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__________________________________________________________________

An analytical model of plasma flow from a metal plate hit
by an intense, pulsed, electron beam aims to bridge the gap
between radiation-hydrodynamics simulations and
experiments, and to quantify the self-effect of the electron
beam penetrating the flow. Does the flow disrupt the tight
focus of the initial electron bunch, or later pulses in a train?
This work aims to model the spatial distribution of plasma
speed, density, degree of ionization, and magnetization to
inquire. The initial solid density, several eV plasma expands to
1 cm and 10-4 relative density by 2 ms, beyond which
numerical simulations are imprecise. Yet, a Faraday cup
detector at the ETA-II facility is at 25 cm from the target and
observes the flow after 50 ms. The model helps bridge this gap.

The expansion of the target plasma into vacuum is so
rapid that the ionized portion of the flow departs from local
thermodynamic equilibrium. When the temperature (in eV) in
a parcel of fluid drops below Vi ´ [(2g - 2)/(5g + 17)], where Vi

is the ionization potential of the target metal (7.8 eV for
tantalum), and g is the ratio of specific heats (5/3 for atoms),
then the fractional ionization and electron temperature in that
parcel remain fixed during subsequent expansion. The freezing
temperature as defined here is Vi/19.

The balance between the self-pinching force and the
space charge repulsion of an electron beam changes on
penetrating a flow:
(i) the target plasma cancels the space-charge field,
(ii) internal eddy currents arise to counter the magnetization

of relativistic electrons, and
(iii) electron beam heating alters the flow magnetization by
changing the plasma density gradient and the magnitude of the
conductivity.
These cause beam expansion (besides scattering).
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The evolution of the total magnetic induction BBBB (beam-in-
target) is given by

¶BBBB

¶t
 = [

Ñ
2BBBB

sm
    +    curl(vvvv ´ BBBB) + 

Ñs
s

 ´ curl(BBBB)
sm

] +

[
ÑkTe ´ Ñne

ene
 - 

Ñ
2BBBB0

sm
 - 

Ñs
s

 ´ curl(BBBB0)
sm

],

where BBBB0 is the beam magnetic induction. The generated
magnetic field has the opposite polarity to the self-field of the
electron beam. Large local values arise where the density
gradients are large: at the leading edge of the cloud, and at the
surface of the plate. The second square bracket includes the
thermal source term powered by beam heating, and the
internal eddy current terms powered by the beam
magnetization. Heating raises s when a beam enters a cloud,
which slows the diffusive loss of BBBB and diminishes the first B-
dot bracket. The second B-dot bracket appears because
significant ÑTe and BBBB0 arise. When a beam pulse ends,
expansion cooling dissipates ÑTe, and both BBBB0 and the second B-
dot bracket disappear. The diminution of s raises the first B-
dot bracket and gives rise to a large ¶BBBB/¶t, possibly observable
as a Òsurface flashoverÓ across the front of the cloud.

__________________________________________________________________

EEEElllleeeeccccttttrrrroooonnnn    bbbbeeeeaaaammmm    eeeexxxxppppaaaannnnssssiiiioooonnnn    bbbbyyyy    ttttaaaarrrrggggeeeetttt    hhhheeeeaaaattttiiiinnnngggg

This report describes how an electron beam expands as a result of heating
the target foil it is penetrating.  This report completes work that evolved
through several stages, which are described in [1], [2], [3], [4], [5] and [6].
The significant finding of this work is that the appropriate form of
Faraday's law is

¶BBBB

¶t
 = [

Ñ
2BBBB

sm
    +    curl(vvvv ´ BBBB) + 

Ñs
s

 ´ curl(BBBB)
sm

] +

[
ÑkTe ´ Ñne

ene
 - 

Ñ
2BBBB0

sm
 - 

Ñs
s

 ´ curl(BBBB0)
sm

], (1)
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where BBBB is the magnetic induction generated in a flow of conductivity s, of
electron temperature and electron density gradients ÑTe and Ñne, and of
velocity vvvv, and where jjjj0 = curl(BBBB0/m) is the current density of the
relativistic electron beam. In equation (1), k is Boltzmann's constant, e is
the elementary charge, m is the magnetic permeability, and t is the time
parameter. As an electron beam heats a target, ne, Te, s, vvvv, ÑTe, and Ñne all
change and the target can magnetize quickly. When the beam is absent and
electron density and temperature gradients align, equation (1) reduces to
the usual Faraday's law of MHD. The following sections will describe the
thermal expansion of the target, the nonequilibrium nature of this ionized
flow, and the MHD consequences of an electron beam heat source within
this flow.

TTTThhhheeeerrrrmmmmaaaallll    eeeexxxxppppaaaannnnssssiiiioooonnnn    ooooffff    tttthhhheeee    ttttaaaarrrrggggeeeetttt    ----    tttthhhheeee    ssssoooouuuurrrrcccceeee

By assumption, the electron beam instantly heats a cylindrical volume V0
through the target to a uniform temperature T0(0). Matter flows out of
volume V0 through the total disc area A0 = 2pr02 at a local sonic velocity
c*(t) = [gkT*(t)/m]1/2, for atom mass m. As the discharge progresses, the
density r0(t) and temperature T0(t) in the source volume V0 decrease. The
rate of change of the source volume density r0(t) is

dr0

dt
 = -

m¢

V0
 = -

r*c*A0

V0
 = -( r0

(1 + 
g - 1

2
)

1
g - 1

)( c0

1 + 
g - 1

2

)A0

V0
, (2)

where m¢ is the mass flow rate, which is given as the mass flux through the
cross-sections where the flow is just sonic. The mass flux at the sonic
sections is related to conditions in the source volume by assuming the flow
to be that of an ideal perfect gas with a ratio of specific heats g. The speed
of sound in the source volume is c0(t) = [gkT0(t)/m]1/2. See [7] and [8] for
descriptions of compressible flow.

