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Abstract

An object-oriented design that provides flexibility in simulation codes is presented.
This flexibility allows programmers freedom to easily change solution algorithms and
discretization schemes as well as add new solver packages as they become available.
Careful attention is paid to separating algorithm, data, and specific problem classes to
provide for ease in changing any of these components. Furthermore, data structures
are chosen so that cach component works with data in a form best suited to its needs.
Lastly, we present some experiences and comments on the tradeoffs involved with this
design.

1 Introduction

We present an object-oriented software design for solving coupled systems of nonlinear,
time-dependent partial differential equations (PDEs). We concentrate on implicit time
solution methods for which there may be a variety of choices in components of the overall
solution algorithm. This design targets algorithmic flexibility and extensibility which
allow exploration of solution method alternatives. In particular, we separate solution
methods, data structures and discretization schemes. Our goal is to build a framework
that facilitates the exploration of algorithmic choices that arise when solving systems of
nonlinear PDEs. However, this paper focuses on software design issues that have arisen
during this development, especially those concerns related to the use of independently-
developed solver technology.

Flexibility among solution algorithm components is often an important ingredient in
the development of efficient, parallel simulation codes. In many cases, the “best” solution
approach is often a pursuit of ongoing research, especially for large-scale, three-dimensional
scientific applications. Codes may evolve substantially throughout their lifetimes forcing
significant changes to numerical solution algorithms and discretization methods. Reasons
for major changes may include advances in both linear and nonlinear solver technology, the
extension of modeling capabilities such as, new physics and chemistry “modules”, or changes
to PDE discretizations. Consequently, software flexibility and extensibility may be critical
to useful application code development. Flexibility enables application code builders to
examine various algorithmic choices and to incorporate software packages developed apart
from the application project. Extensibility allows individual software components to be
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changed with minimal impact to others. These software characteristics can be achieved by
imposing an appropriately loose coupling between individual components within the code.

In the discussion that follows, we describe an object-oriented approach that achieves
solution component decoupling. Section 2 presents an example problem which we use as a
reference point to motivate and illustrate our approach. In Section 3, we overview our class
and data structure design. Lastly, in Section 4, we summarize our experiences and make
some recommendations for the design of flexible application codes.

2 Example Problem

We consider, as an example, the nonlinear, time-dependent PDE system consisting of two
equations and two unknowns given by,

(1) agf)_v'Ks(Sap)vp = 4s,
©) HED® g kysmvp = 0,

where s and p are the primary variables, and ¢ is time. The functions K, K, and f
represent nonlinear coupling between the variables and ¢, is a function of only the spatial
position.

There exist a variety of options for generating an approximate solution to the system
(1)-(2). Alternatives involve choices for spatial discretization, discrete time integration,
and solution of nonlinear equations. For instance, assume we have applied a spatial
discretization scheme to (1)-(2) and an implicit discretization in time. We then arrive at a
set of coupled discrete nonlinear equations that must be solved to advance the unknowns
through a sequence of discrete time increments. Given this scenario, there are two main
alternatives for advancing the system in time. One may treat the equations using a single
nonlinear solve that advances both variables simultaneously. Or, the system of equations
may be decoupled and integrated in parts using an appropriate sequential time-stepping
approach. In either case, it is often unclear how best to choose time increments. These
increments may increase or decrease due to accuracy considerations or the convergence
behavior of nonlinear iteration processes.

For either of the above time advance alternatives, one or more nonlinear systems must
be solved at each timestep. Each nonlinear system can be solved using one of many
formulations and extensions of Newton’s method (inexact methods, globalized methods,
etc.), or another method such as nonlinear multigrid. If a variant of Newton’s method is
adopted, linear Jacobian systems are solved at each iteration of the nonlinear solution
process. There are many choices for solving and preconditioning these linear systems
as well. Choosing appropriate linear and nonlinear solver technology, especially a good
preconditioner can be difficult.

