
UCRL-JC- 1340 18
PREPRINT

Overture:
Object-Oriented Tools for
Overset Grid Applications

D.L. Brown
W.D. Henshaw

DJ. Quinlan

This paper was prepared for submittal to the
17th American Institute of Aeronautics and Astronautics

AppliedAerodynamics Conference
Norfolk, VA

June 28-July 1,1999

April 28,1999

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available with
the understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the -United States
Government or the Universitv of California. The views and ouinions of authors , 1
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

OVERTURE: OBJECT-ORIENTED TOOLS FOR OVERSET GRID
APPLICATIONS

David L. Brown, William D. Henshaw and Daniel J. Quinlan
Centre for Applied Scientific Computing,

Lawrence Livermore National Laboratory,
Livermore, California, 94551.

ABSTRACT

The Overture framework is an object-oriented
environment for solving partial differential equations
in two and three space dimensions. It is a collection
of C++ libraries that enables the use of finite differ:
ence and finite volume methods at a level that hides
the details of the associated data structures. Over-
ture can be used to solve problems in complicated,
moving geometries using the method of overlapping
grids. It has support for grid generation, difference
operators, boundary conditions, data-base access and
graphics. Short sample code segments are presented
to show the power of this approach.

INTRODUCTION

The Overture framework is a collection of C++
libraries that provide tools for solving partial differ-
ential equations. Overture can be used to solve
problems in complicated, moving geometries using
the method of overlapping grids (also known as over-
set or Chimera grids). Overture includes support
for geometry, grid generation, difference operators,
boundary conditions, data-base access and graphics.

An overlapping grid consists of a set of logically
rectangular grids that cover a domain and overlap
where they meet. This method has been used suc-
cessfully over the last decade and a half, primarily to
solve problems involving fluid flow in complex, often
dynamically moving, geometries 2, 3l ‘19 12, 23. So-
lution values at the overlap are determined by inter-
polation. The overlapping grid approach is particu-
larly efficient for rapidly generating high-quality grids
for moving geometries. As the component grids move
only the boundary points to be interpolated change,
the grid points do not have to be regenerated. The

component grids are structured so that efficient and
fast finite-difference algorithms can be utilized. We
use adaptive mesh refinement to resolve fine features
of the solution11 ‘3 20. The design of Overture has
evolved over the past 15 years or so from the Fortran
based CMPGRD8 environment to the current C++
version 5l 6. Although the Fortran implementation
was used for complicated three-dimensional adaptive
and moving grid computations, the programs were
difficult to write and maintain. Overture was de-
signed to have at least all the functionality of the
Fortran code but to be as easy as possible to use;
indeed, an entire PDE solver on an overlapping grid
can be written on a single page (see section).

Overture is an object-oriented framework. In
the past a typical Fortran code would use a proce-
dural model where subroutines and functions are the
fundamental building blocks and data is passed to
and from these procedures. In Overture the funda-
mental building blocks are objects such as grids and
grid functions. These objects can be manipulated at
a high level. Details of the implementation, such as
how a grid is stored, are hidden from the user. In
the object-oriented world this is known as data en-
capsulation. One major benefit of encapsulation is
that changes can be made to the implementation of
an object without forcing changes to be made to the
code that uses the object. An object such as a grid
function contains not only data (such as the values of
density at each point on a grid) but also implements
functions that operate on the data (these functions
are often called methods in object-oriented terminol-
ogy). Thus a grid function (which may live on a col-
lection of grids on a overlapping grid) will know what
it means to add itself to another grid function, which
would be expressed in a C++ code as u = ‘u + w.
The ‘+’ operator and the ‘=’ operator are defined by

the grid function class, a process known as operator
overloading.

A common complaint of object-oriented languages
such as C++ is that it is easy to write code that is
elegant but runs many times slower than fortran. It
is certainly true that since C++ is a much richer lan-
guage than fortran that it is easy to write inefficient
code. However, it is also true that by writing a code
in C++ with basically a fortran style that it is possi-
ble to achieve the exact same performance of fortran
(while still benefiting from some of the nice features
of (It-+). Overture has been designed to be used
at different levels to allow users to obtain full perfor-
mance at the cost of writing at a lower level. Thus
one can either operate at a high level to write an en-
tire code (with a decrease in performance) or one may

THE OVERTURE FRAMEWORK

The main class categories that make up Overture

only use C++ to manage the complex data structures
while calling Fortran or C routines to perform com-
putationally intensive tasks. In the future it is likely
that even the high level code can be made to run as
fast as the low level approach. We are currently work-
ing on a preprocessor that will automatically convert
high level C++ code into efficient C code. Initial
results show that full fortran performance can be ob-
tained using the preprocessor.

