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Abstract. A multigrid strategy is developed for accelerating the steady state com-
putations of waves propagating with curvature depedent speeds. This will allow the rapid
computation of a "burn table". In a high explosive material, the creation of a burn table
will allow the elimination of solving chemical reaction ODEs and feed in source terms to
the reactive flowr equations for solution of the system of ignition of the high explosive
material. Standard iterative methods show a quick reduction of the residual followed by a
slow final convergence to the solution at high iterations. Such systems are excellent
choices for the use of multigrid methods to speed up convergence, even on a nonlinear
system such as this. Numerical steady-state solutions to the eikonal equation on a rectan-
gular grid are conducted. Results are presented for a square grid in 2D and a cubic grid in
3D using a Runge-Kutta time iteration for the smoothing operator until steady-state is
reached.

1.0 Introduction.

The simulation of the detonation of a block of high explosive material involves many fac-
tors to consider. To accurately predict the outcome of a particular detonation, the conser-
vation equations of reactive flow need to be solved. The detonation front, as it propagates
through the material, is a quickly moving zone of chemical reactions. The solution of
equations of state needs to be calculated for temperature and pressure terms for the conser-
vation equations. The nature of these chemical reactions is very fast in reaction time. This
in turn leads to very small time step sizes for the overall numerical simulation, which even
on today’s computers, can take an extremely long time to attain a solution.

To avoid the complications associated with small time steps, an infinitely thin reaction
zone (i.e. a line interface) is used and a shock wave or “burn front” is allowed to propagate
outwards in its normal direction to simulate the resulting explosion. Using experimental
data for speeds of the wave in various media, the burn front can be propagated out from
one or many detonation points and a “burn table” can be created from the resulting
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simulation. The burn table is simply the time difference at which the burn front crosses a
particular point in the geometry from the detonation beginning at some initial time 7,. By

creating the burn table, the exact position of the burn front is then known at any time, and
jumps in temperature and pressure can then be used at those locations as source terms in
the conservation equations. This approach allows the solution of the differential equations
associated with the chemical reactions and slow time steps to be sidestepped, yet gives a
more accurate solution than if the chemistry of the problem were ignored altogether, As
will be seen, the burn front propagation can be modeled by the eikonal equation.

2.0 Fronts Propagating with Curvature-Dependent Speed.

Let r(0) = x(s), 0<s<S be a simple closed curve in R? and let I'(+) be a one parameter
family of surfaces generated by moving r(:) along its normal vector field with speed

o = o(x,t). Here, o is a given scalar function. Thus, if we let x(s,r) be the position vector
of the surface 1(r), then the equations of motion of the burn front is given by

%x(s, 1) = on(s, £) (EQD

A tangent vector to the curve () is given by [xs, y Jf . Hence the unit normal vector to T'(¢)
is given by n(s,1) = |y, _xJ/(A/xzs +3*) . The equation of motion is now given by

x, = Oy /(s +ys) 3, = —ox/(Jx’s+y7y) . Formally, x(s,#) is a mapping from

[0, S1x {0, ] tO R? generated by the moving curve.
g y g

Let J = x'(s,1) = {x*‘ Y ‘} be the Jacobian matrix of ». If x'(s*, #*) is non-singular, then by

X Vi
the inverse function theorem, there exists near (s*, r*) an inverse map

x(x, y) :R* [0, 5]x [0, ]. That is there exists functions s = y(x y), t = 6(x, y). Now by the
carlier equation of motion,

DetfJ} = xy,-y.x, = —(WxZX + y2_\~. (EQ?2)

Looking at the chain rule shows {x“‘ Y ‘} % . B} or rearranging gives
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It follows that

% % %
ox = 1 Yr Vs R = 1 Y =V é} - 1 Ye =Y 10 - 1 Vs
3 Det[J} —x, x, % Det[J] ~x, %, |36 Det[J] —x, x| (1 Det[J] x,
dy ot Jt

Using this result with the value for De:[J] shown in EQ 2, the classical eikonal equation is
obtained :

2 2 1 2 2
5

h=L (EQ3)

A common way of solving EQ 3 is to introduce a time variable and solve the equation
o, +0lVo| = 1 (EQ 4)

to steady state. If this equation is time-stepped until steady-state is achieved (i.e. ¢, = 0),

then the solution to EQ 3 is obtained. The front propagation speed, ¢, can be a function
of position, curvature, etc. If desired to include curvature, a common profile that is used is

6 = o,(1-¢x), where x is the curvature defined by x = V - % and € is a constant

usually << 1.0.