The above choices motivate the need for flexibility in scientific codes. Furthermore, we
note that a number of software packages are available which solve subproblems found in
discretizing equations similar to (1)-(2). For instance, the KINSOL package [6], developed
in the Center for Applied Scientific Computing (CASC) at Lawrence Livermore National
Laboratory (LLNL), provides robust nonlinear solver technology using an inexact Newton-
Krylov method with a line-search globalization procedure [2] and a GMRES iterative linear
solver [5]. The PETSc package, developed at Argonne National Laboratory also provides
robust nonlinear solver technology using similar algorithms {1]. Moreover, the PETSc
package provides linear solvers of various forms as well as preconditioners. The HYPRE
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package, also under development in CASC at LLNL [3] will provide a suite of robust, parallel
linear solver preconditioners for a wide variety of linear algebra problems. Extensibility
in a code would allow use of these packages to compare and contrast the implemented
algorithms. To benefit from code flexibility and extensibility, we have developed an object-
oriented design that will allow easy changes to algorithms and use of packages.

3 Framework Design

The essential components of a nonlinear solution algorithm include a nonlinear solver and
a linear solver which may include preconditioning. We want to easily change nonlinear
solvers and linear solver preconditioners without impacting other parts of the application
code. We also want to change the way discrete quantities are used in the approximation
without having these changes affecting the way we use the solvers. Thus, our framework
design focuses on the appropriate encapsulation of these independent functional parts
and flexible use of data structures among them. In this section, we describe an object-
oriented framework that provides us with flexibility to explore algorithmic options and
inter-operability.

The class organization in our framework is based on the model for application develop-
ment provided by SAMRAI [4], an object-oriented C++ software framework for structured
adaptive mesh refinement (AMR) applications and under continuing development in CASC
at LLNL. SAMRALI provides computational scientists with fundamental AMR support as
well as other general, extensible software components useful in parallel structured mesh
computations. For example, SAMRAI manages the computational mesh, simulation data,
and parallelism for an application. SAMRAI was adopted for our work because it is use-
ful for developing algorithmic framework structure, and we plan to eventually explore the
combination of nonlinear solution methods and adaptive mesh refinement.

Since the essential classes in our framework are built using components of SAMRAI, we
mention briefly the relationship between application data management and the computa-
tional mesh employed in that infrastructure. In conventional structured AMR methodology,
computational cells corresponding to a single level of spatial mesh refinement are clustered
to form a collection of patches. Typically, simulation data lives on each patch as a set of
logically-rectangular arrays. Using SAMRALI variable representation and data management
functionality, we implement numerical routines over single patches. The separation of the
nonlinear problem discretization from details of data storage on the mesh is important for
two reasons. First, the patches and their data may be distributed across a parallel machine
without affecting the implementation of numerical kernels. Second, the numerical routines
do not need to change if different solvers with different storage schemes are used.

3.1 Overview of Class Structure

Our framework design centers on six primary classes that are used to orchestrate
the nonlinear solution process: NonlinearTimeIntegrator, NonlinearSolverAlgorithm,
NonlinearSolver, LinearSolver, NonlinearPatchModel, and Vector. Next, we outline
the organization and functionality of the first five classes. The Vector class is a key link
between the data management features in SAMRAI and the use of different solvers and
will be discussed in Section 3.2.

An illustration of the relationships between these classes and some of their basic
functionality is shown in Figure 1. The TimeIntegrator class manages overall problem
initialization and the time integration process. It is responsible for coordinating the
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( Timeintegrator
—» =uses
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integrationSequence( ) {

solver->advance( dt ) advance (dt) {
nisol->setPreCond( ... ) |

nisol->solve( )

updateSolution()
computeDt( dt )
}

}

setuplLinearSystem( ) =0
solvelinearSystem( ) =0

( LinearSolver

setupLinearSystem( ) {
setupMatrix( )
preprocessSoinVector( )

preCondSet() =0
l solve() = 0 evaluateNLFunction( ) =0

A ) evaluateNLJacobian( ) =0
: computeDt( ) =0

( NonlinearSolver }: B A

solvelLinearSystem{ ) {
call linear solver ...

solve( ) { i
call nonlinear solver ... | ( ApplicationPatchModel

o sl Numerical routines specific
to application...