There are a number of other very interesting
projects developing scientific object-oriented frame-
works. These include the SAMRAI framework for
structured adaptive mesh refinement 22, PETSc (the
Portable Extensible Toolkit for Scientific Computa-
tion) 18, POOMA (Parallel Object Oriented Meth-
ods and Applications) lg and Diffpack”.

are as follows:

l Arrays 21: describe multidimensional arrays
using A++/P++. A++ provides the serial ar-

Figure 1: Displaying results from a moving grid computation using the Overture framework.

2

ray objects, and P++ provides the distribution
and interpretation of communication required
for their data parallel execution.

Mappings 15: define transformations such as
curves, surfaces, areas, and volumes. These are
used to represent the geometry of the compu-
tational domain.

Grids ‘1 ‘*: define a discrete representation
of a mapping or mappings. These include sin-
gle grids, and collections of grids; in particular
composite overlapping grids.

Grid functions 14: storage of solution values,
such as density, velocity, pressure, defined at
each point on the grid(s).

Operators 4a 13: provide discrete represen-
tations of differential operators and boundary
conditions

Grid generation 16: the Ogen overlap-
ping grid generator automatically constructs an
overlapping grid given the component grids.

Plotting 17: a high-level interface based on
OpenGL allows for plotting Overture objects.

Adaptive mesh refinement: The AMR++
library for patch based refinement is described
in section

Solvers for partial differential equations, such as the
OverBlown solver described in section () are

written using the above classes.

Array operations

// Solve u-xx + u-yy = f by a Jacobi Iteration

A++ and P++ 21 are array class libraries for
performing array operations in C++ in serial and
parallel environments, respectively.
A++ is a serial array class library similar to
FORTRAN 90 in syntax, but not requiring any
modification to the C++ compiler or language.
A++ provides an object-oriented array abstraction
specifically well suited to large scale numerical
computation. It provides efficient use of
multidimensional array objects which serves to both
simplify the development of numerical software and
provide a basis for the development of parallel array
abstractions. P++ is the parallel array class library
and shares an identical interface to A++, effectively
allowing A++ serial applications to be recompiled
using P++ and thus run in parallel. This provides a
simple and elegant mechanism that allows serial
code to be reused in the parallel environment.
P++ provides a data parallel implementation of the
array syntax represented by the A++ array class
library. To this extent it shares a lot of commonality
with FORTRAN 90 array syntax and the HPF
programming model. However, in contrast to HPF,
P++ provides a more general mechanism for the
distribution of arrays and greater control as
required for the multiple grid applications
represented by both the overlapping grid model and
the adaptive mesh refinement (AMR) model.
Additionally, current work is addressing the
addition of task parallelism as required for parallel
adaptive mesh refinement.
Here is a simple example code segment that solves
Poisson’s equation in either a serial or parallel
environment using the A++/P++ classes. Notice
how the Jacobi iteration for the entire array can be
written in one statement.

Range R(0,l-l) // . . . define a range of indices: 0,1,2,...,n
floatArray u(R,R), f(R,R) // . . . declare two two-dimensional arrays
f = 1.; n = 0.; h = 1./n; // . . . initialize arrays and parameters
Range I(l,n-I), J(l,n-1); // . . . define ranges for the interior

for(int iteration=O; iteration<lOO; iteration++)
u(I,J) = .25*(u(I+1,J)+u(I-l,J)+u(I,J+l)+u(I,J-l)-f(I,J)*(h*h)); // . . . data parallel

Adaptive mesh refinement

Adaptive mesh refinement is the process of

permitting local grids to be added to the
computational domain and thus adaptively tailoring
the resolution of the computational grid. The

3

Figure 2: Hyperbolic surface grid generation is used to generate a smooth surface grid over a surface coming
from a CAD package.

block-structured AMR algorithm implemented in
Overture provides such support for both simple
problems with a single underlying grid, and
problems that use the composite overlapping grid
method. The AMR algorithm itself uses the
multiple grid functionality provided by the basic
Overture classes in an essential way. AMR results
is greater computational efficiency but is difficult to
support. AMR++ is a library within the Overture
framework which builds on top of the previously
mentioned components and provides support for

Grid Generation

Overture has support for the creation of
overlapping grids for complicated geometries. The
process of generating an overlapping grid consists of
two basic steps. In the first step a number of
component grids are generated. Each component
grid represents a portion of the geometry. The
component grids must overlap but otherwise can be
created locally. Overture provides a collection of
Mapping classes that can be used to generate

Overture applications requiring adaptive mesh
refinement. AMR++ is current work being
developed and supports the adaptive regridding,
transfer of data between adaptive refinement levels,
parent/child/sibling operations between local
refinement levels, and includes parallel AMR
support. AMR++ is a parallel adaptive mesh
refinement library because it is uses classes which
derive their parallel support from the A++/P++
array class library.

component grids including splines, NURBS, bodies
of revolution, hyperbolic grid generation, elliptic
grid generation, trans-finite interpolation and so on.
In addition we are working on methods for reading
files generated by CAD programs and generating
grids. Figure (2) shows how hyperbolic grid surface
grid generation can be used to generate a single
smooth grid over a CAD surface described by a
collection of tr immed NURBS. This is accomplished
with the aid of the SURGRD hyperbolic surface
grid generator7.

