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ABSTRACT 

Supernova (SN) 1987A focused attention on the critical role of hydrodynamic insta- 

bilities in the evolution of supernovae. To test the modeling of these instabilities, we are 

developing laboratory experiments of hydrodynamic mixing under conditions relevant to 

supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) 

The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) 

and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to 

instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser 

experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 

s-lo4 s) are well described by the Euler equations, the hydrodynamics scale between the 

two regimes. The experiments are modeled using the hydrodynamics codes HYADES 

and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for 

PROMETHEUS. Results of the experiments and simulations are presented. Analysis 

of the spike and bubble velocities in the experiment using potential flow theory and a 

modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences 

in instability growth at the O-He and He-H interface of SN 1987A, and the design for 

analogous laser experiments are presented. We discuss further work to incorporate more 

features of the SN in the experiments, including spherical geometry, multiple layers and 

density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, 

including experimental work on supernova remnants (SNRs). A numerical study of RM 

instability in SNRs is presented. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

1.2 Motivation: Hydrodynamic instabilities in Supernova 
1987A 

Observations of supernova (SN) 1987A [lo], a core collapse SN in the Large Magellanic 

Cloud, strongly suggested the occurence of material mixing driven by the Rayleigh-Taylor 

(RT) instability [104, 1451 and its shock-driven analog, the Richtmeyer-Meshkov (RM) 

instability [130, 1101. More discussion of SN 1987A can be found in [lo, 109, 155, 991 

and references therein. Radioactive 56C~ from the shock-induced explosive burning of 0 

was observed much sooner after the explosion than predicted by one dimensional (ID) 

spherically symmetric explosion models, implying that the 56Co had been mixed well into 

the outer layers. The ‘Bochum event’ [80, 261 showed spectroscopic features suggesting 

enhanced heating of the envelope, presumably due to mixing from the radioactive core 

[139]. Furthermore, Doppler broadening of the gamma-ray and optical lines from 56Co 

implied peak 56Co velocities in excess of 3000 km/s [153, 148, 1091. Two dimensional 

(2D) modeling indeed confirms the presence of deep nonlinear RT-induced mixing [67, 

and references therein]. However, 2D simulations to date predict maximum velocities 

of 5 2000 km/s, suggesting that three dimensional (3D) effects may be important in 

accounting for the 56Co velocities. Currently, much effort is being invested in studying 

the detailed multi-dimensional pre-explosion evolution of the 0 layer of SN 1987A [20, 

131 in an effort to understand the types of initial perturbations which the blast wave 

may encountef in that layer. Theoretical, numerical and experimental work [51, 81, 

107, 1561 on single-mode perturbations in planar geometries suggests that hydrodynamic 

instabilities are expected to grow considerably faster in 3D than in 2D in the nonlinear 

regime. 

An interesting analog to the planar cease presents itself for the case of a SN, in which a 
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blast wave expands in spherical geometry through a steeply falling density gradient with 

density ‘steps’ (pronounced gradients) at interfaces between certain composition layers. 

Numerical simulations of SN 1987A [67] suggest that the interfaces between the 0 and 

He layers, and between the He and H layers of the progenitor were particularly prone 

to RT instabilities; these instabilities could potentially mix the 56Co well into the outer 

layers of the star, so that observed velocity of the 56C~ is higher than predicted by 1D 

simulations. The effects of 3D hydrodynamics could potentially increase the observed 

56Co peak velocities further still. 

Given the fundamental role played by the RM and RT instabilities in SN evolution, 

it is desirable to develop the means of testing the hydrodynamics of the SN codes. In 

this dissertation we report on results of scalable experiments using the Nova laser at 

Lawrence Livermore National Laboratory (LLNL) to test the modeling of compressible 

RM and RT instabilities. We discuss hydrodynamic instabilities in SN 1987A, and show 

numerical simulations of SN 1987A in lD, 2D and 3D, performed using PROMETHEUS. 

We discuss scaling the hydrodynamics between SNe and the laser experiments, then 

present the results of SN-relevant hydrodynamic instability experiments at the Nova 

laser. We use the SN code PROMETHEUS to model these experiments, thus using them 

as a benchmark for PROMETHEUS. For comparison, as well as for the design of the 

experiment, we use the LLNL hydrodynamics code CALE. We present analytic theory 

that describes the combination of RM and RT single mode instability growth in the laser 

experiments. We also look at the role of RM instability in the later evolution of a SN, in 

the SNR stage. 

The organization of this dissertation is as follows. In Chapter 1 we first motivate the 

research with a brief overview of hydrodynamics instabilities in SN 1987A (this section). 

We then briefly review some essential basic theory of fluid dynamics and hydrodynamic 

instabilities, describe the laser facilities which were used for the experiments, review other 

and previous work in astrophysics using intense lasers, and finally discuss the numerical 

codes we have used in this study. In Chapter 2 we first give an overview of hydrody- 

namic instabilities in SN 1987A, then consider numerical simulations of SN 1987A using 

PROMETHEUS, and discuss differences in 2D vs. 3D hydrodynamics in SN 1987A. In 

Chapter 3 we present the discussion of scaling between hydrodynamics in SNe and the 

laser experiment. In Chapter 4 we discuss the supernova-relevant hydrodynamic insta- 
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bility experiments. We first discuss the experimental setup and the targets, then look 

at ID and 2D simuations of the experiment, compare the results of the experiment to 

the simulations, present the analytic theory of the instability growth in the experiments, 

and discuss differences in the simulations between the codes. In Chapter 5 we discuss 

further and ongoing work, including 2D VS. 3D hydrodynamic instability experiments, 

multiple-layer experiments, and a design for experiments at a future laser (the National 

Ignition Facility, described in Section 1.4.2.2). Appendix A describes a study of the RM 

instabilty in supernova remnants (SNRs). Appendix B discusses contemporary work in 

laser astrophysics. 

1.3 Fluid dynamics and hydrodynamic instabilities 

1.3.1 Overview 

In this section we briefly describe some of the basic theory of fluid dynamics and hy- 

drodynamic instabilities. Hydrodynamics and fluid dynamics are interchangeable terms 

describing the motion of fluids (liquids or gases.) Since the goal of the main experimental 

work described in this dissertation was to develop laboratory experiments which are well 

described by pure hydrodynamics, we will concentrate on hydrodynamics described by 

the Euler equations. Following the description in [97], the basic assumptions in fluid 

dynamics are that the fluids can be considered as continuous media. That is, when we 

consider the smallest volume of interest to us in the fluid, that volume still contains a 

very large number of molecules. For the purpose of writing down the differential equa- 

tions describing the fluid, we assume that we can break down the fluid into very small 

volume elements that are infinitesimal in the sense that they are very small compared to 

the volume of fluid. To describe the fluid, we assign to each infinitesimal volume element 

a mean net velocity v, and assign two independent thermodynamic quantities, such as 

density p and one of pressure P, temperature T, internal energy u, or total energy E, 

where E is simply the sum of the internal energy and the kinetic energy mv2/2, m being 

the mass of tee volume element. The equation of state (EOS) then determines the value 

of the third thermodynamic quantity. The EOS could be! for example, an ideal gas law 

(see [loll, pp. 7-13), 

P = ~RTI/L, (1.1) 
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where R is the universal gas constant and ,LI, is the molecular mass. For an ideal gas EOS, 

the relation 

P = (y - 1)U (1.2) 

also holds: where y is the adiabatic index of the fluid (see [140], pp. 20-21, [loll, pp. 

7-13). 

1.3.2 Compressible hydrodynamics 

A compressible fluid is one in which the density of a fluid element can change over time. 

The most general equations describing a compressible fluid, including effects of radiation 

transfer, heat conduction, and viscosity, and a gravitational field g, are the Navier-Stokes 

equations (see [140], p. 23, [97], p. 45), 

$2 + v. (pv) =o 

&(pv) + v * (Pi + pvv) = pg + r/v2v (1.3) 

&(pE) + V . KPE + Pbl = PV - g + d(p, 7) 

where i is the unit matrix, 7 is the coefficient of viscosity and C accounts for transfer 

of energy by radiation, conduction, and viscosity. The middle line in Eqn. 1.3 is three 

equations, one for each component of pv. The term V . PI is equivalent to simply VP, 

and vv (a 2D matrix) is the outer product of v with itself; the divergence (V.) of either 

matrix is simply a vector. When viscosity is negligible and transfer of heat by radiation 

and conduction is negligible, the Navier-Stokes equations reduce to the Euler equations 

W I, PP. l-10), 

$2 + v. (pv) = 0 

14 

-$v) + v . (Pi + pvv) = pg 

;(pE) + V . [(pE + P)v] = pv . g 

(1.4) 

This set of five equations in the six variables v, P, p and E are closed by the equation of 

state. The first of Eqns. 1.4 is a statement of the conservation of mass, t,he middle t,hree 

(second line) a statement of the conservation of momentum, and the last a staternent of 

conservation of energy. In the case of one space variable, 2, with 9 = (-g,O, 0) Eqns. 1.4 
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reduce to the 1D Euler equations, 

&v) + -&(P+v’) = -pg 

;(PE) + -$(PE + P)v] = -pgv 

(1.5) 

An operator-split code like PROMETHEUS ( see Section 1.6.3) essentially solves Eqn. 

1.5. 

The Euler equations describe adiabatic flow, one in which the entropy of a fluid 

element does not change with time. However, in both SNe and in the laser experiments we 

discuss in this dissertation, we have shocks, which increase the entropy of fluid elements. 

Thus, shocks cannot be modeled by the Euler equations, and are instead modeled by the 

Rankine-Hugoniot shock jump conditions, which are statements of conservation across 

the shock discontinuity (see Ref. [140].) That is if we denote the change in a conserved 

quantity Q across the shock by [Q], then we have, for example, in the case of an ideal 

fluid in one dimension ([140], p. 102) 

[PVI = 0 

[pv”+p] = 0 

[ 
L’+-$-] 
2 

= 0 

(1.6) 

Numerical schemes for solving the hydrodynamics equations, such as those discussed 

in Section 1.6, must either use artificial viscosity to increase the entropy of a zone as a 

shock crosses the zone - HYADES ( see Section 1.6.1) does this, or explicitly solve Eqns. 

1.6) across a shock - PROMETHEUS ( see Section 1.6.3) essentially does this. 

1.3.3 Incompressible hydrodynamics 

In an incompressible fluid, changes in density are negligible, that is l?p/dt = 0, and 

dV = 0, wher: dV is the volume of a fluid element. Assuming the flow is adiabatic, then 

du = Tds - PdV = 0 ([97], p. 10 ), and setting dS = 0 = dV, we have 

du = 0. (1.7) 
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We can arbitrarily set u = 0, and then reduce the Euler equations, Eqn. 1.4, to 

v*v = 0 
a 

-v + v * [(P/p)I + vv] = g 
at 

&2/2 + P/p> + v . [(v2/2 + P/p)v] = pg. 

W-3) 

However, the last of these equations is obtained by applying (v.) to the third equation, 

so that we have just the first four equations, in the variables P and v. In the special case 

where the fluid flow is irrotational everywhere, that is 

vxv=o, (1.9) 

it easy to show that the flow must remain irrotational with time (see [g?].) In this case, 

we can write v in terms of a potential 4 as 

v=vq5, (1.10) 

and we say that we have potential flow. It follows from the first of Eqns. 1.8 and from 

Eqn. 1.10 that 

‘v2cp=o, (1.11) 

while the momentum equations for the case of potential flow can be written in the form 

v * [(aqyat)l + (P/p)I + (V(Q2] = g (1.12) 

Potential flow is an important tool in the theory of hydrodynamic instabilities. In fact, 

potential flow can be defined for the compressible case as well (See [WI, p. l4), but we 

will not need this extension. 

1.3.4 Hydrodynamic instabilities 

1.3.4-l Rayleigh-Taylor (RT) instability 
L* 

The Rayleigh-Taylor (RT) instability (see Refs. [104, 1451) occurs whenever a fluid of 

low density p1 accelerates a fluid of higher density pz, for example, when a layer of 

dense fluid sits atop a layer of less dense fluid in a gravitational fluid g =-gx, directed 
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perpendicular to the interface, from the dense to the lighter fluid. In the case of constant 

g, the unperturbed fluids are in hydrostatic equilibrium, 

VP = -P% (1.13) 

which is just h’P/ilx = pg in this case. Clearly, this situation is unstable (‘heavy objects 

fall, light objects rise’). The light fluid can also accelerate the dense fluid when there is 

a pressure gradient such that the pressure is higher in the light fluid than in the dense 

fluid, for reasons other than the presence of a gravitational field. For example, in the 

case of SN 1987A, the pressure drops in the fluid inward in radius from the shock, as 

the fluid expands, and so pressure drops inward with radius from the shock (see Figure 

2.3). In the laser experiments described in Chapter 4, the target decompresses behind 

the shock, so that the pressure at any time drops with distance behind the shock (see 

Figure 4.6). Any perturbations in the shape of the interface between the two fluids will 

grow over time into a pattern of rising bubbles of the lighter fluid separated by falling 

spikes of the denser fluid, with the fluids interpenetrating and eventually inverting to a 

stable configuration in which the dense fluid accelerates the lighter fluid. A single mode 

perturbation is a sinusoidal perturbation, and a multimode perturbation is a sum of single 

mode perturbations. 