F1G. 1. The configuration of primary algorithmic classes in the nonlinear framework. Abstract
classes are represented with italics, concrete classes are represented with regular type.

various nonlinear solves that are used to advance the data for the discrete time-dependent
PDE problem. Each nonlinear solve is modeled by a SolverAlgorithm object. The
SolverAlgorithm object coordinates the actions between the NonlinearSolver object,
the LinearSolver object, and the ApplicationPatchModel object. The NonlinearSolver
provides the solver for the nonlinear system, the LinearSolver provides the preconditioner
for the Jacobian system, and the ApplicationPatchModel provides patch-based numerical
routines for the discrete problem, such as calculation of the Jacobian matrix entries or the
nonlinear residual.

The TimeIntegrator class coordinates nonlinear solves depending on the discrete
time-stepping sequence. If the problem is treated as a single fully-coupled nonlinear
system of discrete equations, TimeIntegrator manages the sequence of discrete time steps
and invokes a single nonlinear solve to advance the data through each increment. If a
sequential approach is used, TimeIntegrator orchestrates the discrete timestepping process
involving different solvers and controls the synchronization of data among them via the
“updateSolution” function. The basic operations defined by the integrator class involve
problem setup and initialization, and problem solution.

The TimeIntegrator class can be applied to any nonlinear problem that is integrated in
an implicit fashion. Several SolverAlgorithm objects can be registered with it. A unique
solver algorithm object is needed for each distinct nonlinear solution process used in the
overall time integration. For example, a single, fully-coupled nonlinear system treatment
requires a single SolverAlgorithm object, whereas several different SolverAlgorithm
objects are coordinated when a sequential approach is used. The actual integration sequence
used depends on the order in which the solver algorithms are registered and the timestep
information that they provide to the integrator when queried for this information via the
“computeDt” function. If more general algorithmic functionality is needed, the integrator
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advance routine may be specialized through class derivation to allow for arbitrarily complex
time integration sequences.

The SolverAlgorithm class encapsulates the components and operations needed for
a single iterative nonlinear solution process. This class coordinates objects that define
the discrete problem, the nonlinear solver, and the Jacobian linear system preconditioner.
However, all details of the interaction between these entities are hidden from the time
integration manager. The interface that the solver algorithm exposes to the time
integrator includes generic function calls for initializing and invoking the nonlinear
solution process and for providing time increments. To perform the operations required
to solve a nonlinear problem, a SolverAlgorithm object is initialized with objects
defined by concrete subclasses of AbstractNonlinearSolver, AbstractLinearSolver, and
AbstractPatchModel.

The AbstractNonlinearSolver, AbstractlLinearSolver, and AbstractPatchModel
classes are abstract base classes that define the interfaces between the solver algorithm and
the specific implementations of these parts of the solution procedure. In other words, the
NonlinearSolver base class defines the interaction between the solver algorithm object and
the nonlinear solver, the LinearSolver class defines the interface to the Jacobian system
preconditioner, and the ApplicationPatchModel defines the calls to the routines that
implement the discrete equations, i.e. nonlinear residual and Jacobian matrix calculation.

A concrete nonlinear solver class is derived from the AbstractNonlinearSolver base
class and serves to “wrap” function calls and data structures specific to a particular
nonlinear solver package. Thus, a SolverAlgorithm object may initialize a nonlinear
solver’s parameters, marry it with a preconditioner ( “setPreCond” function), provide it with
a nonlinear residual calculation routine via the patch model object, manipulate the data
in its solution vector, and use it to solve a nonlinear problem without knowing any details
of the solver implementation. The only caveat is that the nonlinear solver be implemented
so that it can use the vector structure that we provide in the framework (see Section 3.2).
KINSOL and PETSc are two examples of solver packages have been developed in this way.

The AbstractLinearSolver class in Figure 1 serves to define the interface between the
SolverAlgorithm and the concrete LinearSolver in a similar fashion. The LinearSolver
subclass provides the preconditioner for the Jacobian systems generated by the nonlinear
solver object. However, unlike nonlinear solvers, most linear solver and preconditioner
libraries store linear system data and generate solutions using data structures for matrices
and vectors that are specific to the needs of the solution process. The “setupMatrix”,
“preprocessSolnVector”, and “postprocessSolnVector” functions are implemented in the
concrete LinearSolver class to manage storage between the linear solver on the one hand
and the nonlinear solvers and numerical kernels, on the other. These data storage issues
will be discussed further in Section 3.2.