This model assumes that the source volume equilibrates quickly to
changing conditions, and it is always uniform. The initial temperature is

T0(0) = (g - 1
g

)(m
k
)( DU

r0(0)V0
 - DHv) + Tv, (3)
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where DU is the heat energy deposited by the electron beam, DHv is the
heat of vaporization from solid density, and Tv is the temperature at
vaporization. The temperature and density at time t in the source volume
are related to initial conditions T0(0) and r0(0) by

T0(t)

r0(t)g - 1
 = T0(0)

r0(0)g - 1
. (4)

Applying (4) within c0(t) in equation (2) leads to

dr0

dt
 = -( 2

g + 1
)

1
2
(g + 1

g - 1
)r0c0A0

V0
 = -( 2

g + 1
)

1
2
(g + 1

g - 1
)r0(0)c0(0)A0

V0
(r0(t)

r0(0)
)(g + 1

2
)
,

(5)

and this integrates to

r0(t)

r0(0)
 = ( 1

1 + t
t0

)
2

g - 1

t0 = V0

c0(0)A0
( 2

g - 1
) (g + 1

2
)

g + 1

g - 1 . (6)

The equation for the temperature follows from (4)

T0(t)
T0(0)

 = ( 1

1 + t
t0

)2
. (7)

FFFFiiiigggguuuurrrreeee    1111 shows the decay of source number density for a tantalum
volume 100 mm long and 0.8 mm in diameter, which was heated to 9 eV by
a heating impulse of 10 joules. FFFFiiiigggguuuurrrreeee    2222 shows the corresponding decay of
source temperature. This source volume is essentially a void by 10 ms.
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TTTThhhheeeerrrrmmmmaaaallll    eeeexxxxppppaaaannnnssssiiiioooonnnn    ooooffff    tttthhhheeee    ttttaaaarrrrggggeeeetttt    ----    tttthhhheeee    eeeexxxxtttteeeerrrrnnnnaaaallll    fffflllloooowwww

Flow from the source into the external vacuum is assumed to be one
dimensional. The shape of a flow front, as it advances from a sonic disc
A0/2, is assumed to form according to HuygensÕ principle with the local
supersonic speed. FFFFiiiigggguuuurrrreeee    3333 is a schematic showing these flow fronts. The
area of such a flow front that crosses the normal to A0/2 at distance z is

A(z) = 2p(z2 + p
2

r0z) + pr0
2. (8)

A(z) evolves from a disc to a hemisphere with increasing z.

The Mach number of one dimensional flow is related to the area ratio by

M 2 = ( A0

2A(z)
)

2
( 2

g + 1
)

g + 1

g - 1(1 + 
g - 1

2
M 2)

g + 1

g - 1. (9)

The ratios of flow properties at front A(z) to the respective properties in
the source are parametrized by Mach number M(z) and called stream-
tube-area relations, see [7] and [8]. The flight time to coordinate z of a
parcel of fluid leaving the source at time t is

t(z, t) = 
1 + 

g - 1

2
M(z)2

c0(t)M(z)
dz

0

z

 . (10)

The temperature, number density, and velocity of the flow at coordinate z
as functions of time are:

T(z, t + t) = T0(t)

1 + 
g - 1

2
M(z)2

(11)

N(z, t + t) = N0(t)

(1 + 
g - 1

2
M(z)2)

1
g - 1

(12)
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v(z, t + t) = c0(t)M(z)

1 + 
g - 1

2
M(z)2

. (13)

FFFFiiiigggguuuurrrreeee    4444 shows the number density profile along z at t + t(z, t) = 275 ns
for the tantalum flow of Figures 1 and 2. FFFFiiiigggguuuurrrreeee    5555 shows the
corresponding temperature profile for the tantalum fluid, and FFFFiiiigggguuuurrrreeee    6666
shows the velocity profile.

TTTThhhheeee    ttttrrrraaaannnnssssiiiittttiiiioooonnnn    ttttoooo    nnnnoooonnnneeeeqqqquuuuiiiilllliiiibbbbrrrriiiiuuuummmm    iiiioooonnnniiiizzzzaaaattttiiiioooonnnn

Flow expands so rapidly into the external vacuum that the ionized portion
of the fluid departs from local thermodynamic equilibrium. This cold
supersonic exhaust will have a much higher degree of ionization, and of
higher electron temperature, than would be expected from a gas in
thermodynamic equilibrium at the local temperature of the neutral flow.
The phenomenon of sudden expansion of a gas cloud into vacuum is
described in several sections of the two-volume work by ZelÕdovich and
Raizer, [9]. The criterion I use for estimating the point in the flow where
plasma ceases to be in equilibrium is in principle that proposed by Bray,
[10] and [11], and discussed extensively by Vincenti and Kruger [12]. My
earlier analysis of frozen flow, in [2], assumed a steady state or slowly
varying source. The analysis here includes the effect of source decay.

From the perspective of a frame of reference moving with the mass-
average velocity of the flow, the time rate of change of plasma density
within a small parcel of fluid is

¶ne

¶t
 = ane - Rne

2

(14)

for ionization rate ane and recombination rate Rnen+. Here, a is the
ionization rate coefficient, R is the recombination rate coefficient, ne is the
electron number density, and n+ is the ion number density. Only single
ionization is considered because the multiply-ionized source plasma
quickly recombines to a mixture of singly-ionized plasma and metal vapor
as the flow begins. Calculations by DeVolder, [13] and [14], show that the
Saha model of thermal ionization adequately describes this early,
equilibrium state of the plasma flow. A small digression on the Saha
equation follows.
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The equation developed by Saha (1920) for the equilibrium concentration
of plasma in a gas at temperature T in ¡K is

(n+

N
)2

1 - (n+

N
)2

p = 2g+
gN

(2pme

h2
)

3/2
(kT)5/2e-eVi/kT 

. (15)

Equation (15) is in the form shown by Cobine [15] and also by Vincenti and
Kruger [12]. Here electron and ion densities are assumed equal (ne = n+),
the gas pressure is p = kNT with number density N = r/mN (for atomic
mass mN), the factor involving the ion degeneracy g+ and neutral
degeneracy gN is assumed equal to one, Vi is the ionization potential in eV,
k is BoltzmannÕs constant, h is PlanckÕs constant, me is the electron mass,
and e is the elementary charge. For T in units of eV the equilibrium
concentration is

(n+

N
)2

1 - (n+

N
)2

 = 1
N

 
2g+
gN

(2pmee

h2
)

3/2
T 3/2e-Vi/T º K(T, N)

n+

N
 = K(T, N)

1 + K(T, N)
 º f(T, N)

. (16)

This restatement of SahaÕs equation is consistent with forms shown by
Tanenbaum [16], and Mitchner and Kruger [17]. For T in eV and N in cm-3,
the function K(T, N) is

K(T, N) = (3.0183 ´ 1021 1

cm3eV3/2
) 1

N
 T3/2e-Vi/T 

. (17)

Now we return to the discussion of nonequilibrium flow.