We now consider two incompressible, irrotational fluids in a constant gravitational 

field g = (-9, 0,O) perpendicular to the interface between the fluids. In the case of a small 

amplitude single mode two dimensional (2D) perturbation in the shape of the interface, 

we can determine the growth rate of the perturbation by using linearized versions of 

Equations 1.8 (see Refs. [145, 104, 411). W e can also determine the growth rate by an 

intuitive argument for conservation of energy, as follows. Let X be the wavelength of the 

perturbation, let q(y) = sin(lcy) < X be the infinitesimal amplitude of the perturbation, 

with the wavenumber Ic = 27r/X, where y is the direction parallel t,o the unperturbed 

interface, and let x = 0 be the position of the unperturbed interface. One can confirm 

by substitution that the single mode solution of Eqn. 1.11 on either side of the interface 
L 

is of the form 

g5 = -~e-“lzi sin(ky), (1.14) 

for some amplitude 9. Thus the velocity field on either side of the interface is 

34 v, = - = 7jevklzl sin(ky) 
dX 

(1.15) 
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84 
‘UY = -f--- = -+dzl cos(ky), 

8Y 
(1.16) 

with the ‘+’ sign for z > 0 and the ‘-’ sign for II: < 0. The magnitude ~(2, y) = (.u~+v~)‘/” 

of the velocity at any point in the fluid is then 

v(z, y) = Tje+ (1.17) 

By Eqn. 1.7, the internal energy of the fluid does not change, so we can equate the rate 

of change of total kinetic energy K in the fluid to minus the rate of change of total 

gravitational potential energy U of the fluid, as follows. Integrating the kinetic energy 

on both sides of the fluid over one wavelength X by a 1 cm cross section of fluid, with the 

assumption that r] < A, we have 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

Hence, . . . 
I;: = (Pl -p2p 

Integrating the potential energy on both sides of the interface, we have 

(1.22) 

Hence, 

Setting 0 = “j?, we arrive at 

ri = (p1 + p2,y3 

;i(t) = p2 - P1 
jyq$m 

The solution to Equation 1.26 is 

q(t) = eyt, 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 
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where the growth rate y (not to be confused with the adiabatic exponent in Eqn. 1.2), is 

given by 

r=m, (1.25) 

A being the Atwood number (~2 - pr)/(pr + ~2). For rigorous derivation of the Equation 

1.26, see References [104, 145, 411. 

In the case just presented, we had two fluids, each of constant density, and the con- 

dition for instability was simply that fluid 2 at density p2 is at lower pressure P than 

fluid 1 at density pr < 1. In the more general incompressible case, where there is not 

a sharp density discontinuity but a density gradient, the condition for instability is (see 

Reference [25]) 

VP-vp<o (1.29) 

In the incompressible case (see Reference [14]), the condition for instability becomes 

VP * vp < l/y, (1.30) 

where y is the adiabatic exponent. 

In the nonlinear stage of RT instability, which occurs once 7 is no longer small com- 

pared to X, the theory becomes more complicated. The usual method is to use perturba- 

tion theory and expand the potential flow equations, Eqns. 1.12, to two or more orders. 

Layzer [loo, 811 developed a single-mode potential flow model for A = 1 and applied it 

successfully to 2D planar and 3D cylindrical bubbles. Layzer’s model uses an approximate 

description of the flow near the bubble tip, on the assumption that the flow is driven by 

the rising bubbles, with the spikes acting as repositories for the dense matter. Lazyer’s 

model predicts the linear growth rate of a bubble, and also the asymptotic velocity of a 

2D bubble, 

Vb,asym = 0.230&% (1.31) 

and a cylindrical bubble 

* vb,asym = 0*360&G, (1.32) 

Youngs [161] and Read [124] performed numerical and experimental investigations of 

multimode RT mixing, finding that the mixing width h (distance from bubble front to 

spike front) is given by 

h = aAgt2, (1.33) 



24 

where (Y appears to be about 0.07 for true 3D evolution of the mixing. Hecht et al. 

[81] adapted the Layzer theory, extending it to the multimode case for A = 1, and 

also to the case of the RM instability for A = 1, discussed in Section 1.3.4.2. Alon et 

al. [6] studied single-mode, two-bubble and multimode RT mixing for arbitrary density 

ratios, finding that the mix width constant (Y was approximately 0.05 at all density ratios. 

Haan [78] developed a model for predicting when nonlinear effects become important in 

multimode RT instability in a system of size L; he found that nonlinear effects begin 

when mode amplitudes reach about (Lk2)-l for modes of wave number k and system 

size L. Plesset [122] studied the RT instability for incompressible fluids in spherical 

geometry, finding that the stability conditions for planar geometry do not apply without 

significant modifications. Yedvab et al. [159] studied single and multimode RT instability 

in cylindrical systems. In the deep nonlinear stage of RT instability, the interface shape 

becomes complex, because of vortices induced by the Kelvin-Helmholtz (KH) instability 

(see Section 1.3.4.4), and one must resort to numerical simulation. 

1.3.4.2 Richtmeyer-Meshkov (RM) instability 

The Richtmeyer-Meshkov (RM) instability [130, 1101 occurs whenever a shock wave passes 

through a material perturbation (perturbation in the shape) of the interface between 

two fluids of different densities or different compressibilities. The passage of the shock 

through the interface causes perturbations in the pressure which tend to reinforce the 

initial perturbation. The RM instability occurs whether the Atwood number is positive or 

negative, that is, whether the shock passes from a light to a heavy fluid or from a heavy to 

a light fluid. There is a large and growing body of literature on the RM instability, because 

of its importance in such applications as astrophysics and inertial confinement fusion 

(ICF) [103, 1021. The theory of the RM instability is more complicated than that of the 

RT instablity because of the action of the shock and the essential role of compressibility 

in the interaction of the shock with the interface. In the case of heavy to light, the 

RM instabilitg first changes the phase of the instability (inverts the perturbation.) In 

the light to heavy case, refraction of the shock through the interface causes pressure to 

decrease in the fluid in front of the peaks of the perturbation (between the interface and 

the shock) and to increase in the fluid ahead of the valleys of the perturbation. These 

changes in pressure cause the peaks and valley to grow in amplitude. In the heavy to light 
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case, the pressure increases ahead of the peaks and decreases ahead of the valleys, which 

causes the initial inversion, after which the perturbations grow in the opposite phase. The 

interaction of the shock with the interface will in general produce a transmitted shock, 

and a reflected wave which may be a shock or a rarefaction, depending upon the Atwood 

number A, the EOS of the fluids, and the strength of the shock (see Ref. [158, 73]), 

A basic intuitive description of the RM instability, comparable to the description of 

the RT instability (above) may be more elusive than has traditionally been appreciated 

(see [149] for a discussion of this.) The RM instability was first studied theoretically 

by Richtmeyer (Ref. [130]) and experimentally by Meshkov (Ref. [IlO]). Richtmeyer 

presented two models of the RM instability for the case of a reflected shock, The first 

model is obtained by linearizing the Euler equations (Eqns. 1.4), and the second is an 

impulsive model where the RM instability is seen as a limiting case of the RT instability 

in which the accelerating field g is a impulse of infinitesimal duration (see [149] for a 

discussion of the validity of this notion.) Richtmeyer obtained linearized equations for 

the amplitude q(t) of the perturbations: 

q = k&l wl (1.34) 

rl(to) = rlo (1.35) 

ti(t) = 0, (1.36) 

where g(t) is the acceleration and A is the Atwood number. The rate of amplitude growth 

jl, first increases, and then approaches a constant asymptotic value after some oscillations. 

Equations 1.34 have been studied numerically [158] and by perturbation theory, in an 

extension to the case of a reflected rarefaction [149]. Richtmeyer also modeled the effect 

of the shock as an impulse of the form 

G = AVb-(t), (1.37) 

where AV is*the velocity change induced by the impulse. Substituting Eqn. 1.37 into 

the first of Eqns. 1.34 yields 

rj - ijo = -kAAVsjo, (1.38) 

As Richtmeyer noted, the constant 7]0, an initial amplitude, was ambiguous, because a 

determination of its value involves effects of compressibility, whereas the derivation of 
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Eqn. 1.38 begins with the potential flow equations, Eqn. 1.12. Richtmeyer chose v. = $, 

the postshock amplitude of the perturbation, which is given roughly by 

rl; = rlo(l - Wcs), (1.39) 

where c, is the incident shock speed; this formula accounts for the distance the valley of 

the perturbation moves by the time the peak is hit by the shock. In the case of heavy to 

light, the interface is inverted by the shock. If AV is greater than c,, then the perturbation 

will invert before the shock reaches the peak (see Eqn. 1.39) of the perturbation, and 

the inversion is called a ‘direct’ inversion; otherwise, the inversion is called an indirect 

inversion (See Reference [84]). 

Meshkov [llO] observed the RM instability in both light to heavy and heavy to light 

shock tube experiments. However, in the light to heavy case, the growth rates were 

on the order of 50% of the prediction of the linearized Richtmeyer theory. Meshkov 

noted that experimental artifacts may have changed the growth rate. Meyer and Blewett 

[ill] addressed the discrepancy by numerical simulations. They noted that the initial 

amplitudes in the Meshkov experiment were too large to be considered linear. Thus, they 

performed light to heavy numerical simulations with smaller amplitudes than Meshkov 

used, and found that the simulations also gave signficantly higher growth rates than 

those observed experimentally. However, for the light to heavy case they found that 

the simulations agreed well with the Richtmyer impulsive theory, Eqn. 1.38. Meyer and 

Blewett also performed numerical simulations of the heavy to light case, and found that 

they obtained agreement with the impulsive theory if instead of using Eqn.1.39 for the 

post-shock amplitude in Eqn. 1.38, they used the average of the preshock and postshock 

amplitudes, that is 

77;;,MB = ho + 77w. (1.40) 

Considerable further work has been done on the RM instability, both experimental 

and theoretical. Benjamin [22, 231 and Aleshin et al. [4] have performed further shock 

tube experim&ts. Benjamin saw growth rates higher than Meshkov’s but significantly 

smaller than predicted by Eqn. 1.38. Aleshin et al. considered the transition from the 

linear to the nonlinear stage and found growth rates slightly above the prediction of 

Eqn. 1.38. Dimonte and collaborators [56, 571 h ave performed experiments to study 

the RM instability at high compression at the Nova laser (see Section 1.4.1). They 
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produced a nearly constant velocity shock in a planar target driven by x-rays from the 

hohlraum (see Section 1.4.1 and Chapter 4). In [56], the growth rates they observed were 

in agreement with linear theory if they used the Meyer-Blewett prescription, Eqn. 1.40, 

for the amplitude in the heavy to light case. In [57], multimode RM was studied, and 

.the turbulent mix width h (distance from bubble to spike front) was observed to vary as 

h N tp, with ,0 - 0.6 f 0.1. 

Hecht [81] extended the work of Layzer on potential flow models for RT instability 

[loo] to multimode RM instability, for incompressible fluids with A = 1 (massless second 

fluid.) Alon et al. [6] studied single-mode, two-bubble and multimode RM mixing for 

arbitrary density ratios, finding, in disagreement with the later experimental results of 

Dimonte et al. [57] that the mix width exponent p was approximately 0.4 at all density 

ratios. Velikovich and Dimonte [150, 1491 have developed higher order perturbation theory 

for single modes. Zhang and Sohn [163] used Pade approximants and asymptotic matching 

to develop a quantitative nonlinear theory for the compressible RM instability that gave 

excellent agreement with experiments and numerical simulations [85, 221. Graham [73] 

performed extensive numerial studies of the RM instability in cylindrical geometry, and 

gives an excellent review of theory, simulations and experiments of RM instability. 

1.3.4.3 Nonlinear Asymptotic RT and RM velocities - drag vs. buoyancy 

For the single mode RM and RT cases, a simple intuitive argument can be made for 

the evolution of the bubble and spike velocities in the nonlinear stages. This discussion 

follows [5, 811. Newton’s equation for the heavy fluid above the bubble is 

du 
P2Vz = 432 - Pl)SV - cLIp2u2s, (1.41) 

where the subscripts 1 and 2 refer to the dense and light fluids, respectively, u is the 

velocity of the bubble tip, 5’ is the bubble’s cross-sectional area, V is the volume of dense 

fluid set in motion by the bubble, c is a constant and cD is the drag coefficient. The 

buoyancy term, c(p2 - p1)gV accounts for the rising of the bubble under the force of the 

acceleration g, and the drag term accounts for the momentum which the bubble must 

impart to the dense fluid as the bubble pushes the dense fluid out of the way. Dividing 

Eqn. 1.41 through by p2V, using the definition of A, and taking S/V - X, we arrive at 

iL = c .2A/( 1 + A)g - cDu2/x. (1.42) 
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Ignoring the changes in c and CD as the bubble rises and changes shape somewhat, we 

can now find the asymptotic RM and RT velocities. For RM, setting g = 0 in Eqn. 1.42, 

that is, assuming no accelerating force, Eqn. 1.42 reduces to 6 = CDU2/& which has the 

solution 

u = c$i/t. (1.43) 

Doing full scale numerical solutions with single mode perturbations, Alon et al. found 

CD1 = (3n)-r M 0.11, A 2 0.5 (1.44) 

CD1 c5 0.15, for low values of A (1.45) 

For RT, setting ti = 0 in Eqn. 1.42 we arrive at c*2A/(l+ A)g = cDU2/& which gives 

Ububble,asym. - - (cgX$ . 2A/(l + A))li2. A gain from numerical simulations, Alon et al. 

found that c M l/2 for A 2 0.5, TO obtain the result for the spike, we reverse the roles 

of fluid 1 and fluid 2 in Eqn. 1.41. The equation for bubble and spike velocities then 

becomes 

ti = CBg - cDu2/ii, (1.46) 

where u is the bubble or the spike velocity, and 

A 
CB = - 

l+A 
(1.47) 

CD,bubble = 3x (1.48) 
1-A 

CD,spike = 3T.- 
l+A 

(1.49) 

for A 2 0.5. Setting iL = 0 in Eqn. 1.46 and using Eqn. 1.47, the asymptotic velocities 

for RT are 

(1.50) 

for A 2 0.5, with the + for the bubble and the - for the spike. 

