UCRL-JC-131596
PREPRINT

Performance of Large-Scale Scientific Applications
on the IBM ASCI Blue-Pacific System

A.A. Mirin

This paper was prepared for submittal to the
Ninth Society of Industrial and Applied Mathematics
Conference on Parallel Processing for Scientific Computing
San Antonio, TX
March 24-27, 1999

December 10, 1998

Thisisapreprintofapaperintended for publication in ajournal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



Performance of Large-Scale Scientific Applications on the IBM
ASCI Blue-Pacific System*

A. A. Mirin'

Abstract

The IBM ASCI Blue-Pacific System is a scalable, distributed/shared memory
architecture designed to reach multi-teraflop performance. The IBM SP pieces together
a large number of nodes, each having a modest number of processors. The system is
designed to accommodate a mixed programming model as well as a pure message-
passing paradigm. We examine a number of applications on this architecture and
evaluate their performance and scalability.

1 Introduction

The IBM ASCI Blue-Pacific System is a scalable, distributed /shared memory architecture
designed to reach multi-teraflop performance. The system, which is located at Lawrence
Livermore National Laboratory, is intended to meet the needs of the Accelerated Strategic
Computing Initiative (ASCI) [1], whose purpose is to help ensure the safety and reliability
of the US nuclear stockpile in the absence of testing. This presentation discusses the
performance and impact of a three-dimensional hydrodynamics code, along with several
other scientific applications, on the IBM-SP platform.

In Section 2 we describe the machine configuration for the ASCI Blue-Pacific system.
Section 3 discusses programming and performance issues. In Section 4 we compare
pure message-passing with a distributed/shared memory programming model, when
implemented in a hydrodynamics code. In Section 5 we discuss performance and scalability
of the sPPM hydrodynamics code. Section 6 covers other applications. Conclusions and
future directions are presented in Section 7.

2 Machine Configuration

The IBM system consists of hundreds of shared memory processor (SMP) nodes, each node
containing four PowerPC processors. Although future plans call for increasing the number
of processors per node, that number is expected to remain modest compared to the number
of nodes. This contrasts with the ASCI Blue-Mountain approach at Los Alamos National
Laboratory, which involves a modest number of SGI Origin 2000 nodes, each containing a
large number (up to 128 as of this writing) of processors.

The Blue-Pacific complex contains two components. By far the largest component,
referred to as the Sustained Stewardship TeraOp (SST) system, is comprised of three 488-
node sectors, with a total CPU count of 5856. Each node contains 1.5 to 2.5 GBytes of local

*This is LLNL Report UCRL-JC-131596. Work performed under the auspices of the U.S.D.O.E. by
Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
tCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA

1




2

memory, and is powered by four 332 MHz PowerPC 604e processors. Allowing for up to 2
operations per clock period, the system peak performance is 3.9 TeraOPS. The processor
to memory bandwidth is 2.1 Tbyte/s (aggregate), and the node to node bandwidth is 150
MByte/s (bidirectional). There are 62.5 TBytes of RAID storage, with an I/O bandwidth
to local disk of 10.5 GBytes/s. The three sectors are connected by six High Performace
Gateway Node (HPGN) switches. As of this writing only two of the three 488-node sectors
are in place. The smaller component, referred to as the Combined Technology Refresh
(CTR), has much the same technology as the SST but only one sector containing 336
nodes.

3 Programming and Performance Issues

The IBM architecture accommodates itself to several programming models. An approach
that is favored by many is the "mixed” programming model, in which one invokes
shared memory parallelism on-node and message-passing between nodes. Common ways
of attaining shared memory parallelism include Posix threads (p-threads), which are a
standard within C, or the newer OpenMP [2], designed to accommodate Fortran codes (and
more recently C codes as well). Message-passing between nodes is usually accomplished
with Message Passing Interface (MPI). A second approach is to pretend that each processor
has its own private memory and use MPI both across and within nodes.