Finally, the ApplicationPatchModel class is derived from the AbstractPatchModel
base class. It provides numerical routines that define the specific discrete problem under
consideration. That is, the patch model is used to compute the nonlinear residual, Jacobian
matrix entries, and boundary conditions for each patch on the mesh. The details of these
routines are hidden from the nonlinear solver and preconditioner. The solver objects are
supplied with the correct function calls implemented in ApplicationPatchModel when the
SolverAlgorithm object initializes them.

In our framework, numerical operations use the language of SAMRALI “variables”. Vari-
able quantities used in the discrete approximation are registered with the SolverAlgorithm
class by its ApplicationPatchModel according to the role the variables will play dur-
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ing the solution process. Typically, a nonlinear solution quantity is registered as
“NL.SOLN_TIME_DEP”. A static quantity that does not change in time as the prob-
lem evolves but which needs to be stored is registered as “INPUT?”. Lastly, a temporary
quantity that is only used for scratch computations is registered as “TEMPORARY”. If
- the example problem in Section 2 is solved as a coupled system using a single nonlinear
solve, both s and p are “NL_SOLN_TIME_DEP” variables and ¢, is an “INPUT” vari-
able. The quantity K; may be treated as a “TEMPORARY” since it may be computed
separately but need not be stored between calls to evaluate the residual or Jacobian. The
SolverAlgorithm class manages the storage for each variable in a manner consistent with
the way the variable is registered. Thus, a link is established between the patch model and
the solver algorithm whereby the model specifies the data that it needs and the algorithm
manages storage for this data. The fact that the problem data is further translated into
the language of vectors for the linear and nonlinear solvers is unknown to the patch model
routines.

3.2 Data Structures

Data structures for large-scale application codes should be chosen so that memory
access characteristics are appropriate for the operations required by the computational
methods employed. However, it is generally impossible to develop data structures that
provide minimal memory access time for all operations involved in a complicated scientific
computing application. Thus, we have chosen to let the needs of solution algorithm
components dictate data structure choice so that data for the nonlinear solver and the
Jacobian system preconditioner are managed independently for performance reasons. In
this section, we present the Vector class that is used to coordinate the interaction between
solvers maintained by SolverAlgorithm in Figure 1.

3.2.1 The Vector Class Recall that SAMRAI manages patch distribution and data
communication within our solver framework. The Vector class is built from SAMRAI
components and supplies vector kernel operations to the nonlinear solver. Since application-
specific numerical routines, such as the nonlinear residual calculation, are integral to the
nonlinear solution process, these numerical routines access the same data storage as the
vector kernel. That is, the Vector class encapsulates the concept of a vector that can be
understood by SolverAlgorithm, NonlinearSolver, and ApplicationPatchModel. The
basic structure of the Vector class is illustrated in Figure 2.

The Vector class defines a vector to be a collection of data objects distributed across
the patches forming a computational mesh. Recall that in SAMRAI data is managed on
a computational mesh composed of “patches”. On a patch, data is stored as an array of
data components, each of which represent a variable quantity in the application. A Vector
object is composed of a subset of these patch data components over a collection of patches.
Vector kernel operations are provided for each vector component and depend on the data
type of the component, such as cell-centered or node-centered. In the example system, (1)-
(2), the solution vector maintains two data components that correspond to the unknowns s
and p. If these variables are represented on the mesh as cell-centered quantities, then this
information is known to the vector which provides kernel operations for each component.
Our vector class allows any combination of distinct mesh quantities that may be cell-, face-,
or node-centered on the mesh. The main point here is that a Vector contains information
about the mesh structure and the form of data on the mesh.

The variable registration process described in Section 3.1 establishes the link between
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4 Vector \ /SAMRAI Data Management

Pointer to SAMRAI mesh structure Mesh composed of “Patches”

|~

Array of Array of Data
vector kernel Component
operations Indices

Array of Data
Components

double dot(...) :
double liNorm(...) {

‘r NodeDataOps

double dot(...)
double llNorm{...)