Given the component grids, the overlapping grid domain, and removing unnecessary grid points in
then is constructed using the Ogen grid generator. regions of excess overlap. Ogen requires a minimal
This latter step consists of determining how the amount of user input. The grids in figure (3) were
different component grids interpolate from each all created with Ogen.
other, and in removing grid points from holes in the

W riting PDE solvers equation (PDE)

Ut + au, + bu, = v(u,, + u?/v)

This example demonstrates the power of the
Overture framework by showing a basically
complete code that solves the partial differential

on an overlapping grid.
The PlotStuff object is used to interacti$y plot
contours of the solution at each time step .

int main0
1

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf"); // read the grid in
floatCompositeGridFunction u(cg); // create a grid function
u=l. ; // assign initial conditions
CompositeGridOperators op(cg); // create operators
u.setOperators(cg);
PlotStuff ps; // make an object for plotting
// --- solve a PDE ----
float t=O, dt=.005, a=l., b=l., nu=.l;
for(int step=O; step<lOO; step++)
{

u+=dt*(-a*u.x()-b*u.yO+nu*(u.xxO+u.yyO));
t+=dt;
u.interpolateO; // interpolate overlapping boundaries
// apply the BC u=O on all boundaries
u.applyBoundaryCondition(O,dirichlet,allBoundaries,O.);
u.finishBoundaryConditions();
ps.contour(u); // plot contours of the solution

>
return 0;

OverBlown

OverBlown is a fluid flow solver for overlapping
grids built upon the Overture framework.
OverBlown is being designed to solve the
Navier-Stokes equations at all flow speeds, using
different algorithms at different Mach numbers.
Although the currently distributed version only
solves the incompressible Navier-Stokes equations,
we are developing a low-Mach number and high
Mach number algorithms aswell as adding support
for chemically reacting flows. Ref 4th order.

Figure (4) shows streamlines of the solution to the

incompressible Navier-Stokes equations around a
rotating stirring stick and the script file that was
used to run OverBlown. Figure (5) shows a result
from an incompressible flow computation around a
NACA 0012 airfoil. The grid was generated using
the elliptic grid generator in Overture . Figure (6)
shows results of a three-dimensional computation
from OverBlown .

Software availability

The Overture framework and documentation is
available for public distribution from the web site,

http://www.llnl.gov/casc/Overture. The

5

-;.+ , ,
I,,,,,

0.00 050 , 00 1.50 203
*

Figure 3: Sample 2D and 3D overlapping grids generated with the Ogen grid generator.

6

0.50

* Choose the overlapping grid: t
stir.hdf
stir.show
illcolnpressibleNavierStokes
turn off twilight zone
project initial conditions
turn on moving grids
specify grids to move

stir
rotate
0. 0. 0.
.5

done
choose grids for implicit

all=explicit
stir=implicit

done
pde parameters

nu
.Ol

done
boundary conditions

all=noSlipWall
done
initial conditions

uniform flow
p=l.

final t ime (tf=)
.5

t imes to plot (tp=)
,025

Figure 4: On the left is a sample script command file for running the flow solver OverBlown. On the
is the result from the computat ion of incompressible flow around a rotating stirring stick.

incompressible NS: t=2.50e-01, (u,v)
dt=2.6e-03, nu=l.Oe-02

0.782

0.626

0.469

0.391

right

7

OverBlown flow solver is available for limited
distribution, please contact Bill Henshaw for further

[ll

PI

PI

PI

151

PI

VI

PI

information.

References

M. J. Berger and P. Colella, Local adaptive
mesh refinement for shock hydrodynamics, J.
Comp. Phys., 82 (1989), pp. 64-84.

K. D. Brislawn, D. L. Brown, G. Chesshire, and
J. S. Saltzman, Adaptive composite overlapping
grids for hyperbolic conservation laws, LANL
Unclassified Report 95-257, Los Alamos
National Laboratory, 1995.

D. L. Brown, An unsplit Godunov method for
systems of conservation laws on curvilinear
overlapping grids, Math. Comput. Modelling,
20 (1994), pp. 29-48.