1.X4.4 Keivin-Helmholtz (KH) instability 

The Kelvin-Helmholtz (KH) instability occurs whenever there is a shear, that is, a change 

in the transverse velocity, between two adjacent layers of fluid. The KH instability does 

not involve a gravitational or impulsive force as the RT and RM instabilities do. The 

KH instability is manifest in the studies in this dissertation as waves along the sides of 
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bubbles and spikes and as rollups at the tips of spikes (see Figures 2.6 and 4.11.) Shore 

[140] gave an intuitive explanation of the KH instability in terms of the airfoil effect. For 

simplicity, assume steady (av/at = 0) potential flow (Eqns. 1.11 and 1.12), with g = 0. 

It follows (See [97], P. 18) that 

d/dt(v2/2 + P/p) = 0, (1.51) 

which is Bernoulli’s equation, where d/dt means that we follow a particular fluid element. 

Hence, at the point in the steady flow where the velocity of the fluid element is highest, the 

pressure of the fluid element is lowest. Thus, given two layers of fluids in motion relative 

to each other, with the velocities of the layers directed parallel to the interface between the 

layers, if there is a slight upward perturbation to the shape of the interface, the overlying 

flow will be forced to deviate around the perturbation, with an accompanying increase 

in velocity and drop in pressure. Thus, the upward perturbation will experience lift, 

reinforcing the perturbation. Eventually, the shear of the flow will cause the perturbation 

to curl up into a vortex. 

1.3.4.5 2D vs. 3D hydrodynamic instabilities 

3D perturbations grow faster in the nonlinear regime than 2D perturbations, because 

the growth saturates later in 3D (see Refs. [loo, 51, 156, 821 and references therein for 

theoretical work on this topic). Marinak et al. [107] investigated 2D vs. 3d growth in ac- 

celeration, with a light fluid, the ablated material, acclerating the dense target, in indirect 

drive experiments at the Nova laser. They found that 3D perturbations grew approxi- 

mately 50% faster than 2D perturbations, at the ablation front, when the wavenumbers 

were chosen to give the same growth rate in the linear regime. Workers in SNe have 

noted possible 2D vs. 3D effects in their simulations of SNe (eg. [118].) The difference 

in 2D vs. 3D growth can be understood qualitatively by a drag vs. buoyancy argument 

for incompressible fluids. A 2D bubble of 10~ density fluid shaped like a ridge has to 

push more hi;h density material out of its way (imparting momentum to it) as it rises 

than a hill-shaped 3D bubble [51, 81, 1071. That is, the kinematic drag per unit buoyant 

force is larger in 2D, making the terminal bubble velocity lower. The bubble velocity u 

will change with time according to Equation 1.46. The buoyancy and drag coeffecients, 

cg and cg respectively, account for the shape of the bubble and spike and therefore the 



30 

differences between 2D and 3D. For the case A = 1, Layzer [loo] and Hecht et al. [81] 

found that the 3D asymptotic RT bubble velocities were 

U3D,RT,asym = (1.52) 

For A = 1, Eqn. 1.50 gives 2D asymptotic RT bubble velocities of ,/m = J?@&$ 

M 0.577m. That is, the 3D asymptotic RT velocity is about 73% higher than the 2D 

asymptotic RT velocity, when the same wavenumber is used for the 2D and 3D pertur- 

bations. The 2D-3D difference will be discussed for specific scenarios in Sections 2.4 and 

5.1. 

1.4 A survey of some intense lasers 

1.4.1 Nova facility 

1.4.1.1 Overview 

In this section we discuss the Nova laser facility, located at Lawrence Livermore National 

Laboratory in Livermore, CA. More information on Nova can be found in [39, 37, 401 and 

references therein. 

1.4.1.2 ICF 

The primary mission of the Nova laser is the study of Inertial Confinement fusion (ICF). 

In ICF, two isotopes of H, deuterium (D) and Tritium (T), are combined under very high 

temperatures and pressures. The fuel in a DT fusion capsule is heated to over lo7 K 

and compressed to a density 20 times that of lead. The pressures achieved in the core of 

capsule are on the order of lo5 Mbar (lOI ergs/cm3 or 1Or1 atmospheres.) The fusion 

products are He, a neutron, and energy. The laser energy is used to heat the outer layers 

of the fuel capsule, which is about the size of a grain of salt, and composed of a shell of 

plastic (CH) surrounding the DT fuel. The energy is supplied either by shining the laser 

beams directly on the surface of the capsule (direct drive), or by mounting the capsule 

inside a cylindrical gold radiation cavity (a hohlraum - see Figure 4.1), resulting in a 

nearly blackbody radiation field of temperature 200-300 cV (1 eV equals 11605 K) that 

bathes the capsule. 



The laser energy heats the surface of the fuel pellet’s outer shell so rapidly that the 

surface begins to boil away. The rocket-like action of the boiled-off surface material causes 

a shock wave to propagate inward into the remaining material of the shell, causing the 

fuel pellet to implode. The pellet is reduced in radius by a factor of 30, compressing 

the DT fuel to the point that fusion occurs. The Nova laser supplies a maxium of 

150 kJ of energy per shot. The amount of energy required for break-even fusion, in 

which more energy is produced than input, is calculated to be over 1 Mbar. The Nova 

is also used for a wide variety of experiments besides ICF, including XUV/x-ray lasers, 

hydrodynamics, radiation generation and transport, equation of state measurements, and 

recently, laboratory astrophysics. 

1.4.1.3 The facility 

The Nova laser system (Figure 1.1) is located at Lawrence Livermore National Labo- 

ratory in Livermore, California. The Nova laser operates two shifts per day, five days 

per week, an& produces about 1400 experiments per year. Approximately 60 personnel 

operate the laser and target areas. The laser consists of a 120.terawatt (TW - 10” W) 

neodymium:glas laser that can be directed into t.wo target chambers for inertial con- 

finement fusion experiments. The laser consist,s of ten separatr beams, that operate at 

1.05 pm wavelength (frequency ‘2~‘). The laser light is frequency converted using large 



32 

potassium diphosphate (KDP) crystals just before the target chambers to the second or 

third harmonic, or 0.53 pm (frequency 2~) and 0.35 pm (frequency 3~) respectively. The 

final diameter of each beam is 74 cm. The f/4 focus lenses on each chamber provide a 

focused spot at target of about 150 pm (about twice the size of a human hair), with peak 

intensity delivered to target of approximately 1Or7 W cmm2. The maximum energy on 

target is M 100 KJ at lw, or z 40 KJ at 2~ or 3~. The pulse length can be varied from 

20 picosecond (ps - lo-r2 s) to 1 nanosecond (ns - lo-’ s) Gaussian, or 500 ps to 10 ns 

in a shaped form. All beams can be individually pointed with a precision of about 30 pm 

at chamber center. Beam power balance of < 5% rms at the peak of temporally shaped 

pulses can be provided. Up to three of the beams can be used as target backlighters (see 

Section 1.4.1.5), with from 0 to 50 ns delay from the main pulse. 

1.4.1.4 Target Chambers 

The target chambers are spherical vacuum vessels with target inserter systems that allow 

remote operation for a variety of target experiments. Both target chambers have a range 

of target diagnostics for measuring X-ray, optical light, and neutron emissions. The 

chambers are located in separate rooms for increased system flexibility. The lo-Beam 

chamber is about 4.5 m diameter of aluminum and the 2-Beam chamber is about 1.8 m 

diameter of stainless steel. There are two, lw, chirped pulse lasers that can be used on 

the target chambers in conjunction with the ten beam laser system. A 100 TW system 

is available for use on the 2-Beam target chamber, with a lw pulse of about 40 J in 400 

femtoseconds (fs - lo-r5 s). A Petawatt system has been built on the lo-Beam target 

chamber, where one of the ten beams is modified to produce a lw pulse of about 1 kJ in 

1 ps. 

1.4.1.5 Diagnostics 

The diagnostics at Nova can be grouped into four different types: X-ray Spectrometers, 

Neutron Dia&ostics, Optical Diagnostics, and X-ray Imagers. The principal uses of the 

X-ray spectrometers include measuring time resolved density and electron temperature of 

ICF implosions, measuring ionization states, making opacity measurements, and measur- 

ing energy of fast electrons. Principal uses of neutron diagnostics are for ICF: measuring 

fuel area1 density and ion temperature, and hydrodynamic mixing and asymmetry in 
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the implosion. Principal uses of optical diagnostics include measurements of hohlraum 

radiation temperatures with streaked optical pyrometer, and measurements of plasma 

instabilities. 

The diagnostics of the most direct importance to the experiments described in this 

dissertation are the x-ray imagers. The gated x-ray framing camera [21], used in ICF for 

imaging symmetry of implosions, is also for x-ray backlighted images (radiographs). The 

usual strategy in a radiograph is to select a backlighter material which, when heated by 

laser, radiates x-rays at a wavelength to which some of the materials in the target are 

more opaque and others more transparent, so that a shadow of the more opaque materials 

are recorded on film (see Refs. [69, 361). I n f ace on radiography we look through the 

target perpendicular to some surface of interest, such as an ablation front or an interface 

between two materials. In side on radiograpy we look sideways through the target, parallel 

to the the surface of interest. The framing camera allows multiple images on a shot (M 

16), and uses an 80 ps gated x-ray pinhole imager. A Wijlter x-ray microscope [63, 1251 

is available; it provides 22 x magnification for x-ray backlit images. Also used is a 1D 

steaked-slit imager [126]. The x-ray imagers can be used to make time-streaked images, 

in which the x-ray signal is integrated in one space dimension to provide an average 1D 

image vs. time, or to make static 2D images at selected times. 

1.4.1.6 Time and distance scales 

Some typical scale lengths for Nova experiments are as follows. Experimental times 

are measured in ns (lo-’ s), with the drive pulses typically lasting from 1 to 5 ns, 

and observations of the experiment lasting 5-40 ns. The indirect drive hohlraums are 

measured in millimeters, and the target dimensions are measured in hundreds of microns 

(1 pm = 10h6 m = 10e4 cm.) Pressures on high energy shots are typically measured 

in the tens of Mbar (lOI erg/cm3). Temperatures in laser experiments are commonly 

expressed in the energy unit eV, where 1 eV = 11605 K. Radiation temperatures inside 

hohlraums are measured in hundreds of eV. Temperatures inside targets in the range of 

l-10 eV, and can be much higher, in ablated mat,erial, or inside ICF capsules, for example. 

Densities in irradiated targets are typically on the order of few tenths of a g/cm3 to a few 

g/cm3, but can be much higher in ICF capsules, for example, and much lower in ablated 

material. 
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1.4.1.7 Hydrodynamics experiments at the Nova laser 

Hydrodynamics instabilities have been the focus of intensive research in ICF for some 

time (see, for example, [103, 1441). AS shocks cross the shell in an ICF capsule, capsule 

surface finish perturbations will grow due to the RM instability. The low density shell 

material ablated away by the laser energy accelerates the denser remaing shell, and so 

the ablation front is RT unstable. Perturbations at the outer surface grow and feed 

through to the inner surface of the capsule. When the shock rebounds from the core of 

the capsule, the shell decelerates, and becomes RT unstable. The mixing produced by 

these instabilities can cause shell material to penetrate the core, degrading the capsule 

performance [103]. Thus understanding the RM and RT instabilities (and learning how 

to control them in ICF), is of critical importance to the ICF mission. 

Remington and collaborators have done a series of Nova laser experiments to study the 

RT instability. In Ref. [127] they describe experiments in which a foil of FS (SiCCdFs) or 

CHBr (brominated plastic) is mounted across a diagnostic hole in the side of the hohlraum 

and accelerated by ablation induced by the x-ray drive from the hohlraum. Modulations 

are imposed in the solid target to act as seeds for ablative RT instability. The growth 

of modulations is diagnosed with face on (looking perendicular to the ablation front) 

or side on (looking parallel to the ablation front) x-ray radiographs. 1D time-streaked 

imaging is done using a Wijlter x-ray microscope or slit image. 2D imaging is done with 

the gated x-ray pinhole camera. Single mode perturbations allowed measurments of RT 

growth rates in the linear and nonlinear regimes. In [128], Remington et al. used CHBr 

foils with two or eight sinusoidal wavelengths superposed, observing coupling of modes 

and production of beat modes in the nonlinear regime. Marinak et al. [107] observed the 

difference in RT growth between 2D and 3D perturbations in ablatively accelerated CHBr 

foils. Dimonte and Remington [56] and Dimonte et al. [57] did Nova laser experiments 

to study RM growth. See Sections 1.3.4.1 and 1.3.4.2 for further discussion of the hydro 

experiments mentioned here, and also see Reference [40]. 
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Figure 1.2: Beam smoothing with SSD at Omega (a) Frequency-tripled beam (0.35 pm). 
(b) phase plate, no SSD, and (c) with SSD. Images are integrated over 1 ns. 

1.4.2 Other facilities 

1.4.2.1 OMEGA 

The OMEGA laser [50, 961 is located in the Laboratory for Laser Energetics at the 

University of Rochester in Rochester, NY. Like Nova, it is a neodymium:glass laser, and 

like Nova, is typically used to deliver up to 30 kJ of energy per shot. OMEGA has 

60 beams, as opposed to Nova’s 10 beams, thus operating at lower energy per beam. 