There are various tradeoffs between the mixed model and the distributed memory, or
"pure MPI” model. The latter is clearly simpler, because it invokes only one form of
parallelism. Tt also accommodates distributed memory codes that run on other massively
parallel processor architectures. The mixed model, on the other hand, offers greater freedom
in how to parallelize and utilize memory within a node, and is likely to result in less
communication overhead and fewer redundant computations.

This can be seen by looking at the very common example of two-dimensional domain
decomposition. Given a square configuration with four available compute nodes, with
a mixed programming model one is likely to assign a two-by-two domain decomposition.
Using pure MPT it would be common to further subdivide each subdomain into four smaller
subdomains using a two-by-two pattern. The resulting surface area to volume ratio (which
measures the overhead of communication relative to computation) would then be twice as
large as compared with the mixed model. Furthermore, with pure MPI there would likely
be additional computations at the ”inner” borders of the smaller subdomains.

With the distributed memory model, the on-node parallelism would be based strictly
on the two-by-two domain decomposition within a node. Using the mixed model one could
choose to parallelize along rows or columns or in some other fashion. Additional issues to
be considered are light-weight threads versus full-blown processes, multiple versus single
communication requests per node, and the implementation of on-node ”communication”.

A key issue in the ASCI program is scalability. This is not to be confused with the
related concept of parallel efficiency. It is common to look at a fixed problem and see what
happens as more and more processers are assigned to solve that problem. Scalability,
however, deals with increasing the problem size while commensurately increasing the
number of processors. Explicit finite-difference methods and multigrid methods are
examples of scalable technology. Many algorithms in use today are not. Making effective
use of hundreds to thousands of computational processors will require scalable algorithms.

An issue that affects scalability is load balance. An idle processor lowers the parallel
efficiency and hence scalability of an algorithm. Problems that lend themselves to a regular



3

decomposition have a better chance of being load balanced provided the computational
work per degree of freedom (e.g., meshpoint) is uniform. Algorithms that make use of
adaptive mesh refinement can be more difficult to load balance since the spatial variation
of the workload is evolving in time. Having several times as many tasks as processors may
increase the opportunity to balance the load, but possibly at the cost of more complex or
increased communication.

Not only do we need the computation to scale favorably, but we need to have scalable
I/O as well. Present-day high-resolution calculations are very often limited by the ability
to get data off the machine and onto disk. With limitations on the bandwidth between
disk and memory, having all computational processors interacting with disk is often less
efficient than having just a few playing that role. Furthermore, not all systems even allow
multiple processors simultaneously writing to disk. A mode of operation that is becoming
more typical is for an application to dedicate one or more processors to I/0.

4 Parallel Programming Paradigm

We compare the pure MPI and mixed MPI/OpenMP programming models, when applied
to the PPM hydrodynamics code [3]. The PPM code is a predecessor to the sSPPM code,
to be discussed in the following section. Of relevance here is that PPM is computationally
intensive and contains primarily local communications.

The IBM system supports two forms of communication between nodes - IP and US.
The IP communication library uses Internet Protocol for communication between nodes,
while the US (user space) communication library allows the application to communicate
directly with the switch without going through the kernel or operating system. User
Space mode is faster, but more restricted. In particular, the operating system on the
machine at this writing supports User Space communication for only one processor at a
time per node. Hence, when running pure MPI one must use the much slower Internet
Protocol. By the time of this presentation we expect that a newer operating system that
supports communication from multiple processors per node in User Space will have been
implemented in the production environment. We expect to report on the programming
paradigm comparison at that time.

5 The SPPM Hydrodynamics Code

The SPPM code [4] is a simplified version of the Piecewise Parabolic Method (PPM)
Code mentioned above. It solves the single-fluid compressible Navier Stokes equations
in three dimensions using the piecewise parabolic method, which is a higher-order
accurate Godunov method developed by Colella and Woodward [5]. The code uses a
Lagrangian time advance, followed by a remap onto the original grid, making the calculation
effectively Eulerian. Multidimensional aspects are handled through operator splitting in the
coordinate directions.