A parcel in local thermodynamic equilibrium will have a concentration of
plasma ne = n+ = a/R, where the rate coefficients a and R each depend on T
and N, see equation (14). If the plasma density is perturbed from
equilibrium by a small quantity h, then
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ne = a
R

 + h 

¶ne

¶t
 = ane - Rne

2  ®  
¶h

¶t
 = -ah - Rh2

h(t) » h(0)e-at
, (18)

where small terms of second order are neglected. The ionization rate
coefficient is the measure of the responsiveness of the fluid to
perturbations from equilibrium of its plasma density.

The equation of continuity for the plasma species from the perspective of a
static frame of reference is

¶ne

¶t
 + Ñ×nevvvv = 0, (19)

where vvvv is the mass-average velocity, plasma diffusion is neglected, and
there are no external sources or sinks of plasma. In equilibrium flow the
local rate-dependent processes compensate for any local inflow or outflow
of plasma density, so equation (19) can be restated as

ane - Rne
2 + Ñ×nevvvv = 0. (20)

Rate-dependent processes are so fast in equilibrium flow that they easily
adjust to any changes introduced by transport. If Ln is a length scale for
the variation of density, and V is a characteristic flow velocity, then
aLn/V >> 1. This nondimensional parameter is the exponential in equation
(18) when t = Ln/V, the time scale for the variation of density.

The temperature and density drop so precipitously during the rapid
expansion into the vacuum, that both the ionization and recombination rate
coefficients decrease by orders of magnitude over a short distance. The
flow far downstream from the source is a simple geometric expansion

2
g - 1

c0(t - DtR)

R2
 

¶

¶R
(R2ne) = 0, (21)



9

where DtR is the flight time to radial coordinate R. Here, aLn/V << 1 and
the plasma density and electron temperature are Òfrozen.Ó The frozen
plasma density is well above that expected from local thermodynamic
conditions because the three-body recombination reaction no longer occurs
in the cold and rarefied flow.

The transition from equilibrium flow to frozen flow is sudden, and it can
be approximated as occurring at a single hemispherical cross section of the
expansion. At this transition point, recombination is negligible and the rate
of change due to ionization is comparable to the rate of change due to
transport, or equivalently aLn/V = 1. The criterion for determining the
point of transition is

ane + Ñ×nevvvv = 0 = ane + 1

R2
 

¶

¶R
(R2nev), (22)

an idea originally proposed by Bray, see references [10], [11], and [12].
Note that the quantities in equation (22) are calculated on the basis of
equilibrium flow. Conditions prior to the transition are taken to be in
complete equilibrium, and conditions after the transition are assumed
frozen.

FFFFrrrroooozzzzeeeennnn    ppppllllaaaassssmmmmaaaa    fffflllloooowwww

An explicit formula for the coordinate zB at the point of transition is
derived from equation (22) by using the stream-tube-area relations,
equations (9), (10), (11), (12), and (13) to specify T(z, t + t), N(z, t + t), and
v(z, t + t), as well as the Saha equation for ne, and a formula for the
ionization coefficient a(T, N). As a matter of convenience in deriving a
formula for zB, coordinate z will be taken as the radius of purely
hemispherical flow fronts. This means that (A0/2)/A(z) in equation (9) is
replaced by (pr02)/(2pz2), which is inaccurate for z < r0. If greater accuracy
is desired then the analysis below can be repeated with the A(z) of
equation (8) in the Mach number-area relation.

The transition from equilibrium to frozen flow occurs when

¶

¶z
(vnez2) + anez2 = 

¶

¶z
(vz2Nf) + az2Nf = 0. (23)
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At the point of transition z = zB, and (23) becomes

-2
zB

 = a
v

 + 1
f

 
¶f

¶z
 + 1

v
 
¶v

¶z
 + 1

N
 
¶N

¶z
 

-2
zB

 = a
v

 + 1
f

 (¶f

¶T
 
¶T

¶z
 + 

¶f

¶N
 
¶N

¶z
) + 1

v
 
¶v

¶z
 + 1

N
 
¶N

¶z
 . (24)

Notice from equations (9) through (13) that the spatial derivatives of T, N,
and v also involve time. It is convenient to reference the time of departure
of a parcel of fluid from the source, t, to its time of arrival at coordinate z.

Flow that leaves the source at time t arrives at coordinate z at time

tz = t +t(z, t) = t + 1
c0(t)

1 + 
g - 1

2
M(z)2

M(z)
dz

0

z

 = t + 
(1 + t

t0
)

c0(0)
 lz(z)

tz = t(1 + tz0

t0
) + tz0 = t(1 + lz(z)

c0(0)t0
) + lz(z)

c0(0)t0
. (25)

Now, make tz and z the independent variables, and find the corresponding
time at the source as

t(tz, z) = tz - tz0

(1 + tz0

t0
)

. (26)

The stream-tube-area relations for T, N, and v are now given by equations
(11), (12), and (13) with tz in place of t + t on the left, and equation (26)
for t on the right.

The derivatives of T, N, and v with respect to z, required in equation (24),
will include terms proportional to ¶t/¶z that arise from the differentiation
of T0(t), N0(t), and c0(t). In addition, terms proportional to dM/dz will also
arise. Consider the derivative ¶T(z, tz)/¶z as an example,
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¶T

¶z
 = 

(1 + 
g - 1

2
M 2)dT0

dt
 
¶t

¶z
 - T0(t)([g - 1]M dM

dz
)

(1 + 
g - 1

2
M 2)

2
. (27)

Equation (27) depends on the source temperature history and its rate of
change, on the Mach number and Mach number gradient, and on ¶t/¶z.
Similar equations result for ¶N(z, tz)/¶z and ¶v(z, tz)/¶z. The gradients of t
and M are:

¶t

¶z
 = 

(1 + tz

t0
)( g + 1

2
 - 1

M(z)
1 + 

g - 1

2
M(z)2 )

c0(0)(1 + tz0(z)
t0

)
2

, (28)

dM
dz

 = 
1 + 

g - 1

2
M(z)2

(g + 1)zM(z)[1 - ( z
r0

)4( g + 1

2 + (g - 1)M(z)2
)

2
g - 1]

. (29)

The last two derivatives needed in equation (24) for the point of transition
are the partials of the ionization fraction f with respect to temperature and
density:

¶f

¶T
 = 

(1 - f 2)

2
 
f

T
 (3

2
 + Vi

T
),

¶f

¶N
 = -

(1 - f 2)

2
 
f

N
 . (30)

By evaluating equation (24) using the results shown up to now, the point
of transition zB is found as the root for z in
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z = 2v(z, t(z, 0))
a {

2(g + 1

M 2
) + (1 - f 2)[(g - 1)(3

2
 + Vi

T
) - 1]

(g + 1)[4 - 
g + 1

M 2(2 + (g - 1)M 2)
]

 - 1} 1
S(z, t)

,

S(z, t) = [1 + t
t0

 - 

[1 + 
1 + f 2

g - 1
 + (1 - f 2)(3

2
 + Vi

T
)]

at0(1 + t(z, 0)
t0

)
[ (g + 1)M 2

2 + (g - 1)M 2
 - 1]].