3.0 Multigrid/Runge-Kutta Method

A nonlinear system of equations

Q@) = f (EQ 5)

is obtained when EQ 3 is discretized. EQ 4 then yields a system of ordinary differential
equations which can be integrated to steady state by a Runge-Kutta integration scheme.
The Runge-Kutta method can be regarded as an iterative method for solving the nonlinear
system of equations in EQ 5 where the time-step is an acceleration parameter. In this way,
the method can be further accelerated to steady-state by multigrid. This idea was used to
accelerate convergence to steady-state solutions of shock problems in [2].

Specifically, the algorithm for the fine level at the n'™ iteration is



WD = u® —aar Qo - fi= 1, m
i=u™
Lt(O) = un
Here, o, (i = 1,..., m) and m are constants which can be manipulated to gain better conver-
gence. Using some restriction operator to bring the solution from the fine grid to the
coarse grid, Rr,, and a restriction operator for the residual from the fine grid to the coarse
grid, R, , the coarse grid operations are defined by

0 ~
v = R ()

0) -
f1=0:0:7"7)=R(Q ()~ fy)
. Ql 1 i—1 ' ’ (EQ 6)
v =3O A 0,65 - fis 1, m

7= ™
0, is the nonlinear operator that operates on the coarse grid while f, is the right-hand side
of the coarse grid equation. The correction calculated by the coarse grid operation is

n+1

WA TE AL

Here, P is a suitable prolongation operator to take the solution from the coarse grid back to
the fine grid.

The above algorithm can be applied recursively for additional grid levels. Application to
the third grid level could be viewed as a correction to the correction to the original itera-
tion. The only note to take care of in additional levels is the prolongation step difference
which will be the correction between the original iteration at a particular level minus the
final iteration result at the same level. For example, if a third grid were being computed,
the additional coarsening step would be as follows

w® = R (%)
£y = 0w =R (0,) - f))
w? = WO A0, Ty p)i= 1, m

W= w™

The prolongation step back to the first coarse level would then be

viemp" " [ P(w- w(o))
A smoothing iteration would then occur as in EQ with v* replaced withvsemp . The
final output after this operation, v, would then be used with the original estimation for the

solution on the coarse grid, v, to yield

n+1

u = ﬁ+P(T)—v(O))



The restriction operators and prolongation operator should be chosen suitably for the par-
ticular discretized domain that is being used. For restriction, weighted averages of neigh-
boring points is often acceptable. Conversely, for prolongation, it is common to inject the
solution for a similar point and create weighted diminished injections for neighboring
points.

4.0 Single Point Detonation

To see how well the proposed algorithm would speed up the solution to the eikonal equa-
tion, the system was first computed on a 2D square cartesian grid. A single detonation
point was introduced into the system at the origin (bottom left of the grid) and allowed to
propagate outward until steady-state was reached with unit speed and no curvature ini-
tially. The grid size in both x and y directions is a constant, 4, and the total length of a side
is 1. Zero Neumann boundary conditions were specified. This setup was chosen for its
simplicity and the analytic solution is well known. Calling the unknown burn time (the
time at which the burn front crosses a particular point in the domain since ignition) , the

solutionis ¢ = Jx*+y .

On a square grid , the restriction operators have been set at the following :

L1
16 8 16
1 1 1
R..=1]21 - =
b 8 4 8
111
16 8 16
The following equation above reads as
1 1
Vi = g%t g(”i+1,j'" Upq, jF Uy jer T8 1)
+ ]6(“,4 L+l T Wi et T iy e Ty 1)

where from Section 3.0 above, u is the solution on the fine grid and v is the solution on
the coarse grid. For the problem here, the restriction of the solution and the restriction of
the residual are both using this same operator (R, = R, ).

The prolongation operator that is chosen is essentially the inverse operation of the restric-
tions with an additional factor of 4. For like grid points on the fine and coarse grid, the
value, as is seen in the operator, is simply injected in.
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Reading the above equation would give, for example, that « = lv,-y ; for the data value

Lj+tl T o

in position (1,2).

To compare how well this multigrid scheme performs, a simple finite differencing scheme
is also run on the same problem where derivative terms in the eikonal equation are approx-
imated my finite differences. The time derivative term uses a forward differencing scheme
while the first derivative term uses a backward one. For various size problems, a direct

clock time of the algorithms can be compared to show any speed-ups. The time step used

for both algorithms is set at Ar = Ax*/4. This time step is suboptimal for both cases, yet
the purpose here is simply to choose a similar time step for comparison and one that con-
verges. The actual optimal time step that still yields a stable solution is difficult to calcu-
late due to the nonlinearity of the problem.

