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A STRENGTH AND DAMAGE MODEL FOR ROCK UNDER
DYNAMIC LOADING

Oleg Yu. Vorobiev, Tarabay H. Antoun, Ilya N. Lomov, Lewis A. Glenn

Lawrence  Livermore  National  Laboratory,  Geophysics@Global  Security  Division, Livermore, CA  94550

Abstract. A thermodynamically consistent strength and failure model for granite under dynamic
loading has been developed and evaluated.  The model agrees with static strength measurements
and describes the effects of pressure hardening, bulking, porous compaction, porous dilation,
tensile failure, and failure under compression due to distortional deformations.  This paper briefly
describes the model and the sensitivity of the simulated response to variations in the model
parameters and in the inelastic deformation processes used in different simulations.  1D
simulations of an underground explosion in granite are used in the sensitivity study.

INTRODUCTION

Modeling the dynamic response of rock
materials is a challenging area of research.
Since most strength measurements in rock
materials are performed for intact samples under
static conditions, the models based on these data
should account for possible scale and rate effects
when being applied to simulation of the dynamic
response of large scale rock masses.  Unlike
intact rock samples, rock masses may contain
discontinuities which may reduce the strength
and cause anisotropic behavior.

We assume that the material is isotropic for
the problem of interest and apply the
mathematical structure of  plasticity theory to
capture the basic features of the mechanical
response of geological materials.  We use
experimental data obtained under static
conditions to calibrate the model and fit rate-
dependent model parameters to describe the
dynamic measurements in spherical shock waves.

CONSTITUTIVE EQUATIONS

To model the dynamic response of material to
shock wave loading, the system of equations

representing the mass, momentum and energy
conservation laws  is supplemented by the
following equation for the unimodular tensor of
elastic distortional deformation B [1].
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where G is the shear modulus, ρρ0  and ρρ are the
initial and the current density and _ is the
reference  porosity.

In Eq. (1), Γp specifies the plastic response of

the material and is taken to be a function of the
von Mises effective stress σe  and the yield
strength Y [2]:
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The conservation laws are integrated
numerically using the second order Godunov
scheme. Eq. (1) is integrated using the velocity
gradient tensor L  and its symmetric part, D,
approximated by solving the Riemann problem.
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More details about the numerical algorithm can
be found in [3].

STRENGTH OF MATERIAL

The physical phenomena that influence the
yield strength Y are accounted for by assuming a
simple multiplicative form with Y being given by
[1]

Y Y F F p F F Fo p= 1 2 3 4 5( ) ( ) ( ) ( ) ( )εε ββ θθΩ  (3)

The functions Fi  in (3) represent hardening

effects due to plastic strain F1( ) and pressure

sensitivity F2( ), as well as softening due to

distortional deformation damage F3( )  and

melting F5( ) .  F4  is a function of the Lode angle.

In our  study of spherical wave propagation in
granite we have found that the response of the
material is most sensitive to the first three
functions in Eq. (3).  The analytical forms of the
functions Fi  are described in [1]. The damage

parameter, Ω , used in the function F3( )  is

evaluated using the relation

d
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where Tmax  is the most compressive principal
stress, Tth  is the threshold stress for damage
growth, and ττdam is a characteristic time for
damage.  The onset of damage is controlled by a
critical plastic strain parameter, ε p

* , which can

be chosen to describe the failure surface
measured in static experiments [4] (see Fig.1).
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FIGURE 1. Yield and failure surface.

The divergent flow of spherical shock loading
leads to a wide variety of stress states in contrast
to plane waves, where the locus of all states is
represented by a straight line in yield-pressure
space.

POROUS COMPACTION AND BULKING

The equations used to describe the evolution of
porosity are given in [1].  Here we only provide a
brief description.
 To describe the increase of porosity due to
distortional deformation (bulking), the following
equation is used:
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( , )

, ,*
minφ φ φ φ φ φ α= − < <1
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P
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where Q is the rate of dissipation given by

Q Gp= − ′ • ′1
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′B  is the deviator of B and   maxφ φ, min  are the
maximum and the minimum porosities for all
times. The maximum bulking porosity  is
specified by φ*. The rate of bulking md  is
choosen to be a linear function of porosity and
pressure as

m m a a P md d d= + + < <0 1 2 0 1φ ,    (7)

Figure 2 shows how well it is possible to fit this
model to laboratory bulking data.
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FIGURE 2. Volume strain as a function of pressure for
granodiorite during uniaxial stress loading at several confining
pressures. The points are experimental data [4], the solid and
dashed lines are calculations with different values for md0 .

   According to Eq. (5), bulking is not allowed
until the porosity is reduced in compaction to a
fraction___of the initial porosity __(which is
typically 0.1-1% of the initial porosity). Eq.(5) is
derived from the entropy dissipation condition in
order to satisfy the second law of
thermodynamics when porosity increases at
positive pressure.

EFFECT OF MODEL PARAMETERS

To study the effect  of the model parameters on
the material response we have simulated an
explosion in granite with different constant yield
strength values. The source was modeled using
ideal gas with granite density. We used a Mie-
Grüneisen EOS for the granite. A more general
tabular EOS was subsequently employed and
produced similar results. The simulation results in
Fig.3 show that using a constant yield strength
we cannot describe the negative phase of the
pulse (so- called rebound). It has been shown in
previous research that yield strength degradation
is required to obtain a deep and wide rebound
signal [5].  Pressure hardening makes the pulse
even more narrow unless we introduce damage.

Figure 4 shows several velocity waveforms
calculated using the current model. The numbers
on the plot designate the different phases of the
pulse. During phase 1, the material is compacted
in shock loading.  The pressure, and
correspondingly the yield strength are increasing

depending on the slope of the compaction curve.
Bulking takes place after porosity drops to a
small fraction of the initial porosity in
compaction, and only if the von Mises stress has
reached the onset of yield surface.  Phase 2
begins when the pressure starts decreasing after
reaching a maximum value.  Phase 3 starts after
the material is fully damaged.  This phase may
not happen if the von Mises stress in loading
does not reach the failure surface.
   Our simulations show that bulking has a large
effect  on the peak stress (see Fig.5). The
calculation without bulking gives 3-4 times less
peak stress.  Damage does not change peak stress
attenuation significantly, but it appears to have a
significant effect on the pulse width and
displacement. Hydrodynamic theory [6] agrees
with calculations up to pressures of a few GPa
and deviates in the region where material
strength is important.
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FIGURE 3. Velocity histories calculated for an explosion in
granite at 204 m with constant yield strength in comparison with
the experimental data.
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FIGURE 4. Velocity histories calculated with different model
options in comparison with experimental profile (bold line).

Since the damage model developed is scale-
dependent, damage will not happen if the
characteristic time of the problem is much less
than ττdam which is of the order of 10 ms. This is
illustrated in Fig.6 where scaled velocity
histories are shown. The shape of the velocity
profile becomes more narrow when the scale of
the problem is reduced. That explains why the
calculated scaled peak displacement is less for
explosions with smaller energy yields as shown
in Fig.7.
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FIGURE 5. The peak radial stress attenuation with distance.
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CONCLUSIONS

A new scale-dependent strength and damage
model has been developed which gives good
agreement with both static tests and dynamic
measurements of large scale motion caused by
underground explosions.  The model includes the
effects of bulking, pressure hardening and
damage due to distortional deformations which
are found to be important to simulate the
material response, especially in spherical
loading.
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