F1G. 2. A wvector with application variables 0 (cell-centered) and 2 (node-centered).

data in the patch model and data in the vector. The patch model registers its variables
with the solver algorithm which adds the patch data component information to the vector.
Once the registration process is complete, the nonlinear solver can clone and destroy vector
objects as needed, and the patch model can perform its operations independent of the
vectors. This process causes no conflicts since data is moved into separate storage to
supply numerical routines with ghost cell information when they involve stencil operations
on the mesh. Ghost cell space is used when vector data is needed in stencil routines, but is
not used for basic vector kernel operations. Thus, basic vector calculus operations, such as
dot products, norms, and vector additions (used extensively during the nonlinear solution
process) execute using loops with stride length 1 for efficient performance. All cloned
instances of a vector share the same ghost cell storage through an “arena” mechanism.
This sharing minimizes storage requirements and allows the tranéparent communication of
data between nonlinear solution algorithms and discretization routines.

3.2.2 Linear Solver Data In our framework, the solvers and application code are
independent. Thus, a preconditioner package, such as HYPRE, is allowed to manage
storage in a manner suitable for the efficient parallel construction of solutions to linear
systems. Referring to the illustration in Figure 1, the Jacobian matrix coeflicients are
computed in ApplicationPatchModel using variable quantities that describe the discrete
PDE problem. The concrete LinearSolver object is responsible for translating the linear
system into structures associated with the linear solver package. However, we emphasize
that no more than one copy of the matrix coeflicients is maintained. The preconditioner
solve solution and right-hand-side vectors are translated between storage schemes as well.

Maintaining separate storage for the linear and nonlinear systems is reasonable for
several reasons. First, the application code can manipulate solution data in terms of
quantities in the discrete numerical problem, such as when evaluating the nonlinear residual.



OBJECT-ORIENTED APPROACH FOR NONLINEAR PDES 8

Second, the solution of linear systems is usually the most costly part of many computations
and so the solution procedure should be as efficient as possible. Once the linear system
matrix problem is specified, the linear solver does not need further details about the discrete
problem. Third, solver components may be interchanged with minimal impact on each other
or on the application code, and solvers can be developed and enhanced independently.

3.3 Languages

In our framework, we combine C++- class descriptions for the high level parallel framework
with FORTRAN 77 computational kernels. The solver packages are written in C. We
believe these language choices are expedient for our purposes. Since we are concerned with
structured meshes only, we are able to take advantage of this inherent structure. When
numerical routines are needed in the nonlinear problem class, we are able to identify a start
and end point for the computations. We thus send those to FORTRAN routines which can
efficiently calculate the desired quantities.

4 Conclusions

We have presented a design for flexible and extensible scientific simulation codes. The
two main ingredients of our design are the separation of algorithmic components and the
careful choice of data structures. By encapsulating the solution algorithms, numerical
routines and data structures, we have reduced the inter-dependence of function components
which provides sufficient flexibility to easily switch nonlinear and linear solvers as well
as discretization schemes. The main decision regarding data was to use structures for
each component of the framework that were well-suited to that particular functionality.
Specifically, we chose to copy vectors needed for the linear solver into the most appropriate
structures for the solver rather than try to use a single vector structure throughout the
code. In doing this copy, we have data in a structure that allows greater efficiency for both
the linear and nonlinear solvers. This structure, defined in the Vector class, allows stride
1 access to elements for fast kernel operations (axpys, dot products, norm calculations,
etc.). These actions are entirely transparent to the patch model routines which define their
operations in terms of the problem variables.

The design presented in this paper shows how a simulation code can be developed
to model complex applications but still allow easy changes in algorithms, discretizations
and data structures. With this flexibility, an application programmer can easily compare
solution methods for complex problems. Lastly, we note that much of the software initially
used in our framework is currently under development. Use of “new™ packages is common in
many large-scale scientific applications, and we note that our design provides extensibility
to the applications programmer for easy accommodation of future changes.
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