The code simultaneously exploits explicit threads for multiprocessing shared memory
parallelism and domain decomposition with message passing for distributed memory
parallelism. For each coordinate sweep a subdomain is partitioned into pencils, within
which data is optimally cached; the pencils are then assigned to the threads. The internodal
communication is asynchronous, designed to overlap the computation.

We apply SPPM to study the interaction of a shock with a contact discontinuity!. The

! Authors for this study are R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. Dimits, M. A. Duchaineau,
D. E. Eliason, A. A. Mirin, D. H. Porter, and D. R. Schikore.



4

two fluids in contact are initally separated by a membrane adjacent to a wire mesh, as
described in [6]. An initial perturbation containing both a long wavelength component,
corresponding to the distortion of the mesh as a whole as it is being pushed, and a short
wavelength component, corresponding to the mesh spacing, is applied. The interaction
of the (Mach 1.5) shock with the interface leads to the well-known Richtmyer-Meshkov
instability. .

The simulation had over 8 billion zones and was carried out in single precision (32-
bit arithmetic) using 960 nodes of the SST system. The global mesh had dimensions
2048 x 2048 x 1920, organized according to an 8 x 8 x 15 domain decomposition, resulting
in a local (per node) mesh of 256 x 256 x 128. The case was run for 27,000 timesteps,
corresponding to 9 transverse sound crossing times. It took 173 hours of computer time,
spread out over 226 hours of wall time. The computational throughput was 129 Mflop/s
per node, for an aggregate rate of 494 Gflop/s. The code executed at about 75 per cent of
its peak performance, partially because of the inability to fully overlap communication and
computation at this grid layout. Load imbalance was minimal.

The executable and all code output resided on local disk (the application had access to
4 GByte/node). Restart dumps (containing one component per node) were produced every
three hours, and components were immediately copied onto alternate nodes as backups.
Two hundred seventy four movie frame dumps, containing an aggregate 2.2 TByte of data
spread out over 263,000 files, were produced. Ten 16-bit compressed data dumps, containing
84 GByte each, were produced as well. All together the application produced almost 300,000
files and 3 TByte of information. Data to be saved was copied onto the global file system,
then to the visualization server, and finally to mass storage. Thus, the parallel I/O strategy
was to write data to each local node and leave it to the postprocessor to gather the data
coherently.

Output from the simulation shows the development of bubbles and spikes, along with
their merger and breakup. Figure 1 shows a volume rendering of an entropy-like variable
near the end of the simulation. We hope to evolve this simulation further in time and apply
a second shock as well.

6 Other Applications

Here we describe additional scientific applications run on the IBM SST system at LLNL.
Up-to-date results will be presented at the meeting.

6.1 First-Principles Molecular Dynamics

The JEEP code is a first-principles three-dimensional molecular dynamics code?. It
computes the trajectories of atoms using forces calculated from quantum mechanics. The
main approximation used in the solution of the Schroedinger equation is Density Functional
Theory (DFT), in which the energy is assumed to be a unique functional of the electronic
charge density. This approach allows one to describe accurately the formation and breaking
of chemical bonds in a wide variety of conditions, thereby making this approach applicable
to high temperature and high pressure physics, as well as biochemistry. JEEP is also used
to study the properties of semiconductor clusters and surfaces.

JEEP is based on the plane wave pseudo-potential approach to electronic structure. It
relies heavily on an efficient implementation of linear algebra and Fast Fourier Transforms.

% Authors for this study are F. Gygi, G. Galli and F. Ree.



It uses MPI across nodes and multithreading within a node.

Typical simulations consist of observing the time evolution of a few hundred atoms
over several tenths of a picosecond. Using 960 nodes on the SST system, JEEP was able to
simulate 600 atoms for approximately 1 picosecond. This type of breakthrough will allow
simulation of complex liquids and of solvation of biomolecules in water.

6.2 Neutron Transport

The ARDRA code solves the Boltzmann transport equation for neutrons, which is an
integro-differential equation in six-dimensional phase space® The code uses a Petrov-
Galerken linear, continuous finite element discretization in space and either an S, or a
P, discretization in energy [7]. The code uses MPI across nodes and Posix threads within
a node.