OMEGA is used for similar research to Nova. One of the main research goals at OMEGA 

is doing preparatory work for the direct-drive ICF capability of the National Ignition 

Facility (NIF) ( see Section 1.4.2.2). In addition to ICF, a wide variety of experiments 

are fielded at OMEGA, including experiments in plasma physics, spectroscopy of highly 

ionized atoms, fundamental physics, materials science, biology, chemistry, and laboratory 

astrophysics. As with Nova, the fundamental wavelength of the laser is 1.05 pm; target 

irradiation is usually done at the third harmonic of the fundamental, 0.35 pm. OMEGA 

has beam smoothing by spectral dispersion (SSD) [142] to provide a more uniform direct 

drive irradiation pattern on target (see Figure 1.2). Target experiments on OMEGA are 

carried out in a 3.3 m diameter vacuum chamber. OMEGA’s beam pointing precision 

and stability have been measured as f16 pm, and its beam energy imbalance as less than 

f4% rms. 
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1.4.2.2 The National Ignition Facility 

The 192 beam National Ignition Facility [3] will be the successor to Nova. NIF will 

delivery 1.8 MJ, 40 times the energy of Nova, at 10 times the power of Nova, to the 

target. The first bundle of NIF beams will be online in 2001, and the full 192 beam 

system will be complete by late 2003. NIF will be the first laser facility to produce break- 

even ICF. NIF will be the latest in a long line of glass:neodymium lasers that have been 

built since 1960 at Livermore; other lasers were the Long Path laser, the two-beam Janus 

laser, Cyldos, Argus, the lo-beam 10 kJ Shiva, the Novette laser, and Nova. 

1.4.2.3 Gekko 

The Gekko laser [l] is located at the Institute of Laser Engineering at Osaka University 

in Osaka, Japan. The Institute was established for laser fusion research, high power laser 

development, and the study of their applications. The Gekko XII laser is a twelve-beam 

glass laser system Gekko (30 kJ, 55 TW power.) The Gekko laser has been used for ICF 

research, and recently, for laser astrophysics (see Section B.3). 

1.4.2.4 Phebus 

The Phebus laser of the Commissariat a L’Energie Atomique in Limeil-Valenton, France, 

has two Nova-like glass:neodymium beams, and can deliver 4 kJ of energy at 0.35 pm 

to the target. Phebus is scheduled to be decomissioned in 1999. In the French laser 

program, Phebus is to be succeeded by LIL laser, and eventually by the Laser Megajoule, 

which will be similar to NIF. 

1.4.2.5 NIKE 

The NIKE laser [28] is a KrF laser located at the Naval Research Laboratory (NRL) 

in Washington, D.C. NRL participated in ICF research, and in the development of 

glass:neodytium lasers, from the beginning of research in both programs. NIKE pro- 

duces 4-5 kJ of UV light in a 4 ns pulse. A new beam-smoothing techique suited for KrF 

lasers was developed for NIKE, resulting in a beam with better uniformity than existing 

glass lasers by a factor of about 10. 



37 

1.4.2.6 Vulcan 

The VULCAN laser is located in the Laboratory of the Research Councils’s Rutherford 

Appleton Laboratory at Chilton in Oxfordshire, UK [a]. Vulcan is a multi-beam multi- 

terawatt laser/matter interaction facility based on a neodymium:glass laser operating at 

1.05 pm. Vulcan has both long pulse (2500 J in 1 ns) and short pulse (1 ps pulse at 35 

TW) operation. The system has four experimental areas with laser radiation in various 

geometries including line focus and cluster. Developments are underway to enhance the 

output capabilities to > 200 TW in Phase I of a two phase PetaWatt enhancement pro- 

gram. Vulcan is one of two lasers at Central Laser Facility CCL. The other is Sprite, the 

worlds brightest UV laser, capable of producing intensities of 1Org W/cm2 at a repetition 

rate of up to 15 shots per hour. Both high power lasers are used to investigate the basic 

physics of the interaction of laser pulses with gas and solid targets, laser fusion and X-ray 

laser development, and also ICF related physics. 

1.5 Astrophysics experiments on large lasers 

Most astrophysics experiments on lasers have been done only recently, as large intense 

lasers have been built. Some experimental work on large lasers predates the experiments 

discussed in this dissertation, and there have been other types of astrophysics experiments 

in the laboratory. In this section we will survey some work in laboratory astrophysics and 

in large laser astrophysics experiments. Because so much of the work is contemporary, 

and more easily described after discussing the experiments done for this dissertation, we 

will discuss the more contemporary work after the main body of the thesis, in Appendix 

B, and in particular in Sections B.l, B.2, and B.3. For an excellent review of both 

historical and contemporary laboratory and laser astrophysics experiments, see Ref. [59]. 

For further discussion of the possibilities for astrophysics experiments on large lasers and 

of laboratory astrophysics in general, see [131, 132, 68, 52, 721. 

In [59], DLake discusses a number of historical laboratory astroplyics experiments. 

As Drake argues, the approach in the earlier experiments was to produce an experiment 

with some feature relevant to astrophysics, generally a blast wave, and then see what 

relevant physics could be extracted, while the goal in more contemporary experiments 

has been to design an experiment with a limit4 set of physics that can be scaled to 
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astrophysical scales. The first of the historical experiments which Drake discusses were 

performed by Borovsky et al. [32]. The goal in these experiments was to simulate a 

supernova remnant (SNR) ( see Appendix A for a discussion of SNRs). The experiments 

were performed on the Helios laser system at Los Alamos National Laboratory. The laser 

delivered 6 kiloJoules (kJ) of CO2 light at a wavelength of 10.6 pm in a 1 ns pulse to a 

solid spherical target a few hundred pm in diameter. Radiation from the explosion ionized 

the surrounding air in the target chamber, creating an ambient plasma into which the 

explosion ejecta expanded spherically. The experimenters hoped to detect the forward 

and/or reverse shock (see Appendix A) in the current of ions reaching the target chamber 

wall but found no evidence of either shock. One difficulty with the experiment was that 

large numbers of relativistic electrons were produced in the shock, and could produce 

hydrodynamics different than that expected in a SNR. Furthermore, in the experiment 

there was no background magnetic field, which is generally thought to be needed to 

establish a collisionless shock in SNRs. 

In another set of experiments at the KI-1 facility at Novosibirsk (see for example, 

[7, 119, 1621 and references therein), workers attempted to simulate the deceleration of 

an SNR blast wave. In this experiment, a CO2 pulse delivered 0.5-l kJ of energy in a 

long, 0.1 ~~-0.3 pus pulse to the target. This lower intensity pulse produced lower levels of 

relativistic electrons. In contrast to the experiment described above, the ambient plasma 

was magnetized with a cylindrically symmetric magnetic field produced by magnetic 

coils. A &pinch was used to produce the ambient plasma. The magnetic field decelerated 

the ejecta, by J x B forces as electrical fields induced in the ejecta by the swept-up 

magnetic field interact with the background field. A forward shock was observed in 

measured profiles of electron density and magnetic field. As Drake notes, the deceleration 

observed, being due to work done to compress the magnetic field, is different in nature 

than the deceleration in an SNR, in which the deceleration is due to accumulation of 

mass. However, these experiments could potentially yield insight into the formation of 

collisionless*shocks, which are indeed relevant in SNe (see Ref. [134]). 

A third set of experiments dealt with instability of Scdov-Taylor blast waves [136]. In 

a spherical explosion where the ejecta sweeps up ambient matter, the Sedov-Taylor phase 

occurs when the mass of swept-up matter exceeds the mass of ejecta. Old SNRs enter 

the Sedov-Taylor phase when the SN ejecta has swept up enough of the circumstellar 
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medium (CSM). The experiments were performed by Grun et al. [75] at the Naval 

Research Laboratory. The goal of the experiment was to produce and observe the Vishniac 

instability [151], which occurs at the blast wave when the ambient matter has an effective 

adiabatic exponent y less than 1.2. This can occur in SNRs when the blast wave becomes 

radiative (see [106]), Oscillations at the shock front can become overstable, disrupting the 

shell of material behind the shock if the shell is thin enough. Grun et al. [75] used a 5 ns, 

200 J pulse of laser light at a wavelength of 1.05 pm to heat a thin plastic foil, creating 

high-velocity ejecta which swept up an ambient gas of nitrogen or xenon at a pressure of 

5 Torr, which resulted in a Sedov-Taylor blast wave when the blast wave reached a radius 

of about 6 mm. After the Sedov-Taylor radius was reached, the researchers observed that 

the blast wave distance increased as t0.4, as expected. Furthermore, the Vishniac theory 

was confirmed when strong instability at the shock front was observed for the case of 

xenon gas, which was radiative and had an effective y of M 1.06, and was not observed 

for nitrogen, which was not radiative and had an effective y of M 1.3. The relevance of 

these experiments to astrophysical events was considered in [106]. 

Rose [131, 1321 also discusses a number of possible applications to astrophysics of 

plasmas produced by lasers. Rose discusses the use of laser-produced plasmas for identifi- 

cation of line spectra in the XUV; for opacity measurements relevant to Cepheid variables, 

for example; opacity measurments by measurement of radiation transport; direct laser 

heating of a plasma to test X-ray nebula modeling; dense plasma experiments relevant to 

white dwarfs; line transport in plasmas with strong velocity gradients; stellar opacities, 

relevant to the solar neutrino problem. 

Budil et al. [35] have performed a series of experiments at the Nova laser designed 

to investigate the evolution of a high density sphere after the passage of a strong shock 

wave, thereby emulating a SN shock-cloud interaction. The interaction of strong shock 

waves, such as those generated by the explosion of SNe, with dense interstellar clouds 

is a problem of fundamental importance in the interstellar medium and may lead to the 

formation ofa new generation of stars. In our own galaxy, the structure observed in 

the Cygnus Loop has been attributed to the development of hydrodynamic instabilities 

from such shock-cloud interactions. The researchers used the Nova laser to generate a 

strong (M - 10) shock wave which traveled along a miniature, beryllium shock tube, 

750 pm in diameter, filled with plastic. Embedded in the plastic is a copper microsphere 
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(100 pm diameter) and its evolution as well as the trajectory of the shock wave were 

diagnosed via face-on radiography. 2D and 3D simulations of the experiment were done 

with an adaptive mesh refinement (AMR) code and an arbitrary Lagrangian and Eulerian 

(ALE) code; significant differences in the evolution were observed between the 2D and 

3D simulations. 

Rubenchik et al. [133] have investigated using the Petawatt arm of the Nova laser to 

study meteorite impacts. The velocity of meteorites can reach 100 km/s and higher. There 

is currently no facility that can accelerate a sample in the solid state up to such speeds to 

experimentally simulate a high velocity meteorite impact. However, for velocities larger 

than 10 km/s the kinetic energy density in a meteorite is much larger then the material 

evaporation energy, so the impact can be simulated by an impulsive, local energy release. 

The time of release must be smaller than the impact time and the energy must be released 

on a scale comparable with the meteorite size. The PetaWatt Laser at LLNL, which can 

deliver 500 J of energy in a - 50 pm spot over few ps, is an ideal facility for studying 

high speed meteorite impact physics. Rubenchik et al. [133] have presented preliminary 

results from experiments using Petawatt to create craters in thick planar Au targets, and 

have discussed scaling the experimental results. 

1.6 Numerical codes 

In this chapter we discuss the numerical hydrodynamics codes which we have used for 

simulating the Nova laser experiments, SN 1987A, and SNRs. 

1.6.1 HYADES 

The HYADES code (see Ref. [98]) is a 1D Lagrangian code which has multigroup radiation 

transport and uses tabular Equation of State (EOS). We use HYADES to model the initial 

physics in the laser experiments. We use the measured x-ray radiation temperature, TT(t), 

as the energy input to HYADES. 

1.6.2 CALE 

The LLNL code CALE is a 2D Arbitrary Lagrangian Eulerian (ALE) code (see Ref. [16]) 

with tabular EOS and interface tracking; CALE allows both planar and cylindrical (r-z) 

geometry. The version of CALE that we have used does not have radiation transport, 
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although very recently we have obtained a version which does have radiation transport. 

We use mainly CALE to design the laser experiments, because we can use tabular EOS 

with CALE. 

1.6.3 PROMETHEUS 

PROMETHEUS is a multidimensional hydrodynamics code which uses the Piecewise 

Parabolic Method (PPM; see Ref. [154]). PROMETHEUS allows planar, spherical, and 

cylindrical geometry, and can be run in lD, 2D or 3D. 

1.6.3.1 PPM 

In the PPM method, the solution to the 1D hydrodynamics equations is computed by 

solving the Riemann problem [49, 1011 at each boundary between two zones. The histor- 

ical basis for the PPM method is the Godunov method [71], in which the thermodynamic 

variables - density p, pressure P, and velocity 21 are approximated as constant quanti- 

ties for the solution of the Riemann problem. The Van Leer second order method [45] 

is a higher order improvement on the first order Godunov method, in which the thermo- 

dynamic variables are approximated as linearly varying quantities within each zone. In 

the PPM method, the thermodynamic quantities are approximated by parabolas, giving 

as high as 4th order accuracy in smooth parts of the flow. An important advantage of 

the PPM method over more traditional finite-difference methods for computing hydrody- 

namic flow (see the survey in [154]) is that it naturally allows representation of shocks, 

often without having to use any of the artificial viscosity that other methods need to 

stabilize the shock. In many cases a small amount of artificial viscosity is required, but 

much less than in other methods. A major advantage of the PPM method is its higher 

order accuracy. This is particularly important in multi-dimensional calculations. The 

cost of a 1D finite-difference hydro calculation on a uniformly-zoned grid increases with 

the number of zones n as n2, the second factor of n due to the limit on the time step 

imposed by the Courant condition [49] which states that information cannot travel across 

more than one zone during one time step. Similarly, the cost of 2D and 3D calculations 

go as n3 and n4, respectively. Thus, to double the resolution of a 2D calculation causes 

an S-fold increase in the time required, and to double the resolution of a 3D calculation 

causes a 16-fold increase in time, making it quickly intractable to increase the resolution 
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of a 3D calculation. Thus it is highly desirable to use as few zones as possible. 