-, Classes for finite volume operators and
projection operators, LANL unclassified report
96-3470, Los Alamos National Laboratory,
1996.

D. L. Brown, Geoffrey S. Chesshire, William D.
Henshaw and Daniel J. Quinlan, Overture :
An Object Oriented Software System for
Solving Partial Differential Equations in Serial
and Parallel Environments, Proceedings of the
Eight SIAM Conference on Parallel Processing
for Scientific Computing, 1997.

, D. L. Brown, William D. Henshaw and
Daniel J. Quinlan, Overture : An Object
Oriented Framework for Solving Partial
Differential Equations, Scientific Computing in
Object-Oriented Parallel Environments,
Springer Lecture Notes in Computer Science,
1343, 1997.

W.M. Chan and P.G. Buning, A Hyperbolic
Surface Grid Generation Scheme and Its
Applications, AIAA paper 94-2208, 1994.

G. Chesshire and W. D. Henshaw, Composite
overlapping meshes for the solution, of partial
differential equations, J. Comp. Phys., 90
(1990), pp. l-64.

PI G. S. Chesshire, Overtuce : the grid classes,
LANL unclassified report 96-3708, Los Alamos
National Laboratory, 1996.

[lOI Diffpack homepage,
http://www.nobjects.com/diffpack.

[Ill F. C. Dougherty and J. Kuan, Trunsonic store
separation using a three-dimensional Chimera
grid scheme, AIAA paper 89-0637, AIAA, 1989.

[121 W. D. Henshaw, A fourth-order accurate
method for the incompressible Navier-Stokes
equations on overlapping grids, J. Comp. Phys.,
113 (1994), pp. 13-25.

[I31 -, Finite difference operators and boundary
conditions for Overture, user guide, version
1.00, LANL unclassified report 96-3467, Los
Alamos National Laboratory, 1996.

[I41 -, Grid, GridFunction and Interpolant
classes for Overture , AMR++ and
CMPGRD, user guide, version 1.00, LANL
unclassified report 96-3464, Los Alamos
National Laboratory, 1996.

[=I -> Mappings for Overture : A description
of the mapping class and documentation for
many useful mappings, LANL unclassified
report 96-3469, Los Alamos National
Laboratory, 1996.

[161 -7 Ogen: an overlapping grid generator for
Overture, LANL unclassified report 96-3466,
Los Alamos National Laboratory, 1996.

1171

[I81

[I91

-> PlotStuff: a class for plotting stuff from
Overture , LANL unclassified report 96-3893,
Los Alamos National Laboratory, 1996.

Satish Balay, William Gropp, Lois Curfman
McInnes and Barry Smith, The Portable
Extensible Toolkit for Scient$c Computation,
http://www.mcs.anl.gov/petsc/petsc.html.

Steve Karmesin et.al, Parallel Object Oriented
Methods and Applications,
http://www.acl.lanl.gov/PoomaFramework.

8

[ZO] D. Quinlan, Adaptive Mesh Refinement for Kohn, Structured Adaptive Mesh Refinement
Distributed Parallel Processors, PhD thesis, Applications Infracture,
University of Colorado, Denver, June 1993. http://www.llnl.gov/casc/SAMRAI.

PI -> A + +/P+ + manual, LANL Unclassified [23] J. L. Steger and J. A. Benek, On the use of
Report 95-3273, Los Alamos National composite grid schemes in computational
Laboratory, 1995. aerodynamics, Computer Methods in Applied

Mechanics and Engineering, 64 (1987),
[22] Xabier Garaizar, Richard Hornung and Scott pp. 301-320.

*
* OverBlown command file for
* flow past a naca0012 airfoil
*
* grid name:
Inca0012
* show file name
ob.show

incompressibleNavierStokes
turn off twilight zone
final time (tf=)

5.
times to plot (tp=)

.5
plot and always wait
* no plotting
pde parameters

* this next value for nu is too small to
* have any effect on this grid.
nu

.00001
t choose 2nd~order artificial viscosity
ad21

2.
ad22

2.
done

boundary conditions
all=noSlipWall
backGround(O,O)=inflowWithVelocityGiven,

uniform(p=l.,u=l.)
backGround(l,O)=outflow
backGround(O,l)=slipWall
backGround(l,l)=slipWall
done

initial conditions
uniform flow

p=1., u=1.
project initial conditions
exit

Incompressible
t=

NS. nu=1.000000e-05 p
5.000, dt=l.34e-03

Figure 5: On the left is a sample script command file for running the flow solver OverBlown. On the right
is the result from the computation of incompressible flow around a NACA 0012 airfoil.

10

Figure 6: Incompressible flow through a three-dimensional valve.

11

