The boundary pressure 
drives a shock into the gas which at first moves with speed f, G -4/3 
Since the shock is of infinite strength, immediately behind the shock, 

p= y+l ---pa and v, = -1 
“/+I 

If the problem stayed slab-symmetric, the shock would traverse a unit 
distance in a time of 0.75 sets. However, because of the converging 
geometry, the shock reflects off the origin at an earlier time which a 
1D simulation places at t N 0.57. In Fig. 2 we display p at t = 0.56, 0.58, 
and 0.6 for a finely meshed, spherical ID run and also display p at t = 0.6 
for two coarser discretizations. Results show that the coarsest mesh (50 
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density vs. distance 

I I I I I I I I I I I I I I I I I I I I I I I I I I_ 
t = 0.58 

A-C: 200 cells - 

n 
t = 0.8 D: 100 cells 1 

E: 50 cells 1 - - - - - - - - - - - - - --L - - 
I I I I I I I I- 

0:i 012 013 014 0:5 

FIG. 2. Ideal gas implosion; p vs. r. Lagrangian, ID simulations 
initially uniform cell widths. Curves A, 3, and C are at t = 0.56, 0.58, 
0.6 resp. and use 200 cells. Curves D and E are at t = 0.6 and use 100 
50 cells resp. 

with 
and 
and 

cells) suffices to obtain relatively good accuracy, especially if we compare 
the shock’s position. 

The 3D simulation is run on an unstructured grid discretizing the 
icosahedral wedge depicted in Fig. 1 in which the shading corresponds to 
the PE number. The simulation was done on 64 PEs of the LLNL IBM 
SP2 and ran until t = 0.9 at which time the reflected shock had interacted 
with the incoming outer boundary. Figure 3 displays a side-on view of p 
at t = 0.6 

A comparison between Figs. 2 and 3 shows that max(2) and the 
shock position are very similar and the min(p) also agree while the 
max(p) are within 6% of each other since in the 1D result with 50 cells, 
max(p) = 27.46 Lastly, Fig. 3 shows the code’s ability to maintain 
spherical symmetry, despite running on the asymmetric tetrahedral grid. 

5 Summary 
We have presented a general overview of the ICF3D code system, a 
parallel, 3D, unstructured-grid FE code linked to an interactive controller. 
The code system gives the user great flexibility by allowing the physics 
computing engine to run on the workhorse computer of choice while 
having the comforts of an interactive intialization of problems and 
interpretation of results at a desktop workstation. In designing the 
system, we strived for portability. All that is required for ICF3D is 
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FIG. 3. Ideal gas implosion; side-on view of density; t = 0.6 set; 
max(Z) = 0.563 

a C++ compiler and a UNIX operating system (OS) to enable linking 
across the network. The desktop, which runs the controller, needs more 
software support, specifically a Python interpreter, the ability to compile 
FORTRAN, C, and C++ codes, and again a UNIX OS to link with 
ICF3D. 

ICF3D was designed to simulate ICF experiments and is written 
in modular form with separate hydrodynamic, equation-of-state, laser 
energy deposition, heat conduction and radiation transport packages. 
The modules may be turned on and off more-or-less at will which allows 
us to run problems in which only some of the physics is relevant. 

However, since we use robust numerical methods, ICF3D is extendable 
to other problems. For example, since both the heat conduction and 
radiation transport packages advance diffusion equations, non-linear 
elliptic equations may also be solved if the elliptic operator has the same 
form as the rhs of (6). 
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