(31)

If the source is steady (infinitely long) then t0 is infinite and S(z, t) = 1. In
the limit of a steady source, M ® ¥, and f ® 0, the point of transition
occurs at

z = 2v(z, t(z, 0))
a

 {
g + (g - 1)(5

2
 + Vi

T
)

4(g + 1)
 - 1}. (32)

As transition occurs where az/v(z, t(z, 0)) = 1, the temperature at the
freezing point in the limit described by (32) is given by

Vi

T
 = 

5g + 17

2(g - 1)
, (33)

which equals 19 for g = 5/3. Thus, a steady tantalum flow with an
ionization potential of Vi = 7.8 eV will experience ionization freezing as the
temperature drops below 0.41 eV.

Unsteady flow will freeze at a higher temperature. Consider S(z, t) in the
high Mach number, low ionization fraction limit,

S(z, t) = [1 + t
t0

 - 

1 
g - 1

 + 5
2

 + Vi

T

at0 + 1
[ g + 1

g - 1
 - 1]]. (34)

For S(z, t) to be positive we must have (Vi/T) » at0 > 3. Basically, if the
source is decaying at a rate comparable to the ionization rate then the flow
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is inherently nonequilibrium and there is no transition in positive space
from thermal equilibrium to freezing. The temperature at the freezing
point for positive S(z, t) in this limiting case is

Vi

T
 = 

4(g + 1)S + g + 13

2(g - 1)
, (35)

which equals 11 for S = 0 and g = 5/3. With a hot source at early time
at0 >> (Vi/T) and S » 1. As time progresses, at0 drops and S approaches 0.
Thus, an unsteady tantalum flow in this limiting case could have a freezing
point that increased in temperature from 0.41 eV to 0.71 eV while
approaching the source from positive space (more precisely, zB ® 0 with
increasing characteristic lines of the flow).

A parcel of fluid that crosses zB(t + t(zB, t)) is assumed to have its electron
temperature fixed to Te = T(zB) for all points z > zB. This parcel will also
have its ionization fraction fixed to f = f(T(zB), N(zB)) for points
downstream of zB. The freezing of electron temperature is seen in the
spatial profile of a tantalum flow at 275 ns in FFFFiiiigggguuuurrrreeee    5555, where the
freezing point was assumed to occur at Te = 0.41 eV at any time. FFFFiiiigggguuuurrrreeee    7777
shows the flow characteristics on the z-t plane, and the trajectory of the
simple Te = 0.41 eV freezing transition in this example. Parcels of fluid
emerge at z = 0 and move along characteristic lines. The trajectory of the
freezing point divides the z-t plane into regions of equilibrium and
nonequilibrium. FFFFiiiigggguuuurrrreeee    8888 shows the electron number density at 275 ns
corresponding to Figures 5 and 7.

EEEElllleeeeccccttttrrrroooonnnn    bbbbeeeeaaaammmm    MMMMHHHHDDDD    iiiinnnntttteeeerrrraaaaccccttttiiiioooonnnn

The Faraday's law shown as equation (1) is found by combining a
generalized Ohm's law for the current density exclusive of the electron
beam jjjj,

jjjj = s(EEEE + vvvv ´ BBBB + 
Ñpe

ene
), (36)

the electron beam current density source jjjj0,

jjjj0 = curl(BBBB0
m

), (37)
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Ampere's law,

curl(BBBB
m

) = jjjj + jjjj0 + e
¶EEEE

¶t
, (38)

and Faraday's law

curl(EEEE) = -
¶BBBB

¶t
. (39)

The electron pressure, number density, and temperature are related by
the ideal gas law pe = kneTe. Terms proportional to e/s are neglected, which
is to say electromagnetic waves are ignored. The beam is taken as a source
of magnetism (BBBB0) and heat (ÑTe) within the target plasma, but not of
charge. The last assumption must be reevaluated in the case of beam
penetration of rarefied, low-conductivity clouds. The general features of
the resulting Faraday's law are described in the abstract and first section
of this report. This section will address two topics: a justification for this
generalized Ohm's law, and an estimate of the magnitude of thermally
generated magnetization.

A great deal has been written about the generalized Ohm's law, references
[16], [17], [18], [19], and [20] are just a sampling. The analysis here does
not approach the depth of the references. My purpose is to show that
equation (36) is more than a simple arbitrary choice. The current density
sought is

jjjj = ZeG+ - eGe = e(Zn+vvvv+ - nevvvve). (40)

The velocities are obtained from the momentum equations for electrons
and ions, which both have the form

r[
¶vvvv

¶t
 + vvvv×Ñvvvv] = -Ñp + q±n (EEEE + vvvv ´ BBBB) - rnN(vvvv - vvvvN), (41)

where q+ = Ze, q- = -e, nN is the electron-ion collision frequency,
vvvvN = (r+vvvv+ + revvvve)/(r+ + re) is the mass average velocity, and r, p, n and vvvv
are distinct for each species. The assumed plasma is fully ionized and
inviscid. Each flux vector has the form



15

G = nvvvvN + nW±(EEEE + vvvv ´ BBBB) - n
nN

(Dvvvv
Dt

 + 
Ñp
r

), (42)

where W+ = Ze/(m+nN) and W- = -e/(menN) are the mobility coefficients, and
Dvvvv/Dt is the substantial, or convective, derivative. The current density is

jjjj = rcvvvvN + sEEEE    + e[W+n+vvvv+ - W-nevvvvN    - W-
m+
me

n+(vvvvN    - vvvv+)] ´ BBBB

+  e
nN
{ne(Dvvvve

Dt
 + 

Ñpe

re
) - Zn+(Dvvvv+

Dt
 + 

Ñp+

r+
)}, (43)

where rc = e(Zn+ - ne) is the charge density, and s = e(n+W+ - neW-) is the
conductivity. Because of the great disparity in the masses of ions and
electrons, and because of the comparable magnitudes of their
temperatures, vvvv+ ® vvvvN, s ® -eneW-, and the electron pressure gradient
emerges as the significant term in the curly braces. The Ohm's law shown
as equation (36) emerges from (43) by applying these simplifications and
the additional assumption of charge neutrality. The subscript is dropped
for the mass average velocity in equation (36).