1.6.3.2 Operator splitting and additional physics 

PROMETHEUS uses operator-splitting to do multi-dimensional hydrodynamics. The 

hydrodynamics is calculated in 1D ‘sweeps’, with the first three sweeps in the 2, y and z 

directions, and the next three in the Z, y and z directions, where 2, y, and z stand for 

whatever coordinate directions are being used in the given geometry. The entire state of 

the calculation is updated after the sweep. The same time step is used for each sweep 

in each set of three sweeps. The backwards order of the second set of sweeps produces a 

more accurate result, compensating for the small inaccuracy in solving operator-split 1D 

equations hydrodynamics instead of the fully multidimensional hydrodynamics equations. 

Operator splitting can also be used to add other physics, such as diffusion by heat 

conduction or radiation transport, and also nuclear burning, following the method de- 

scribed in [114]. We investigated the effect of nuclear burning in the 0 layer in SN 1987A 

using this method (see Ch. 2.) The version of PROMETHEUS that we have used does 

not have radiation transport, although other workers report having successfully added to 

it their versions of PROMETHEUS [62]. 

1.6.3.3 Equation of state 

Ideal gas equation of state (EOS) is used for all the PROMETHEUS simulations of the 

laser experiments; we choose an adiabatic exponent y for each material in the target to 

best reproduce the 1D shock speed, and velocity of the interface between the materials, 

as simulated by HYADES and CALE using tabular EOS. In the SN and SNR simula- 

tions, we use ideal gas, y = 4/3, which is the radiation-dominated limit of an EOS with 

contributions from radiation pressure and fully-ionized ideal gas. 

A disadvantage of the PPM method as implemented in PROMETHEUS is that is 

difficult to use a fully general EOS with this method [47, 461. The original version of 

the PPM method allowed only ideal gas EOS. An improvement in the Riemann solver in 

the PPM method [46] allowed the use of more general equations of state. We have done 

investigations of usin, c tabular EOS with PROMETHEUS. 
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1.6.3.4 Moving grid 

PROMETHEUS implements the direct Eulerian version of PPM [154, 471, in which the 

the new state (after the next time step) in each zone is calculated in one step onto the 

grid at the next time step. The other version of PPM, Lagrangian-plus-remap (LRPPM), 

first does a Lagrangian step, in which the grid moves with the fluid, and then remaps 

onto the grid at the next time step. The two different versions of PPM give very similar 

results [47, 66, 441 

Although the computational grid in PROMETHEUS is orthogonal, the grid lines are 

allowed to move in each direction, SO that the state at the next time step is calculated 

on a new grid. This moving grid option is indispensable in many problems, especially in 

problems in spherical geometry, such as the SN and SNR problems (see Chapter 2 and 

Appendix A). In such problems the zones become very small in the angular direction 

at lower radius r, that is rd8 and rd# can become extremely small. As a result the 

Courant condition can impose a very small time step in these small zones, yet the same 

time step must be used in all zones in the problem. In the case of a spherical explosion, 

roughly speaking a shell of dense material is blasted outward by the shock wave. If the 

entire grid can expand homologously with the blast wave or with the shell, then rd8 and 

rd4 will increase, thus allowing the time step to increase. The saving in time can be 

very large. Of equal importance in this case is the fact that the entire spatial extent of 

the problem does not have to be zoned in advance. The outer edge of the grid can be 

made to advance just ahead of the shock into the relatively static medium surrounding 

the explosion. The conditions in the surrounding medium can be fed in as a boundary 

condition at the high-r boundary. The saving in zones can be significant when the radius 

of the blast wave expands during the problem. Just enough zones can be used initially 

that the bulk of the material behind the shock in the problem will always be contained 

within the grid. At the lower radius boundary, where the fluid will typically be greatly 

rarefied, a flow-out boundary condition can be used. A small amount of material can be 

lost in this wa? from the problem, but the effect of this can bc mitigated by first studying 

the problem in 1D and choosing the inner radius of the initial grid judiciously. 

In the SN problems we describe (Ch. 2), WC tend to have l~ydrotlynamics in the outer 

part of the grid that require two dimensions or three dimensions, because the problem is 
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by design not spherically symmetric, such as when we place a perturbation in a fluid layer 

to trigger the RM and RT instabilities. However, often the innermost part of the problem 

is described reasonably well by 1D hydrodynamics. In such a case, it is possible to run 

the innermost part of the problem in lD, by simply turning off the sweeps in the angular 

directions. The radial zoning can be made very coarse at lower radius, and the time step 

in the 1D zones can be calculated considering only the radial extent of those zones, thus 

removing the severe Courant condition constraint on the time step due to the small rd0 

and rd4 in those inner zones. The effect is that the flow in the innermost regions, and its 

effect upon the flow further out, can be treated to perhaps a better approximation than 

if, the inner radius of the problem were higher and the entire problem down to this inner 

radius were calculated in 2D or 3D. 

1.6.3.5 Radiation transport and Heat conduction 

We have chosen the problems described in this dissertation so that the essential physics 

is the hydrodynamics, as discussed in Ch. 3. In the case of the SN, we do not address 

the complicated physics in the core of the star, while in the laser experiments, we are 

not directly concerned with the physics of energy input from the laser; we simply want 

to start a strong shock wave in the laser target. However, to begin a simulation of the 

laser problem, we do not need to do an adequate modeling of the energy input, which 

requires radiation transport and heat conduction. In this work we have done so using the 

code HYADES, described in Sec. 1.6.1. HYADES has multigroup radiation transport, 

and various opacity models. Below a user-set temperature threshold, HYADES can use 

a cold opacity table. Otherwise, HYADES can use various ionization models for the 

materials, such as the Saha model, and the much more expensive average atom model 

[98]. In modeling the laser experiments, we have tried both Saha and average atom 

models. We found no significant difference in the results, for our problems. HYADES 

also has diffusive heat conduction. In general, as evidenced by running HYADES (with 

radiation and&heat conduction) and 1D CALE (without radiation and heat conduction) 

in parallel after mapping at early times from HYADES to CALE, we find that diffusion 

by radiation or by conduction does not significantly affect the results of the simulations. 
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CHAPTER 2 

NUMERICAL SIMULATIONS OF HYDRODYNAMIC 
INSTABILITIES IN SUPERNOVA 1987A 

2.1 Overview 

In this chapter we present some numerical simulations of SN 1987A, performed with 

the code PROMETHEUS (see Section 1.6.3). Much of the material in this chapter was 

presented in condensed form in [92]. Many groups have performed numerical simulations 

of the explosion phase of SN 1987A ( see eg. [8, 10, 11, 67, 115, 116, 139, 157, 77, 83, 118, 

241 and references therein). Until computing power reached the point during the last ten 

years that 2D simulations were routinely possible, most simulations of SNe were in 1D. 

A 1D simulation automatically assumes a spherically symmetric explosion. However, the 

possibility of hydrodynamic instabilities in SN was long recognized [64, 421. To model 

the mixing due to these instabilities, it was common to resort to mixing length models. 

However, these models generally underpredicted the peak velocities of the core elements 

such as 56Co and underestimated the time at which these materials would become visible 

in the spectrum of the ejecta (see the discussion in Section 1.2 and references mentioned 

therein). 

In [ll, 67, 1151, A rnett, Fryxell and Miiller performed 2D simulations of the explosion 

in cylindrical r-z geometry. They found that by imposing a random zone-by-zone velocity 

perturbation of between l-10% amplitude in the shocked fluid behind the blast wave, 

significant RT instability and mixing resulted. Neither these nor other 2D simulations 

that assume physically reasonable seed perturbations for the instabilities can reproduce 

the core elements velocities seen in observations of SN 1987A. The possibility remained 

that 3D hydrodynamic simulations could produce more mixing. 

Miiller, Fryxell and Arnett [116] p er f armed preliminary three dimensional simulations 

of RT instabilities in SN envelopes using PROMETHEUS. The results were obtained in 

spherical polar coordinates (r, 8,4) on an Eulerian grid of 200 x 20 x 20 zones. Periodic 
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boundary conditions were imposed in angular direction at 0 = n/2&n/20 and 4 = &/20, 

respectively. The angular resolution, therefore, was 0.9 degrees. The ECS consisted of 

contributions from radiation and 10 Boltzmann gases (H, 4He , r2C , 160 , 20Ne , 24Mg , 

28Si , 56Fe , 56Co and 56Ni ), which were assumed to be completely ionized, and which 

were used to keep track of the amount of mixing of nuclear species. The initial model 

was a 15A& star near the end of core carbon exhaustion having a 4AJa He-core and a 

metallicity z = zo/4 [8]. Th e explosion was artificially initiated by instantly depositing a 

mixture of internal (50%) and kinetic (50%) energy into the inner few zones. At t = 300 s 

a random perturbation of 1 to 10% amplitude was added to the radial velocity of each 

zone in order to get the instability started. 

These preliminary three dimensional calculations showed pronounced instabilities pro- 

ducing clumpy structures, which had up to a factor of ten higher density than the sur- 

rounding matter. The size of the structures was limited in angular direction by the grid 

resolution. The overall appearance of the instability qualitatively resembled coarse 2D 

results obtained by the same authors on grids with similar radial and angular resolu- 

tion. However, without the assumption of axial symmetry, genuine 3D clumpy structures 

formed. This ‘similarity’ of the 2D and 3D results was also found when the amount of 

mixing in the different models was compared (for further details see [116]). 

These simulations assumed only RT instability; that is, they did not consider the 

shock-driven RM instability. Also, they assumed that no long-wavelength perturbations 

existed in the progenitor (pre-explosion) star. The work of Bazan and Arnett [13, 201 

suggested that longer wavelength perturbations that could subject the 0 layer of SN 

1987A to RM instability could exist in the progenitor. In the numerical investigations 

presented here, we consider the effects of single mode perturbations in the 0 layer of 

the progenitor and near the post-shock He-H interface of SN 1987A. Apart from the 

motivation provided by the work of Bazan and Arnett, these simple perturbations are 

of interest because they also admit the possibility of developing a theoretical description 

of the mixingbased upon potential flow theory. As a first step in this development, we 

consider the difference between 2D and 3D hydrodynamics in the explosion. The greater 

instability growth expected in 3D compared to 2D is of direct &crest because of the 

possible contributions of 3D hydrodynamics to the difference between 56Co velocities in 

observations and those in 2D simulations. 
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We first examine single mode 2D and 3D growth at the O-He and He-H interfaces of 

SN 1987A. In the nonlinear stages of growth we expect such single mode perturbations 

to evolve into the familiar bubble-and-spike configurations [104, 1451, by a combination 

of RM instability triggered by the blast wave impulse, and RT instability as the He 

layer decelerates the dense 0 layer and the H layer decelerates the He layer. We then 

examine the coupling between an instability at the O-He interface started by a single 

mode perturbation in the 0 layer and an instability at the He-H interface started by a 

random post-shock velocity perturbation in the fluid near the He-H interface. In these 

simulations, we deposit the canonical SN 1987A explosion energy of 1.5 x 105r ergs at the 

bottom of the 0 layer, omitting the behavior of the Fe core. We use simply a radiation 

dominated ideal gas EOS, with y = 4/3. W e n in 1D simulations that the results are fi d 

nearly identical in the 0, He and H layers if we use fully ionized ideal gas plus radiation 

pressure EOS. We neglect nuclear burning. However, we have performed 1D simulations 

in which we have included the burning of 0 to the Si-Ca group elements (see Ref. [12] for 

discussion of nuclear burning), adding the energy released by the burning to the internal 

energy of the fluid. We find that the 1D hydrodynamics with and without the O-burning 

were nearly identical. In calculations presented here we use a moving grid that expands 

homologously in radius with the blast wave. We feed in the static initial model as the 

radial boundary condition a few zones above the shock. Except where noted, we use 

‘squarish’ zones (dr = rd6’ [= rd4 in 3D.1) To track the grid, we estimate the position 

R,(t) of the shock at each time step by the location of the strong discontinuity in density, 

pressure and radial velocity, and estimate the shock velocity ws(t) by a least squares fit 

to the previous m shock positions versus time, where typically we have used m = 5. We 

begin moving the grid when the shock is within n zones of the end of the grid in radius, 

where typically we have used n = 8. If the shock drifts above or below this zone, we 

correct the grid velocity until the shock moves back into that zone. The grid velocity for 

a zone at radius r(t) is then simply us(t)r(t)/Rs(t). 

2.2 Initk model 

Figure 2.1 shows a 20M~ initial model (1 Mg = 1.99 x 10 a” g) for the progcuit.or of SN 

1987A [12]. F g i ure 2.la is a schematic of the layered structure of the initial model, and 

Figure 2.lb illustrates the structure of the progenitor by density, and by mass fractions 
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Figure 2.1: Initial model of SN 1987A from a stellar evolutionary calculation. (a) 
Schematic of initial model (b) Density and mass fractions of 0, C, He and H vs. mass 
coordinate in?nitial model. 
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of 0, C, He and H (designated X0, Xc, XH~, and XH, respectively) vs. mass coordinate. 

This progenitor structure is the result of a 1D stellar evolutionary calculation done by 

David Arnett using the code Tycho [12]. The progenitor represents the end product of = 

lo7 years of evolution, during which the star has burned successively heavier and heavier 

elements, beginning with the burning of H and culminating with an ‘onion-skin’ layered 

structure containing a dense Fe core surrounded by successively less dense layers. The 

distinctions between the various layers is not sharp in terms of mass fractions of various 

elements, but we can distinguish three layers outside the core which are of interest to us 

because of the hydrodynamic instabilities which can occur at the interfaces between these 

layers: the 0, He and H layers, listed in order outwards from the core. The ‘0’ layer is M 

60% 0 by mass, with lesser amounts of Mg, Si, Ne, C, He and H. The ‘He’ layer is M 85% 

to almost 100 % He by mass; the lower M 1.8 Mg of the He layer is M 15% C by mass. 