ARDRA has been used to simulate the flux of fusion neutrons exiting the target chamber
of the NOVA laser at LLNL. Because the neutrons can be very penetrating, it is important
to know in which directions the neutrons will tend to eminate, so that appropirate shielding
can be put in place. The ARDRA team has built a "numerical prototype” of the target
chamber, accounting for the smallest structures present. Running on 960 nodes of the SST
system, ARDRA has been able to execute using 160 million spatial dimensions, 4 moments,
and 23 energy groups, for a total of 14.7 billion degrees of freedom. The ability to attain
this level of detail and accuracy has been a significant contribution to the NOVA effort.
Attempts are being made to develop a similar capability for other experiments as well.

6.3 Arbitrary Lagrange Eulerian Calculations
The ALE3D code uses the finite element method for treating fluid and elastic-plastic
response on an unstructured, hexahedral grid®. The code uses an Arbitary Lagrange
Eulerian (ALE) method with slide surface boundary conditions between mesh blocks [8].
ALE3D uses domain decomposition with MPI across nodes. It can be run using either
pure MPI or OpenMP. Capability is being developed for treating implicit hydrodynamics,
chemistry, and thermal radiation. The implicit and thermal physics will make use of the
ISIS Finite Element Interface for the linear algebra.

ALE3D has been run on the SST system to simulate implosion in a cylindrical
configuration. As the parallel programming methodology is evolving, the performance
is in a rapid state of flux and will be presented at the meeting.

7 Conclusions and Future Directions

We have discussed the performance of a three-dimensional hydrodynamics code, along with
several other scientific applications, on the ASCI Blue-Pacific System. We have shown that
a number of these applications do indeed scale to thousands of processors. At the time of
the presentation we expect that all three sectors of the SST machine will be on site and
working together, so that even more ambitious computations may be carried out.

References

8 Authors for this study are P.N. Brown, B. Chang, U. Hanebutte, S. Smith, M. Dorr, R. Buck, J. Hall,
S. Post, J. Ferguson, J. Rogers, P. Nowak, M. Zika and S. Hadjimarkos.
* Authors for this study include W. S. Futral and R. Sharp.



[1]

2]
3]

Accelerated Strategic Computing Initiative, World Wide Web http://www.llnl.gov/asci,
Lawrence Livermore National Laboratory Report UCRL-MI-125923.

OpenMP, World Wide Web http://www.openmp.org.

A. A. Mirin, et al., Three Dimensional Simulations of Compressible Turbulence on High-
Performance Computing Systems, Eighth STAM Conference on Parallel Processing for Scientific
Computing, Minneapolis (1997).

S. E. Anderson and P. R. Woodward, World Wide Web
http://www.lcse.umn.edu/research/sppm, Laboratory for Computational Science and
Engineering, University of Minnesota (1995).

P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM ) for Gas-Dynamical
Simulations, J. Comput. Phys., 54 (1984), pp. 174-201.

M. Vetter and B. Sturtevant, Experiments on the Richtmyer-Meshkov Instability of an Air/SFg
Interface, Shock Waves 4 (1995), pp. 247-252.

S. F. Ashby, P. N. Brown, M. R. Dorr and A. C. Hindmarsh, A Linear Algebraic Analysis of
Diffusion Synthetic Acceleration for the Boltzmann Transport Fquation, STAM. Jour. Numer.
Anal., Feb. 1995, pp. 128-178.

C. J. Aro, E. I. Dube, W. S. Futral and J. D. Maltby, Coupled Mechanical / Heat Transfer
Simulation on MPP Platforms using a Finite Element / Linear Solver Interface, Ninth STAM
Conference on Parallel Processing for Scientific Computing, San Antonio (1999).



FiGg. 1. Volume rendering of entropy for sPPM calculation



F1G. 1. Volume rendering of entropy for sPPM calculation