To estimate the magnitude of thermally generated BBBB, we first express
equation (1) in cylindrical coordinates and assume a simplified case where
the functional dependencies are BBBB = Bq(r, z, t)iiiiq, BBBB0 = B0q(r, t)iiiiq,
vvvv = vz(z, t)iiiiz, ne(r, z, t), Te(r, t), and s(r, t). In addition, s(r, t) is assumed to
be purely dependent on Te3/2, so ¶s/¶r = (3/2)(s/Te)(¶Te/¶r). The result is

¶Bq

¶t
 = {¶Te

¶r
[-k
ene

 
¶ne

¶z
 + 1

smr
(B0q + r

¶B0q

¶r
) 3
2Te

] - 1
smr

(
¶B0q

¶r
 + r

¶
2B0q

¶r2
)}

- Bq(¶vz

¶z
 + 3

2
 1
smr

 1
Te

 
¶Te

¶r
) - vz

¶Bq

¶z
 + 1

sm
 
¶

2Bq

¶z2

+ 1
sm{(1

r
 - 3

2
 1
Te

 
¶Te

¶r
)¶Bq

¶r
 + 

¶
2Bq

¶r2
}. (44)

The radial derivatives will depend on the radial profile of the electron
beam, and the axial derivatives will depend on the axial profile of the
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cloud. The following three sections describe separate analyses to find these
derivatives, then we return to apply them to equation (44).

EEEElllleeeeccccttttrrrroooonnnn    bbbbeeeeaaaammmm    pppprrrrooooffffiiiilllleeee    ----    rrrraaaaddddiiiiaaaallll    ddddeeeerrrriiiivvvvaaaattttiiiivvvveeeessss

Assume the electron beam has a radial current profile of

I0(r) = I00

(1 + ( 2 r
r0

)2)2
, (45)

where I0(r) is the total current included between radius r and infinity. The
current density at radius r is

j0(r) = 4I00

pr0
2

 1

(1 + 2( r
r0

)2)3
, (46)

and the magnetic induction is

B0(r) = 
mj0(0)r0

8
 (r0

r ){1 - 1

(1 + 2( r
r0

)2)2
}. (47)

The total electron beam current I00 is a function of time. FFFFiiiigggguuuurrrreeee    9999 shows
the normalized radial profiles for j0(r) and B0(r) along normalized
coordinate x = r/r0, as well the normalized radial profile for ¶Bq/¶t, which
will be presented later.

The electron temperature at a given r is

Te(r, t) = (
g - 1

g
)(m

k
)(DE) |j0(r, t)|dt

0

t

 , (48)

where DE = 1.6 ´ 105 (eV/m)/(kg/m3) and is an average energy loss by
collisions as a relativistic electron beam penetrates a target cloud of atomic
mass m. The electron beam is assumed to be a pulse that is short in
comparison to the evolution of the cloud. The radial profile of Te is the
same as that for j0.
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The radial derivatives needed in equation (44), which result from this
beam profile are:

1
Te

 
¶Te

¶r
 = -(12

r0
) x

(1 + 2x2)
, (49)

¶B0

¶r
 = (1

r0
)(mj0(0)r0

8
){ 8

(1 + 2x 2)3
 - 1

x2
[1 - 1

(1 + 2x 2)2
]}, (50)

¶
2B0

¶r2
 = ( 1

r0
2
)(mj0(0)r0

8
){2

x3
[1 - 1

(1 + 2x 2)2
] - 8

x
 1

(1 + 2x 2)3
 - 96x

(1 + 2x 2)4
}

(51)

where x = r/r0.

CCCClllloooouuuudddd    ddddeeeennnnssssiiiittttyyyy    ----    tttthhhheeee    aaaaxxxxiiiiaaaallll    ddddeeeerrrriiiivvvvaaaattttiiiivvvveeeessss

The model of cloud flow, which was described earlier in this report, has an
idealized density front of infinite slope. In reality, particles of higher than
average temperature will diffuse ahead of the mass-average flow, and
particles of lower than average temperature will lag. In this way an
initially sharp density front relaxes into a broader zone of lesser gradient.
To capture this effect, and to have a differentiable model of the density
profile, the following form is used for the axial profile

N(z) = (N2 - N1e-b2z1)( z
z1

)b1 + N1e-b2z - N2e-b3(z - z1)2, (52)

where z < z1, which is the coordinate at zero density. This profile has three
sections: an exponential decay near the source, a density ramp at midspan
in the cloud, and a sharp, gaussian fall-off at the front. Parameters are
assigned as follows:

N1 = N0(0)

(1 + t
t0

)
2

g - 1

,
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N2 = N0(0)

1 + p( z
r0

) + 2( z
r0

)2
,

z1 = 2
g - 1

c0(0)t ,

b1 = t/t0,

b2 = 1/r0,

b3 = ( N0(0)s0

1 + p( z
r0

) + 2( z
r0

)2
)2

(53)

Here, N1 is the source number density as in equation (6), N2 is the density
of the idealized sharp front at coordinate z, z1 is the position of the sharp
front at time t, b1 sets the shape of the density ramp behind the front, b2
is the scale length of density decay near the source, and b3 determines the
width of the broadened front at coordinate z. The parameters N0(0), t0, r0,
and c0(0) are as before (N0(0) = r(0)/m). The atomic cross section is s0, and
the initial mean-free-path is

l0 = 1/(N0(0)s0). (54)

A fairly impressive equation results from substituting parameters (53)
into equation (52). FFFFiiiigggguuuurrrreeee    11110000 shows this axial density model for a flow
with t0 = 93 ns, r0 = 0.4 mm, c0 = 5000 m/s, l0 = 2 ´ 10-7 m, and t at 0.2 ms,
0.4 ms, 0.6 ms, 0.8 ms, and 1 ms. FFFFiiiigggguuuurrrreeee    11111111 shows a second example with
t0 = 0.5 ms, r0 = 1.0 mm, c0 = 5000 m/s, l0 = 2 ´ 10-7 m, and t at 0.4 ms, 0.8
ms, 1.2 ms, 1.6 ms, and 2 ms. The profiles in Figures 10 and 11 are normalized
by N0(0). The profile of Figure 4 most closely corresponds to the profile at
0.2 ms in Figure 10.