The ‘H’ layer is M 80% H and 20% He by mass. There is a wide region between the He 

layer and the outer H envelope which is partly He and partly H. There is an overall drop 

in density with radius, which is to be expected for a self-gravitating sphere; for a more 

complete discussion, see [140], pp. 159-168, and [95, 791. 

We take the O-He and He-H interfaces to be at about 2.3 Ma and 6 Ma, respectively, 

in the initial model in Fig. 2.la. The density drops steeply in the initial model at both 

interfaces because of changes in molecular mass across the interfaces. These drops can be 

understood by assuming an ideal gas law EOS with continuous pressure and temperature 

across an interface. Equating pressure P and temperature T across such an interface 

between fluids 1 and 2 of average molecular masses ~1 and /12 respectively, we have 

P = plRT/pl = p:!RT/p:!, where R is the universal gas constant. Thus, p1/p2 = ,ul/pz. 

During the explosion these density drops trigger the RM and RT instabilities. 

2.3 One dimensional (1D) simulations 

Fe cannot be burned without consuming more energy than it releases, and so the core of 

the progenito? shown in Fig. 2.1 becomes unable to support itself against gravitational 

collapse. The star is essentially in hydrostatic equilibrium in its own gravitational field 

before the collapse of the core [12]. After core collapse, a strong shock moves radially out 

through the star, reaching the O-He interface at about 5 s, the He-H interface at about 80 

s, and the surface of the star by about t = 6 x lo3 s. A strong velocity kick is imparted to 
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Figure 2.2: Density VS. radius in SN 1987A for initial model and at intermediate times 
during the explosion, from a 1D PROMETHEUS simulation. 

the fluid and to each interface, and the entire ejecta expands radially. In the 0, He and 

H layers of the star, the gravitational force of the star upon the ejecta rapidly becomes 

negligible as the shell expands, and deceleration of the layers due to gravity integrated 

over the first few hours of the explosion is negligible compared to the velocities imparted 

to the layers by the shock. 

The mass cut (the mass coordinate below which material falls back onto the core and 

is accreted onto the neutron star or black hole formed by the collapsed core - see Ref. 

[%I) is expected to be somewhere near the bottom of the 0 layer. In our calculations 

we have ignored the small amount of material from the base of the 0 layer that will fall 

back onto the core. 

Figure 2.2 shows density vs. radius in the initial model and at t = 1, 10, 50, 200, 1000 

and 5000 s. Figure 2.3 shows density and pressure vs. radius at t = 10, 200, 500 and 

2000 s, and Figure 2.4 shows density and velocity VS. radius at the same times. As seen 

in Figure 2.2 >t t = 1 s, the blast wave is roughly a strong spherical blast wave until the 

shock reaches the O-He interface. At this time, the forward shock is at radius T z 5 x 10” 

cm. At seen in Figures 2.2 and 2.3 at t = 10 s, the drop in density at the O-He interface 

in the initial model (Fig. 2.2) leads to a drop in density at the contact discontinuity 
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Figure 2.3: Density and pressure VS. radius in SN 1987A at t = 10, 200, 500 and 2000 s: 
from the 1D PROMETHEUS simulation. 
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(CD) at the O-He interface after passage of the shock. The discontinuity and shock are 

now at r M 11.2 x 10’ cm and T M 12.5 x 10’ cm, respectively, as seen in Figure 2.3. 

At this CD, the density and pressure gradients are now ‘crossed’ (VP . VP < 0), with 

density falling sharply and pressure rising across the CD. As seen in Figure 2.4 at t = 

10 s, the velocity is continuous across the CD, rising towards the shock. By t = 200 s 

a second CD is evident at the He-H interface, with the density and pressure gradients 

crossed there. The velocity is continuous across this CD, as seen in Figure 2.3 at t = 200 

s. At the same time, as seen in Figure 2.3 at t = 200 s, a rarefaction is moving back from 

the He-H interface to the O-He interface, as the shock accelerates into the less dense H 

layer, which has the effect of decompressing the fluid behind the CD and lowering the 

pressure in that fluid. The leading edge of the rarefaction is at r M 3.8 x 101r cm at 

t = 200 s. At t = 200 s the rarefaction has not yet reached the O-He interface, and the 

pressure and density gradients are still crossed at that interface. A weak second shock is 

visible at r M 3.8 x 1Or1 cm; this shock first moved inward from the 0 layer as a reverse 

shock, reflected off the dense material at lower radius, and then passed outward through 

the 0 layer. This weak shock has little effect on the gross hydrodynamics. The weak 

shock, O-He interface, leading edge of the rarefaction, H-He interface and forward shock 

are at r M 3.7 x 1Oro cm, T z 6.6 x 1Oro cm, T M 8.7 x 1Oro cm, T M 12.2 x 1Oro cm and 

T M 13.6 x 1Oro cm, respectively. 

However, by t = 500 s, as seen in Figure 2.3, the rarefaction has moved through 

the O-He interface and the pressure and density gradients are now uncrossed, with both 

quantities falling across the O-He CD. The weak second shock is at r M 11 x 101r cm 

and has weakened considerably after expanding from a lower radius. At this time there 

is a local pressure minimum in the He layer, so that material is accelerated towards that 

minimum from both the direction of the He-H interface and the O-He interface. As 

the material below the minimum expands radially with the ejecta, its internal energy is 

siphoned off into kinetic energy. As a result, by t = 2000 s a reverse shocks forms in the 

He layer. Ths reverse shock is visible in Figure 2.3 at T M 6.8 x 1Ol1 cm, with density 

and pressure both rising across this reverse shock, and is clearly visible in Figure 2.4 by 

a discontinuity in velocity. The reverse shock is also visible at a later time, t = 5 x lo3 s, 

in Figure 2.2. The reverse shock moves through the He layer, through the O-He interface 

and on into the 0 layer. 



interface 
velocities 

2 3 4 5 

Time (1 O3 s) 

Figure 2.5: Velocity vs. time for O-He and He-H interfaces in SN 1987A, from the 1D 
PROMETHEUS simulation. 

As the forward shock passes into the tenuous outer part of the H layer, a rarefaction 

moves down in radius from the H layer into the lower layers, eventually uncrossing all 

density gradients, at which time the ejecta is expanding homologously, with velocity 

proportional to radius and with density dropping off roughly as a power law with radius. 

The gradients remain crossed at the He-H interface until this rarefaction reaches the He-H 

interface. 

Figure 2.5 shows the velocity of the O-He and He-H interfaces vs. time. The shock 

sharply accelerates the O-He interface, which then decelerates until about 200 s as the 

He layer slows down the 0 layer. After 200 s, the O-He interface is accelerated by the 

rarefaction. At about 600 s, the O-He interface undergoes a small further acceleration 

due to the weak second shock discussed above. At 4000 S, the O-He interface is sharply 

decelerated by the reverse shock at the base of the He layer. Meanwhile, the He-H 

interface is first accelerated by the shock at about 80 S, and then undergoes protracted 

deceleration is the He layer is slowed down by the H envelope. After 4000 s, when the 

passage of the reverse shock has coupled the 0-HC and He-H int,crfaccs, the two interfaces 

decelerate together. 

The sharp acceleration of the interfaces by the shock suggests that both interfaces 



55 

will be subject to the RM instability. The crossed gradients at the C-He interface before 

t = 200 s (Figure 2.3), and the deceleration of the O-He interface until t = 200 s (Figure 

2.5) suggest that the O-He interface will be subject to the RT instability as the lighter 

He layer slows down the denser 0 layer. Similarly, the crossed gradients at the He-H 

interface, seen by t = 200 s in Figure 2.3, and the deceleration of the He-H interface after 

t = 80 s (Figure 2.5) suggest the He-H interface will be subject to the RT instability as 

the lighter H layer slows down the denser He layer. Each interface is expected to evolve 

well into the nonlinear regime [ll, 67, 1151. The 0 layer will be decompressed by the 

rarefaction and then recompressed by the reverse shock, creating a potentially interesting 

coupling of instablities at the He-H and the O-He interfaces. 

2.4 Two and three dimensional (2D and 3D) simulations 

2.4.1 Single mode perturbations at the O-He and He-H interfaces 

We now proceed to examine the growth of single mode 2D and 3D perturbations at the 

He-H interface. We take the simulated 1D conditions at t = 400 s, after the shock has 

passed the He-H interface, and map into 2D and 3D simulations. We impose single mode 

velocity perturbations of mode m (the number of wavelengths of the perturbation in 27r 

radians). The perturbation is centered in radius at the position T = r. of the He-H CD at 

t = 400 s. There is a sharp density drop at the CD at t = 400 s, similar to the drop seen 

at the CD in Fig. 2.3 at t = 500 s. In the angular direction 8 we center the perturbation 

at 8 = B. = 7r/2 - the equator. That is, there will be a bubble or spike centered at the 

equator. In the present investigation we choose to have a spike at the equator, because 

our motivation is to study the faster ejection of the dense material in the spike (which 

comes from the layer initially at lower radius in the progenitor) in 3D compared to 2D, 

and in 3D it is computationally feasible to model only one half by one half wavelength 

of the perturbation. The centering in the angular direction (b in the 3D simulations is 

arbitrary since the spherical coordinate system is fully symmetric in 4. We use a mode 

number m2 for the 2D perturbation and a mode number rr~:< for the 3D perturbation 

which are related as described below, and give the same growth rate for the 2D and 3D 

perturbations in the linear regime (see Section 1.3.4.1). 

For simplicity, we use a general form for the velocity perturbation which is curl- 
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free in the planar limit m --+ 00, because the hydrodynamics theories to which we refer 

are based upon potential theory for incompressible fluids (see Refs. [5, 81, 6] and the 

discussion in Section 1.3.3). The incompressible fluid approximation is applicable when 

the characteristic velocities (such as bubble and spike velocities) are small compared to the 

sound speed. The form of the 2D perturbation is (compare to Eqn. 1.15) v2 -+ v2 + Sv2, 

with 

S71,,2 = ~~~~~~~~~~~~~~~ sin[m2(8 - Se)] 

bug,2 = bJ()e-m+ToI~ro cos[m# - e())], (2.1) 

where ur is the radial velocity and ~0 the tangential velocity, with the ‘+’ sign for r > TO 

and the ‘-’ sign for T < TO. The form of the 3D perturbation is v3 + v3 + bv3, with 

&),3 = Zloe-~31mwl sin[m3(0 - 00)] sin(m34) 

(jve,3 = *ZIOe-~3141nJ cos[m3(13 - OO)] sin(m34) 

67~4~3 = fv0e -m3~~--To~/~o sin[m3(e - eo)] cos(m34) (2.2) 

again with the ‘+’ sign for T > re and the ‘-’ sign for T < ~0. We choose the amplitude 

v. of the perturbation to be some fraction of the magnitude of the radial velocity U,(Q) 

of the He-H interface at t = 400 s. In the present investigation we choose u. to be 10% 

of %(To). 

We choose the 2D and 3D mode numbers m2 and mg such that 2mg = m;, which 

means that the initial wavelength of the 3D perturbation, X3, and the initial wavelength 

of the 2D perturbation, X2, are in the relation X3 = fiX2. In the planar limit this choice 

of 2D and 3D mode numbers gives the same 2D and 3D growth rates in the linear regime 

(see Refs. [51, 81, 1071 and see the discussion in Section 1.3.4.5). In our simulation, we 

chose m = 20. 

As stated, we model one half wavelength of the perturbation at the equator. We use 

reflecting boundaries in 0 and 4. This choice of boundary conditions means that the 

flow is not b&g represented with complete accuracy at the boundaries in 8, because 

the wavelength at the equator is not actually identical to the adjacent wavelength, since 

the spherical coordinate system is not symmetric in 8. However, for large enough mode 

number m the error should be small. We use 161 zones in the radial direction, spaced 

such that the zones are ‘squarish’ in the case of even angular zoning, ie., rd8 = dr and 
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rd+ = dr, except at lower radius, where we use coarser radial zoning to reduce the 

computational expense in 3D. In simulations described later in this section, we calculat,ed 

the inner part of the problem in 1D to keep the time step larger. In the simulations 

presented currently, we had not implemented this computational device. Thus, the coarser 

zoning in the radial direction did not affect the time step, since the zone widths in the 

angular directions, rdf3 and rd4, are not changed. With the radial zoning chosen, the 

angular zoning would have been 32 zones per wavelength to give squarish zones in the 2D 

simulation, or 16 zones in the half wavelength modeled. In fact, we used 24 zones in the 

angular direction, and did not use even zoning in the angular directions, but feathered 

the angular zone widths inward toward the equator such that the zones were squarish at 

the boundaries away from the equator, but that at the equator we had dr = 2rdB. We 

did this to model the spikes better in the angular direction, because they became long 

and thin during the simulation. 

In 3D we used the same radial zoning and the same number of zones in the angular 

directions, 24 zones, and the same relative feathering, with the zones at the equator and 

towards 4 = 0 being half the angular width of the zones at the boundaries away from the 

equator and from C$ = 0. Since the initial 3D wavelength was greater than the initial 2D 

wavelength by a factor of &, this choice of 3D zoning meant that at the equator and at 

4 = 0 we had dr = firdo = fird4, while at the boundaries away from the equator and 

from 4 = 0 we had dr = rdQ/& = rd4lfi. 

In Figure 2.6 we show the results of the 2D and 3D calculations at the He-H interface. 

In Figure 2.6a, we show a density contour surface from the 3D calculation at 5000 s. The 

He spikes (‘mushrooms’) with Kelvin-Helmholtz ‘caps’ penetrating into the H along the 

radial direction are evident, as are the saddle lines connecting the He mushrooms and 

separating the H bubbles; 2D Kelvin-Helmholtz rollups occur on those saddle lines as well. 

In Figures 2.6b and c, we show density contour plots from the 2D and 3D calculations; 

the 3D plot (Fig. 2.6b) is a 2D slice through the peak of the 3D spike and the lowest 

point of the 3D valley. 