5.0 Numerical Results.

To check the speed-up for the algorithm over a simple finite differencing approximation,
with like time steps, wall clock time is compared for both algorithms. Table 1 shows the
2-D time in seconds until steady-state is reached of the regular finite difference algorithm
on various sizes of problems, n (the number of grid points in 1 direction). The stopping

criterion used was a mean squared error of / .0e1%. Table 2 shows the corresponding data
for the multigrid algorithm presented for various levels of v-cycles. For example, 3 levels
would be v-cycles calculating the finest grid and using the next two coarsest grids in the
multigrid algorithm. Obviously due to some problem sizes, certain levels could not be
obtained due to too few grid points.

TABLE 1. 2-D Finite Differencing Computation Time to Steady-State

n 1 Level
0.17
9 1.37
17 9.45
33 102.21
65 1291.29
129 18893.55




TABLE 2. 2-D Multigrid Computation Time to Steady-State

n 1 Level 2 Levels 3 Levels 4 Levels 5 Levels 6 Levels 7 Levels
0.06 0.05 - — —— —— -
0.49 0.61 0.66 - _— —— .
17 494 4.28 4.83 5.00 --- —— —
33 52.51 34.17 29.55 45.48 29.99 - -
65 623.49 429.95 388.92 376.22 44291 585.76 -
129 9221.45 6375.44 5589.67 5499.83 5291.56 6875.44 9924.37

Speed-ups of factors of 4 are seen from some of the larger size problems. 1 level compu-

tation times for the multigrid algorithm shown throughout Table 2 are less than the compa-
rable finite differencing scheme used for a same size problem. This is due to the fact that

the multigrid Runge-Kutta algorithm employed uses a scaling factor, o, which yields the

difference in the two algorithms and accounts for the speed-up for the 1 level method. To

take advantage of this speed-up and the quick elimination of the high frequency error com-
ponents, the best level for each size is taken and several function evaluations at each level

are performed (i.e. m is varied when i = 1, ..., m in our multigrid algorithm). The results

show even greater speed-ups and are presented in Table 3.

TABLE 3. 2-D Computation Time for Various Number of Iterations at Select Multigrid Level

n=17 n=233 n =65 n=129
m 2 Levels 3 Levels 4 Levels 5 Levels
2 3.55 24.56 179.27 3124.55
3 2.87 19.41 135.49 2497.02
4 2.29 14.43 91.84 1998.33
5 1.75 10.56 62.76 1523.49
6 1.38 7.53 41.21 884.77
7 0.96 5.35 25.90 314.29
8 0.90 6.42 o -
9 0.64 - --- -

From comparing values from Table 3 with those in Table 1, the true speed-up of the multi-
grid algorithm for this test problem on various levels is seen. For 129 x 129 size problems,
the greatest speed-up is seen. The finite difference method took 18,893.55 seconds to
reach steady-state while the multigrid algorithm took only 314.29, a factor of 60.

The same problem after being run in 3-D shows similar results in lessened computation
time. Table 4 shows the time to reach steady state for the finite difference algorithm on the
unit cube in 3-D, and Table 5 shows the corresponding times for Multigrid.



TABLE 4. 3-D Finite Differencing Computation Time to Steady-State

n 1 Level
2.69
73.27
17 2899.19
33 66722.40

TABLE 5. 3-D Multigrid Computation Time to Steady-State

n 1 Level 2 Levels 3 Levels 4 Levels 5 Levels
1.92 1.92 - --- ---

9 48.12 43.50 46.90 --- ---

17 1952.54 1527.44 1603.89 2250.51 ---

33 40295.36 | 32787.66 | 29550.67 | 30678.11 | 45998.03

As seen from comparing the two tables, speed-ups of factors of 4 are observed again.

Table 6 shows similar data as Table 3, but in the corresponding 3-D case.

TABLE 6. 3-D Computation Time for Various Number of Iterations at Select Multigrid Level

n=17 n=233
m 2 Levels 3 Levels
2 2545.88 22590.46
3 2014.15 16877.74
4 1650.98 12491.57
5 1304.61 8829.55
6 956.42 5526.37
7 500.52 2249.15
8 200.49 1023.49
9 51.07 e

For the best case in a size n = 33 problem, a speed-up of a factor of roughly 65 is achieved
reducing the original time of 66,72.40 seconds down to merely 1,023.49 seconds.

6.0 Conclusions

A multigrid strategy was developed to solve the eikonal equation on orthogonal grids.
Speed up factors of 65 were obtained for a problem with a single point initial value. These
encouraging results motivate the extension of this algorithm to the eikonal equation on
unstructured hexahedral grids as well as to other Hamilton-Jacobi type equations.
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