The electron density is assumed to have the same axial profile as the flow
density. It is important to note that the temperature developed by electron
beam heating does not depend on the density of material when the target
is thin compared to the electron range. The energy deposited per unit mass
is constant, denser matter simply absorbs more energy. The energy per
unit mass that is absorbed depends on the atomic weight of the material,
so different materials will exhibit different heating from a given beam.
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Because of these effects, the electron temperature only has radial
variation, set by the beam profile. The electron density at a given radius is
the product of a constant ionization fraction for that radius and the
material density. Thus, (1/ne)(¶ne/¶z) = (1/N)(¶N/¶z).

While equations (52) and (53) simplify the task of calculating cloud
density profiles, they are still arduous to differentiate. Thus, the axial
derivatives will be found for three limiting cases of this density model:
z/z1 ® 0, z/z1 ® 1/2, z/z1 ® 1, which correspond to regions near the
source, at midspan, and at the front. It is always assumed that z1 >> r0, and
that we consider cross sections at z > r0. Implementing these assumptions
results in:

1
ne

 
¶ne

¶z
 = - 1

r0
(55)

near the source,

1
ne

 
¶ne

¶z
 = 1

z
( t
t0

 - 2) (56)

at midspan for a flow at a time t in its evolution, and

1
ne

 
¶ne

¶z
 = -2(z1 - z)

(xl0)2
 

e
-(z1 - z

xl0
)2

1 - e
-(z1 - z

xl0
)2

,

x º ( 4
g - 1

)(c0(0)t
r0

)
2

(57)

in the front, which has a density profile

N(z) = N0(0)

x
(1 - e

-(z1 - z

xl0
)2

). (58)

The peak of ¶2N/¶z2 occurs at (z1 - z)/xl0 = 1/Ö2, and the logarithmic
derivative there is
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1
ne

 
¶ne

¶z
 = -2.18

x l0

 = -2.18
l0

(
g - 1

4
)( r0

c0(0)t
)
2
. (59)

The derivatives in equation (44) for ¶Bq/¶t that remain unspecified are the
z derivative of vz, and the first and second r and z derivatives of Bq itself.
The following section describes these derivatives.

TTTThhhheeee    vvvvaaaarrrriiiiaaaattttiiiioooonnnnssss    ooooffff    tttthhhheeee    mmmmaaaaggggnnnneeeettttiiiicccc    iiiinnnndddduuuuccccttttiiiioooonnnn

The leading term of equation (44) will produce the dominate growth of Bq

when there is an appreciable density gradient. The radial variation of this
term is set by the radial gradient of the electron temperature. Thus, the
form expected for Bq is

Bq(r, z) = bq(z) x

(1 + 2x2)
4
. (60)

For convenience later, define fB(x) as the radial factor in equation (60); this
is shown as curve "dBq" in Figure 9. The r derivatives of Bq are:

1
Bq

 
¶Bq

¶r
 = 1

r0x
 1 - 14x2

1 + 2x2
,

1
Bq

 
¶

2Bq

¶r2
 = -16

r0
2

 3 + 14x2

(1 + 2x2)
2
. (61)

The z variation of Bq should follow that of the electron density gradient, so
the following assumption is made

1
Bq

 
¶

nBq

¶zn
 = ( 1

ne
 
¶ne

¶z
)

n
(-1)n - 1. (62)

The z variation of vz is assumed to have little impact as it is quite gradual.
Now we return to equation (44).
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TTTThhhheeee    ggggrrrroooowwwwtttthhhh    ooooffff    mmmmaaaaggggnnnneeeettttiiiicccc    iiiinnnndddduuuuccccttttiiiioooonnnn    dddduuuurrrriiiinnnngggg    aaaa    hhhheeeeaaaattttiiiinnnngggg    ppppuuuullllsssseeee

Applying the results described in the last three sections to equation (44)
produces

¶Bq

¶t
 = -(kTe

e
)( 1

Te

 
¶Te

¶r
)( 1

ne
 
¶ne

¶z
)

- ( 1

smr0
2
)(mj0(0)r0

8
){ 96x

(1 + 2x 2)4
 + 1

x2
[1 - 1

(1 + 2x 2)2
]}

+ {( 1

smr0
2
)[ 12

1 + 2x 2
 + (1 + 18x 2

1 + 2x 2
) 1
x2

(1 - 14x 2

1 + 2x 2
) - 163 + 14x 2

1 + 2x 2
]

+ ( 1
ne

 
¶ne

¶z
)[-1

sm
( 1
ne

 
¶ne

¶z
) - vz] - 

¶vz

¶z
}Bq, (63)

which has the form

¶Bq

¶t
 = K(r, z, t) + w(r, z, t)Bq. (64)

The source term K includes the effects of thermodynamics and the beam
magnetization. The relaxation rate w includes the effects of diffusion and
transport. For convenience later, define fK(x) as the factor within the curly
braces in the second line of equation (63), and define fw(x) as the first
square-bracketed factor within the curly braces that span lines three and
four of equation (63).

When the electron beam current has a linear growth with time, then by
equation (48) the electron temperature increases as time squared. Assume
this is the case, and that the following apply:

K(r, z, t) = tK1(r, z) + t2K2(r, z),

K(r, z, 0) = 0,

w(r, z, t) ® w(r, z). (65)
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The result for Bq is

Bq = K1

w2
(ewt - 1 - wt) + K2

w3
(2ewt - 1 - (1 + wt)2). (66)

This linear beam is described as follows:

j0(0, t) = j¥
t
t¥

,

B0(0.816r0, t) = 
mj¥r0

8
 t
t¥

,

kTe(0, t)
e

 = 
g - 1

g
 m
e

DE
|j¥|t¥

2
 ( t

t¥
)2

, (67)

where the subscript ¥ indicates quantities at the end of the beam ramp.
Now, find K1, K2, and w for this linear beam,

K1 = -
B0(0.816r0, t¥)

t¥

 
fK(x)

smr0
2

,

K2 = 
kTe(0, t¥)

e
 1

t¥
2

 12
r0

 fB(x)( 1
ne

 
¶ne

¶z
),

w = ( 1
ne

 
¶ne

¶z
)[-1

sm
( 1
ne

 
¶ne

¶z
) - vz] - 

¶vz

¶z
 + fw(x)

smr0
2
. (68)

K1 retains the form shown in (68), near the source, at midspan, and at the
front of the beam. This source factor arises from the beam magnetization.
Three forms for each of K2 and w, for the three sections of the cloud, are
given by applying logarithmic derivatives (55), (56), and (59) in (68).