In Figure 2.6c, we show the positions of the 2D and 3D bubbles and spikes in the 

rest frame of an unperturbed interface. In that frame the bubble and spike velocities are 

M 20-25% faster in 2D than in 3D. We have also tried a lower amplitude perturbation, 

vo/v,(ro) = 0.05 (not shown) and find about the same relative difference between 2D and 
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3D, although the bubble and spike grow more slowly from the smaller initial amplitude. 

We have also considered density perturbations in the 0 layer of the progenitor; den- 

sity perturbations have been shown numerically to occur in that layer [20]. In all cases, 

we use single mode perturbations, examining modes m = 20, 40 and 80. For each type 

of perturbation and each mode, we compare the result at the equator, where the pertur- 

bation is a 2D sinusoid of wavelength A, to the result at the pole, where the perturbation 

is an axisymmetric 3D ‘dimple’ of radius D. We choose D = ,&/n x X M 1.22X, where p1 

is the radius of the first zero of Jr (the first derivative of the cylindrical Bessel function 

Jo). In the linear stage, this choice gives the same growth rate for the two perturbations 

[51, 1411. 

In one case we imposed a simple sinusoidal density modulation in 8 in the pre-shock 

0 layer. For m = 20, 40 and 80, in the rest frame of an unperturbed 1D interface the 0 

spike grows 30-40% faster at the pole than at the equator. The results for m = 20 and 

m = 40 are shown in Figure 2.7, by contour plots of density, at t = 80 s and t = 300 s. In 

Figure 2.7 the 0 spikes are moving from left to right out into the He layer. By t = 300 s 

the rarefaction from the He-H interface has passed through the O-He interface, the O-He 

interface is no longer RT-unstable, and the spikes have expanded in the rarefaction. The 

bubble positions are very similar for the 2D simulations and for the dimple simulations 

at each mode number. This is because the amplitude of the initial Jo perturbation is a 

damped function of angle; the amplitude of Jo at the first zero of Jr is only about 40% of 

the amplitude in the 2D perturbation at me = 7r. In any case, our primary interest is the 

spike position, because the core materials are ejected in the dense outgoing spikes. On 

the other hand, we could also study the dimple perturbation of opposite sign, such that 

a bubble is formed at the pole instead of a spike. This bubble would be expected, again 

by the drag-vs.-buoyancy arguments, to grow faster than the 2D bubble. We have not 

investigated this, but it has been done for planar bubbles rising on the axes of cylindrical 

tubes by Layzer [loo] and by Jacobs and Catton [86, 871. 

We have also tried perturbations based on Fig. 7 in Ref. [20], which shows the 

averaged 1D density profile in the 0 layer of the progenitor just prior to core collapse. In 

that figure, there were stron, 0’ density enhancements at the 0-Hc interface and the Si-0 

interface. We have tried simple versions of these perturbations, which are sinusoidal in 

the angular direction and drop off exponentially from the O-He or Si-0 interface. We find 
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Figure 2.7: 2D vs. 3D PROMETHEUS simulations of single mode instabilities at the 
O-He interface of SN 1987A. Top: m = 20 and corresponding dimple. Bottom: m = 40 
and correspo%ding dimple. Left: t = 80 s. Right: t = 300 s. Also shown is the position 
of a 1D (unperturbed) interface at both t = 80 s and t = 300 s, from a PROMETHEUS 
simulation. 
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Figure 2.8: 2D and 3D PROMETHEUS simulations showing coupled hydrodynamic in- 
stability growth at the O-He and He-H interfaces of SN 1987A. (a) 2D: mass fraction of 
0 at t = 200 s. Bar is 1.2 ~10~’ cm long. (b) The same, at t = 1.5 x lo3 s. Bar is 3.6 
x1012 cm. (c) 3D: 0 at t = 1.5 x lo3 S. Same scale as part b. (d,e) 2D: mass fraction 
of He at t = 1.5 x lo3 s. Part d is a closeup of part e at the pole. Part e: same scale as 
part b. (f) 3D: He at t = 1.5 x lo3 s. Same scale as parts b,c,e. 

that the perturbation at the Si-0 interface produces very weak instability growth. The 

perturbation at the O-C interface produces somewhat stronger growth, but much weaker 

than the case we describe above, in which we have perturbed the density in most of the 

0 region. The simulations suggest that perturbations throughout the 0 layer would be 

needed to produce strong hydrodynamic instability growth in the 0 layer and at the O-He 

interface. 

2.4.2 Coupled instabilities at the O-He and He-H interfaces 
* 

The rarefaction and the reverse shock (see the discussion in Section 2.3) transmit infor- 

mation from the He-H interface back to the O-He interface. Hence, we next consider the 

effect of coupling on the instability evolution at the O-He and He-H interfaces. We impose 

a sinusoidal density perturbation in 8 of mode m = 20 and 10% amplitude in the 0 layer 
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of the initial model. After the shock passes the He-H interface, we perturb the radial 

velocity in the fluid near the He-H interface, with a random zone-by-zone perturbation 

of amplitude 10%. 

In Figs. 2.8a-b and 2.8d-e we show the results of a 2D calculation of r radians of the 

star, from 0 = -n/4 to 0 = 3n/4, so that a n/2 cone around the pole is modeled, as well 

as a n/2 wedge around the equator; in these figures we have reflected the simulation to 

produce the images shown. We use 480 zones in the 0 coordinate direction (48 zones per 

wavelength of the 0 perturbation.) At lower radius we-calculate only in 1D in the radial 

direction, to avoid the timestep limits imposed by the Courant condition. Figures 2.8a 

and 2.8b show oxygen mass fraction (X0) at t = 200 s and at t = 1.5 x lo3 s. Figures 

2.8d and 2.8e show Xne at t = 1.5 x lo3 S; Fig. 2.8d is a blowup of the image in Fig. 

2.8e near the pole. The perturbation in the 0 layer produces a strong growth of bubbles 

and spikes at the imposed mode; this pattern persists through the subsequent rarefaction 

and the recompression by the reverse shock. The random velocity perturbation leads to 

a complicated bubble-and spike structure at the He-H interface. 

The axisymmetric 3D 0 spike at the pole grows significantly larger than the 2D spikes 

(ridges) away from the pole. A similar difference at the pole was noted in [118]. The 

difference appears greater at later times, perhaps due to coupling of the instabilities at 

the two interfaces. In Figs. 2.8d and 2.8e we can see the dark areas where the 0 spikes 

have penetrated the He layer; the dark area at the pole is considerably more pronounced. 

The 0 spike has penetrated through the He layer into the H layer, while the 2D ridges 

do not reach the He-H interface. 

The converging grid at the pole may cause the flow to be represented inaccurately 

there; to check the 3D effect further we have done 3D calculations at the equator, where 

the grid does not converge, using a ‘crosshatch’ density perturbation (sinusoidal in both 

angular directions) in the 0 layer. First, we modeled 1.5 x 1.5 wavelengths at low resolu- 

tion (not shown), with half of one spike next to the equator, and a full spike adjacent to 

it. We used reflecting boundary conditions in the angular directions. The two resulting 

0 spikes grew strongly in the radial direction and looked similar to each other. Since the 

spike adjacent to the equator was not constrained from ‘tipping over’ in either angular 

direction, this first 3D simulation suggested that a reasonable result could be obtained 

at higher resolution by modeling only one-half of one spike at the equator, that is, half 
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a wavelength in each angular direction. Thus, we modeled 0.5 x 0.5 wavelengths at the 

same resolution as the 2D calculation shown in 2.8a-b. Fig. 2.8~ and 2.8f show the results 

for the 3D calculation. We have reflected the image around the equator for clarity. The 

3D 0 spike at the equator grows as strongly as the polar spike in the 2D calculation 

shown in Fig. 2.8a-b. The He layer is considerably perturbed by the 0 spike, as seen in 

Fig. 2.8f, and the He bubble appears to grow more strongly in 3D. These 3D calculations 

are suggestive of a significant 3D effect; it would be very useful to repeat them at higher 

resolution to see if the results converge. The 0.5 x 0.5 wavelength simulation took about 

200 CPU hours on a 540 MHz CPU. 

The greater penetration of the 3D over the 2D 0 spikes is not enough to account for 

the difference in 56Co velocities between observations of SN 1987A and 2D simulations. 

However, our results suggest a distinctly different hydrodynamic evolution in 3D vs. 2D 

for SN 1987A, at least for the single mode density perturbations in the 0 layer which we 

have studied. Fluid from the 0 layer may penetrate considerably further in 3D than in 

2D, and the overlying He layer may be ruptured and fragmented much earlier in 3D than 

in 2D. 

Fully multimode perturbations in the 0 layer could potentially yield different growth 

in both 2D and 3D than we see with these single mode perturbations. Bazan [19] has 

recently begun using the massively parallel Accelerated Strategic Computing Initiative 

(ASCI) machines at LLNL to study multimode perturbations in SN 1987A in 2D and 3D. 

Early results show an approximately 30% enhancement in growth rates in 3D vs. 2D. 
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CHAPTER 3 

SCALING HYDRODYNAMICS 

3.1 Overview 

In this chapter we discuss the scaling of hydrodynamics from the intermediate stages of a 

core-collapse supernova explosion to the microscopic scales of the Nova laser experiments. 

We are able to do the scaling because in both situations we have ‘pure’ hydro, described 

by the compressible Euler equations. As a result, there a simple tranformations which 

allow us to do the scaling. 

3.2 Compressible hydrodynamics- laser to supernova 

3.2.1 Pure hydro at intermediate times 

We can rigorously transform the hydrodynamics at the microscopic scale of a laser ex- 

periment to the astronomical scale of a SN. We can do so because in both cases, the 

hydrodynamics is described by equations which scale from one regime to the other. Both 

the laser experiment and the SN at intermediate times (the first few hours) are described 

by compressible hydrodynamics equations - the Euler equations. This is true because in 

both cases, the plasmas are collisional (particles are localized on small scales), viscosity is 

unimportant (inertial forces are much greater than viscous forces), thermal conduction is 

negligible (compared to advection of heat), and radiation transport effects are negligible 

(again, compared to advection of heat.) For a more complete discussion of these criteria, 

see Ref. [134], and for additional discussion of scaling see Refs. [93, 38, 6, 811. 

Briefly, let h, ZJ and T be a typical scale length, fluid velocity, and time scale for 

either regime.? The plasmas are collisional because the ratio &/h is small, where & is 

the collisional mean free path; for the SN, &/h < 5 x 10-12, and for the laser, &/h < 

7 x 10-6. Viscosity is unimportant because the Reynolds number Re = ~ZI/Y is very 

large (>> 103), where v is the dominant viscosity. For the SN, photon viscosity dominates 

and Re > 1012; for the laser experiment, ion viscosity dominates and Re > 2.5 x 105. 
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Thermal conduction is negligible because the Peclet number Pe E /W/X >> 1, where x 

is the thermal diffusivity. In both cases, magnetic fields are unimportant and x is the 

thermal diffusivity for unmagnetized electrons. For the SN, Pe > loll; for the laser 

experiment, Pe > 1.3 X 10 *. That radiation transport is unimportant in both cases can 

be seen by considering either the photon Peclet number Pe, - hv/xr where xr is the 

thermal diffusivity for photons, or the ratio TEL/T, where rR is the radiation cooling time. 

For the SN, Pe, > 4 x 105; for the laser experiment, rR/T > 4 x 103. 

To support these assertions with greater detail, we will roughly follow the discussion 

in Ref. [134], but for simplicity establish only conservative bounds on the quantities 

mentioned. Note that we use cgs units, except that we used energy units (eV) for tem- 

perature T, which makes Boltzmann’s constant kg equal to one. For the arguments 

regarding collisionality, we use Equation 9 in [134] 

(3.1) 

where A is the Coulomb logarithm and the ion-ion mean free path for hydrogen from 

Braginski [33] has been used (the exact mean-free path is only important if this collision- 

ality condition is marginal). We can take A 2 1 (being conservative.) Let us now apply 

equation 3.1 to the case of SN 1987A. At t = 2OOOs, the EOS is radiation-dominated and 

we can conservatively take T < lo3 eV. We will take the scale length h M 101r cm to 

be the width of the dense part of the He layer (see Figure 2.3). Making a conservative 

underestimate of ni, we take ni = p/AmH, where A < 10 is the atomic number. Thus, 

1O-24 . (&/h)sN 1.67 x 3 d3 T(eV)2A. 3 lo13 
lo3 10. 1.67 x 1O-24 =; X * 

10 . hp 
< x * 

lo.lolr * 10-s 
(3 2) 

M 5 x lo-12. 

Similarly, for the case of the laser experiment at t = 20 ns, we take T(ev) ,$ 10 eV, 

p 2 1 g/cm3 (see Figure 4.7.), take h M 50pm to be the thickness of the dense part of the 

Cu layer, and A < 70 (for Cu). Thus, 

#. &/h)ex,t 3 1013 
l2 . 70~1.67 x 1O-24 

2 x . 10 * 50.10-d * 1 

M 7 x 10-6. 

For the photon viscosity in the SN, we use equation 26 from [134], 

(3.3) 

+d (cm2 /s) - &oT”/(pc3) M 3 x lo-’ . - 
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which gives 

1O-3 = 6 x 2 3 x 1o-g * 2. [103]“. lo6 cm2/s (3.4) 

ResN = 2 = loll . 10s 12 
u 6 x lo6 > lo ’ 

v = lo8 cm/s being a typical velocity in the SN. 

(3.5) 

For unmagnetized ion viscosity in the laser experiment we use equation 27 from [134], 

Ui(CII12/S) = 3.3 X 10v5 . 
&?[T(eV)15i2 

AZ4 (g/cm3) 
< 2 X lop3 cm2/s (3.6) 

which gives 

Reexpt = k > 
50 x 1o-4 * lo5 

u 2.10-a 
= 2.5 x 105, 

lo5 cm/s being a typical velocity in the laser experiment. 