If we consider just the front, with an overwhelming gradient effect, then

K2 = -
kTe(0, t¥)

e
 1

t¥
2

 12
r0

 fB(x)2.18
l0

(g - 1

4
)( r0

c0(0)t
)2

,
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w = -1
sm(2.18

l0

(
g - 1

4
)( r0

c0(0)t
)
2)2

, (69)

where t is used to indicate the elapsed time of the flow to avoid confusion
with t, which is now used to indicate time in the heating pulse. K1 in the
front is given by (68), and Bq by (66).

FFFFiiiigggguuuurrrreeee    11112222 shows an example of a linear beam with I0(0, t¥) = 2000 A,
r0 = 0.5 mm, t¥ = 20 ns, and B0(0.816r0, t¥) = 0.8 T, which pierces a front
with c0(0) = 5000 m/s, t = 1 ms, l0 = 2 ´ 10-7 m and s = 106 S/m. The
values used in the radial functions are fK(0.3) = 17.99 and fB(0.3) = 0.1547.
The relaxation rate given by (69) is -1/w = 3.81 ns. The figure shows four
magnetic induction histories during the course of the 20 ns pulse, and then
again during the initial 2 ns. Bq is the total induction given by equation
(66) for this example, Bq1 is that part of Bq generated by K1, and Bq2 is
generated by K2. B0 is the magnetic induction of the beam. The generated
fields are shown with reverse polarity so as to compare with the
magnitude of the beam induction. Initially, the front magnetizes as a result
of eddy currents arising to shield the cloud from the penetration of B0.
However, this is overtaken by thermal magnetization by 2 ns. After 10 ns,
the thermal magnetization completely dominates, and by the end of the
20 ns ramp it is three times stronger than the beam induction.

A self-consistent treatment of s[Te(r, t)] would improve the estimate of
Bq(r, z, t), however that is left to future work. Another consideration is that
any estimate of Bq always remain within the bounds set by the available
heat energy density, Bq2/(2m) < pe = kneTe, (or eneTe for Te in eV). The only
effects limiting the growth of Bq in equation (63) are transport and
diffusion. An Ohm's law more detailed than equation (36) would offer
more avenues for magnetic field saturation, examples are described by
Haines [20]. Note that a 1 Tesla field has an energy density of 4 ´ 105 J/m3,
and a plasma at Te = 10 eV and ne = 2.5 ´ 1019 cm-3 has one hundred times
more at 4 ´ 107 J/m3. The electron beam plasmas described in this report
are amply heated to generate magnetic defocusing.
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DDDDeeeefffflllleeeeccccttttiiiioooonnnn    ooooffff    bbbbeeeeaaaammmm    eeeelllleeeeccccttttrrrroooonnnnssss

Clouds with density profiles that increase monotonically toward the source
would have the greatest defocusing reaction to an electron beam. Consider
two examples where a pair of electron beam pulses hit tantalum targets.
The first pulse generates a cloud, and the second pulse magnetizes it. The
first example has a 2 mm thick target plate and pulses separated by
t = t0 = 0.934 ms. This example is actually #3 in our series of axial density
models. Example 4 has a 1 mm thick tantalum target and pulses separated
by t = t0 = 0.467 ms. Recall that t is the elapsed time of the flow, and t0 is
the characteristic time of the source. Clouds at t = t0 have a negative
density gradient by equation (56). The electron beam pulses have
I0(0, t¥) = 6000 A, r0 = 0.5 mm, t¥ = 20 ns, B0(0.816r0, t¥) = 2.4 T, and a
total charge Q0 = I0(0, t¥)Dt, where Dt = 40 ns (the equivalent square
pulse). In both of these examples, the initial source temperature is
T0(0) = 37 eV, and the initial sonic speed is c0(0) = 5709 m/s. The initial
front thickness assumed is l0 = 2 ´ 10-6 m, and the conductivity assumed
is s = 106 S/m. The peak temperature in the cloud during the ramp up of
beam current is Te(0, t¥) = 37 eV, on axis at t¥.

FFFFiiiigggguuuurrrreeee    11113333 shows the axial density profile for example 3 by equations
(52), (53), and (54). FFFFiiiigggguuuurrrreeee    11114444 shows the axial profile of magnetic
induction for this density profile by equations (68), with vz and ¶vz/¶z
ignored, and fw(0.3) = -53.4. The relaxation rate w(r, z) in these examples is
dominated by the diffusion term with fw. FFFFiiiigggguuuurrrreeee    11115555 shows a similar
Bq(0.3r0, z, t¥) profile for the cloud from the 1 mm plate. The magnetic
induction profiles show plateaus below z = r0 where the logarithmic
derivatives of density are assumed to be constant at -1/r0, and they show
spikes at the fronts. Notice that the magnetic induction within the cloud
has a comparable magnitude to the vacuum induction of the beam but is of
opposite polarity.

The deflection of beam electrons by Bq(0.3r0, z, t¥) is estimated by finding
the electron gyroradius based on the average of Bq along z in the cloud, and
then the lateral excursion Dy for a swing of axial extent Dz, for the length
of the cloud. A small study of examples 3 and 4 yields the following table.
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TTTTaaaabbbblllleeee,,,, DDDDeeeefffflllleeeeccccttttiiiioooonnnn    ooooffff    bbbbeeeeaaaammmm    eeeelllleeeeccccttttrrrroooonnnnssss
__________________________________________________________________
plate 2 mm --------------------> 1 mm -------------------->

Bq, T -0.79 T, average ---------> -0.92 T, average --------->

Dz, mm 8.43 mm -----------------> 4.22 mm ----------------->

MeV 5 10 20 5 10 20

Dy, mm 1.58 0.81 0.41 0.45 0.24 0.12

Dq, ¡ 21.3 11.0 5.6 12.2 6.4 3.3

(Dy + r0) 4.17 2.62 1.82 1.90 1.47 1.24
     r0
     r02   0.06 0.15 0.30 0.28 0.46 0.65
(Dy + r0)2

_________________________________________________________________

Electrons of a given energy enter the cloud at 0¡ and experience a
deflection Dy, and a veering to Dq, after traversing an extent Dz. These
pulses expand noticeably within 20 ns of their arrival at the cloud fronts;
the penultimate line in the table shows the growth ratio of the beam
diameter, and the last line shows the corresponding intensity diminution.
Electron-atom scattering would add to the broadening of the beam.

AAAAtttt    tttthhhheeee    mmmmeeeerrrrccccyyyy    ooooffff    ppppaaaarrrraaaammmmeeeetttteeeerrrrssss

Clearly, any physics conclusion made on the basis of formulas, such as
those described in this report, will be at the mercy of the parameters one
chooses. For example, the parameter l0, which characterizes the initial
thickness of the vacuum-to-metal interface, has a major impact on thermal
magnetization at the cloud front. Other key parameters are the initial
temperature of the fluid source, and the conductivity of the cloud. The
model invites one to play with parametric assumptions, and it has value to
the extent that this produces insight.
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FFFFiiiigggguuuurrrreeee    ccccaaaappppttttiiiioooonnnnssss

1. Source number density history. Tantalum number density in cm-3

versus time in ms for an impulse of 10 J in a 0.8 mm diameter, 100
mm long volume. The parameter t0 = 93 ns.

2. Source temperature history. The source temperature in eV
corresponding to Figure 1.

3. Flow fronts. This schematic shows the assumed shape of flow fronts,
and described by A(z) in equation (8).

4. Number density profile at 275 ns. Tantalum number density in cm-3

versus axial coordinate z in mm at 275 ns. The source of this flow is
described in Figures 1 and 2.
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5. Temperature profiles at 275 ns. Temperature in eV versus axial
coordinate z in mm at 275 ns. Electron temperature diverges from
tantalum fluid temperature in regions of nonequilibrium. This is the
same flow as in Figure 4. A static background gas of 10-6 torr and
300 ¡K was assumed to exist in the space outside the source solely
for convenience when making logarithmic plots.

6. Velocity profile at 275 ns, and M(z). Velocity in m/s versus axial
coordinate z in mm at 275 ns. Also shown is the Mach number profile
for flow fronts as described by A(z) in equation (8). This is the flow
of Figure 4.

7. Flow characteristics and the freezing line. The z-t plane, in mm-ms,
for the flow of Figure 4. Fluid emerges at z = 0 over time and
propagates along characteristics through an evolving ionization-
freezing transition point. Here, the freezing condition is T = 0.41 eV.
Frozen flow exists above the freezing line, equilibrium flow below it.
The characteristics are curved because the flow accelerates from the
source, and they are splayed rather then parallel because the source
cools rapidly.

8. Electron density profile at 275 ns. Electron number density in cm-3

versus axial coordinate z in mm at 275 ns for the flow of Figure 4.
Notice from Figures 5 and 7 that this profile cuts through the
freezing line at 0.8 mm. The leading edge of the flow, emanating
from a hotter source than later parcels, takes longer to cool to the
freezing condition. Later flow starts cooler and reaches frozen
ionization sooner. The ionization fraction is about 10-4 in the frozen
flow.

9. Radial profiles set by electron beam. Normalized radial profiles for
j0(r) and B0(r) along normalized coordinate x = r/r0, as well the
normalized radial profile for ¶Bq/¶t.

10. Axial density model, example 1. This flow has t0 = 93 ns, r0 = 0.4 mm,
c0 = 5000 m/s, l0 = 2 ´ 10-7 m, and t at 0.2 ms, 0.4 ms, 0.6 ms, 0.8 ms,
and 1 ms.

11. Axial density model, example 2. This flow has t0 = 0.5 ms, r0 = 1 mm,
c0 = 5000 m/s, l0 = 2 ´ 10-7 m, and t at 0.4 ms, 0.8 ms, 1.2 ms, 1.6 ms,
and 2 ms.
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12. Magnetic field growth during a heating pulse. This is an example of a
linear beam with I0(0, t¥) = 2000 A, r0 = 0.5 mm, t¥ = 20 ns, and
B0(0.816r0, t¥) = 0.8 T, which pierces a front with c0(0) = 5000 m/s,
t = 1 ms, l0 = 2 ´ 10-7 m and s = 106 S/m. The values used in the
radial functions are fK(0.3) = 17.99 and fB(0.3) = 0.1547. The
relaxation rate given by (69) is -1/w = 3.81 ns. The figure shows four
magnetic induction histories during the course of the 20 ns pulse,
and then again during the initial 2 ns. Bq is the total induction given
by equation (66) for this example, Bq1 is that part of Bq generated by
K1, and Bq2 is generated by K2. B0 is the magnetic induction of the
beam. The generated fields are shown with reverse polarity so as to
compare with the magnitude of the beam induction.

13. Axial density model, example 3. This example has a 2 mm thick
tantalum target plate and pulses separated by t = t0 = 0.934 ms. The
electron beam pulses have I0(0, t¥) = 6000 A, r0 = 0.5 mm, t¥ = 20 ns,
B0(0.816r0, t¥) = 2.4 T, and a total charge Q0 = I0(0, t¥)Dt, where
Dt = 40 ns. The initial source temperature is T0(0) = 37 eV, and the
initial sonic speed is c0(0) = 5709 m/s. The initial front thickness is
l0 = 2 ´ 10-6 m, and the conductivity is s = 106 S/m. The peak
temperature on axis at t¥ in the cloud is Te(0, t¥) = 37 eV. The
normalized density profiles for example 4 are quite similar.

14. Magnetic induction at 20 ns in example 3. This is Bq(0.3r0, z, t¥)
generated in the cloud from the 2 mm plate, described in Figure 13.
The magnetic induction profile has a plateau below z = r0 where the
logarithmic derivative of density is assumed to be constant at -1/r0,
the spike is at the front.

15. Magnetic induction at 20 ns in example 4. This is Bq(0.3r0, z, t¥)
generated in the cloud from the 1 mm plate. Other features are
similar to those described in Figures 13 and 14.
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