For heat conduction, we use equation 11 from [134], 

X(cm2/s) = 3.3 X 10K3. 
[T(eV)15j2 

A-V + l)&lcm) 3 

(3.7) 

(3.8) 

For a conservative underestimate of the Peclet number, we make a conservative overesti- 

mate of X, taking A = 1. In the case of the SN, we take Z(Z + 1) 2 2, obtaining 

3.3 x 
XSN < 

1o-3 * (103)5/2 
2 .10-s 

cm2/s = 1.65 x 107.5 cm2/s 

PeSN > !!I!> loll . lo8 
> 1o1r 

x 1.65 . 107.5 

(3.9) 

(3.10) 

In the case of the laser experiment, we take Z(Z + 1) > 2.67. (2.67 + 1) > 9 (for CH2). 

3.3 x 1o-3 . 105/2 
Xexpt 

< 
9 cm2/s = 0.037 cm2/s 

Pe expt > hv> 
50 x 1o-4 . lo5 

0.037 
> 1.3 x lo4 

X 

(3.11) 

(3.12) 

For radiation transport in the SN, we use equation 18 in [134] for the radiation con- 

tribution to the thermal diffusivity X.., in the case where the mean free paths of photons, 

.? is much less than the scale length h, that is 

X-f = ~y/CV (3.13) 

with the radiative thermal conductivity K~ and thermal capacity per unit volume cv given 

by 

(3.14) 

16aT3 + 3(2 + lh _ 16aT” 
cv = - + 8.98 x 102:’ . (2 + l)P 

C 2 C A 
(3.15) 
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where the first term is the thermal capacity of the radiation and the second term is the 

thermal capacity of the electrons and ions. Here, the mean free path of the photons 

e is taken to be the min(~~‘brems,eThomson). The mean free path &rems due to inverse 

bremsstrahlung averaged over a Planckian distribution of photons (the Rosseland mean) 

in a fully ionized plasma ([134], Eqn. 16) is 

ebrems = 4.6 x 101r . 
A2[T(eV)1712 

23[p(g/cm3)]2 < 4*6 ’ lo 
11 . (3~>2PW>17/2 

~3bklcm3)12 

4.6 X 1Or1 * ” T(eV) = 
-Gklcm3)12 

< 4.6 X 101r . “1’ \~~~~~~ cm 

= 1.3 x lo8 cm (3.16) 

where we have overestimated e brems, SO that we overestimate IC-, and x,., and thus con- 

servatively underestimate Pe,. The mean free path e Thomson with respect to COmptOn 

scattering is, using equation 17 in [134], 

.!?Thomson = [ne (cme3)gT (cm2)]-’ = z,~~~ftn3, (cm) < -$$(cm) = 2.5 x lo3 cm (3.17) 

where CrT = (8~/3) rz = 6.6 x 1O-25 cm2 is the Thomson cross-section, n, is the electron 

density, and p is the mass density. Thus, l= e;‘homson = 2.5 x lo3 cm. 

When radiation pressure dominates, the first term in Equation 3.14 for cv dominates: 

with kg = 1 we have a = 1.56 x 105’ erg cme2 s-r eV4 and the first term is 

16.1.56 x 105’ . (103)3 erg cm-3 eV-l 
3 x 1010 

= 2.77 x 1O53 erg cme3 eV-r 

while the second term is 

3(2 + 1) * p 9 * 1o-3 
2AmH ’ 2. 1.67 x 1O-24 

Thus, Equation 3.13 simplifies to 

erg crne3 eV-r = 2.69 x 1021 erg cmd3 eV-’ 

x,+ jThomsonC 3 < 2.5 x lo3 3 . 3 x lOlo cm2 s-l = 2.5 x 1Or3 cm2 s-l 
4. 

and finally 

Pe, = 2 > 
. 

10” lo8 = 2.5 x 1013 4 ’ lo5 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

For the laser experiment, we calculate the blackbody radiation cooling time rBB 

(plasma energy content divided by blackbody radiation flux) using Equation 22 in Ref. 
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[134]: 

TF~B(S) 0.7 (2 + W 11 .50 x 1o-4 
= * 

A[T(eV)13 
’ 

2 
(s) = 

10 
1.75 x lo-4s (3.22) 

Thus, TBB/T = I.75 X IOm4/(20 X lo-‘) > 4 X 103. 

3.2.2 Scaling the Euler equations 

The Euler equations (see Section 1.3.2), 

gp + v* (pv) =o 

$pv) + v * (Pi +pvv) = pg 

-gpE) + v * [(pE + P)v] = pv * g 

where 

E=u+;v2, 

u being the internal energy, are invariant under any scale transformation that preserves 

the quantity (space/time) x (density/pressure)1/2, ie., 

P = a34 

P = b*P1 

h = c-h1 

7 = (a/b)1/2cT1 

(3.23) 

where h is a typical scale length, and a, b and c are constants. We assume here that in 

the regimes of interest, the equations of state are modeled reasonably well by polytropic 

gas laws with comparable adiabatic exponents (for further details, see Ref. [134].) 

3.2.3 Scaling supernova to laser 

We now apply+ the scaling transformation, Eqn. 3.23, to the regimes of the SN simulated 

in Ch. 2 and the the two-layer laser experiment described in Ch. 4. Our goal here is 

to establish an order-of-magnitude correspondence between characteristic quantities at 

particular intermediate times from each regime. We will consider the SN at t = 500 s 

(Figure 2.3), and the laser experiment at t = 10 ns (Figure 4.4). At these times the 
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evolution of the He and H layers in the SN appears analogous to the evolution of the 

Cu and CH2 layers in the laser experiment. We will take the time scale 71 to 500 s, and 

determine what time interval this corresponds to in the laser experiment, that is, the time 

interval in which we expect to see similar scaled hydrodynamic evolution, for example, 

similar scaled growth of bubbles and spikes. At the He-H interface, we have p1 M 12 x 10V2 

g/cm3 and PI = 2 x lo3 Mbar. We will take the scale length hl to be the width of the 

dense part of the He layer: hl = 4 x lOlo cm. In the compressible laser experiment at 

10 ns at the Cu-CH2 interface we have p = 1 g/cm3 and P = 1 Mbar. We take the scale 

length h to be the width of the dense part of Cu layer: h = 40 pm = 40 x 1O-4 cm. 

Now we use the transformation in Eqn. 3.23 to find the remaining undetermined 

quantity, T. First we determine the constants of the transformation. We find that a = 

p/p1 = 8.33, b = P/P1 = 5 x 10-4, and c = h/h1 = 1 x 10-13. Thus the density, 

pressure and spatial scales differ by 1, 4 and 13 orders of magnitude, respectively, at the 

chosen times. Applying the transformation, we find that a typical hydrodynamic time 

T is (8.33/5 x 10e4)lj2 . lo-r3 * 2 X 500 s M 6.5 ns, which is indeed an appropriate time 

scale for instability growth in the laser experiment at intermediate times. Thus for the 

case of compressible hydrodynamics described by the Euler equation, we can scale the 

hydrodynamics from the laser experiment to the SN. 
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CHAPTER 4 

SUPERNOVA EXPERIMENTS ON THE NOVA LASER 

4.1 Overview 

As a first experimental step, we have designed and shot targets at the Nova laser which 

are analogs to the He and H layers of SN 1987A. The targets have two layers of different 

densities. The laser is used to send a strong shock through the denser layer, through the 

interface between the two layers and on into the less dense layer. Controlled perturbations 

are placed in the initial target at the interface, and these perturbations give rise to RM 

and RT instabilities. In these first experiments, the geometry of the target is planar. 

We use the code HYADES and the LLNL code CALE to test designs for the targets. 

We then simulate the experiments using the SN code PROMETHEUS, and compare the 

results of the simulations to the data from the experiment. Thus we use the experiments 

to benchmark the hydrodynamics of PROMETHEUS. 

4.2 Experiment and target 

The experimental configuration is illustrated in Fig. 4.1. For discussions of the Nova 

laser and the experimental techniques, see Section 1.4.1 and Refs. [69, 57, 34, 1211 and 

references therein. For a discussion of the framing camera, see [36]. Eight of the ten Nova 

laser beams at a wavelength of XL = 0.351 pm, energy of 1.5 kJ/beam, and duration of 1 

ns are focused into a 3.0 mm long, 1.6 mm diameter Au hohlraum (cylindrical radiation 

cavity,) converting to an -190 eV, approximately thermal x-ray drive. The experimental 

package is shown in Figure 4.2. The package is planar: an 85 pm thick Cu (p = 8.9 g/cm) 

foil backed by’500-600 pm of CH2 (p = 0.95 g/cm). A sinusoidal ripple (‘corrugation’) 

of wavelength X = 200 pm and amplitude 70 = 20 pm, is imposed at this embedded 

interface, by machining the surface of the Cu before the CH2 is added. The package is 

mounted across a 750 pm x 750 1-11” diameter hole in the hohlraum wall, so that the inner, 

flat surface of the Cu sees the x-ray drive. The Cu is M 800 pm x 800 /Lrn in the directions 
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Fe backlighter disk 

Cu-CH, rippled target 

beams 

Figure 4.1: Experimental configuration 

parallel to the unperturbed interface. We concentrate on the data in the middle 400 pm 

of the target in these directions; this section of the target contains 2 wavelengths of the 

initial perturbation. The edges of the target on the sides are free, so that eventually the 

target decompresses in the lateral direction, after the edges of the shock reach the edges 

and a rarefaction comes back into the target. However, this does not happen until at 

least 40 ns, by which time we have stopped taking data. The edges of the target can bow 

and curl as the shock reaches them. Potentially the material at the edge of the target 

can curl up into the line of sight of the diagnostics. However, the amount of material is 

small. Also, we make the CH:! layer wider in the lateral directions than the Cu, so that 

it slows down the Cu from the edges. 

As the x-r:y drive heats the inner surface of the Cu, Cu is ablated from the Cu surface 

in a rocket-like blowoff. At the same time, a strong planar shock is launched into the 

Cu. As the shock crosses the Cu-CH2 interface, it triggers the RM and RT instabilities 

at the interface, leading to the growth of ridge-like 2D spikes of Cu and trough-like 2D 
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Figure 4.2: Target for Nova experiment with 2D sinusoidal material perturbation. 

ridges of CH2 between the spikes. To diagnose the growth of these bubbles and spikes, 

we use side-on radiography (see the discussion in Section 1.4.1). Two Nova beams at 

XL = 0.528 pm, energy of 3 kJ, and duration of 5 ns are focused onto a backlighter disk, 

which is a separate disk of Fe, offset from the target. The backlighter disk generates He-a 

x-rays at 6.7 keV. The Cu is opaque, and the CH:! essentially transparent, to these x-rays. 

The target is viewed along the length of the ripples by a gated x-ray framing camera. 

The radiographs, the images captured by the framing camera, show the shadows of the 

opaque Cu. 
L 
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Figure 4.3: Density vs. position in initial Cu-CH2 target, at mapping time (2.5 ns), and 
at 5, 10, 20 and 40 ns, from HYADES simulation. The heavy line is for t = 2.5 ns. At 
each time, the solid lines show the Cu density, and the dashed lines show the CHg density. 

4.3 Simulations and data 

4.3.1 1D simulations 

We design the experiments using two codes, HYADES and CALE, which are discussed 

in Section 1.6, and also map into PROMETHEUS. HYADES has radiation transport; 

CALE and HYADES do not. We use the same EOS tables for the Cu and CH2 in CALE 

as in HYADES, and use ideal gas EOS in PROMETHEUS, setting the ideal gas y in each 

material to roughly reproduce the interface and shock velocities, and the compression 

in each material, as predicted by HYADES. The radiation temperature of the x-ray 

drive vs. time, T,(t), is known from separate drive characterization shots. We use the 

measured radiation temperature, T,(t), as the energy input to HYADES. We model the 

early stages 0: the experiment, during which the laser energy is input to the target and the 

shock is formed, in HYADES (which is 1D.) We then map the 1D result at an early time 

t = &nap into the 2D CALE simulation. We do the mapping by creating the desired CALE 

computational grid and then interpolating quantities from HYADES onto the CALE grid. 

We specify the CALE grid by specifying the 2D coordinates of each of the four corners 
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of each zone in CALE. In this discussion we will refer to the direction perpendicular to 

the 1D interface as the 2 direction, and the direction parallel to the 1D interface as the 

y direction. In CALE itself, what we call the z direction is designated the z direction, 

and what we call the y direction is designated the r direction. This is so because CALE 

can be run in either planar or T-Z cylindrical geometry, and for simplicity a single pair of 

designations was used.) To make the mapping easy, in one direction we make all the grid 

lines parallel to the z direction (and thus parallel to each other), and perpendicular to the 

1D interface (note that we are not required to do so, because the initial grid in CALE can 

be ‘warped’). We then calculate the 2D centroid of each zone in the CALE grid. We map 

the density and material temperature from the HYADES simulation onto each row of 

zones parallel to the z direction, mapping to the centroid in that direction, since density 

and temperature are zone-centered quantities in CALE. Density and temperature are also 

zone-centered in HYADES. We map the velocity from the HYADES simulation, which 

is node-centered in HYADES, onto each row parallel to the z direction, mapping to the 

nodes in CALE, since velocity is also node-centered in CALE. We map temperature and 

density because these are the independent thermodynamic variables in the EOS tables 

which CALE uses. 

The time tmap is the time when the shock is about to reach the thinnest part of the Cu 

layer, which is the ‘valley’ of the interface perturbation, located at z = 85 pm--70 = 65 pm 

from the initial drive side of the Cu (X = 0). We set tmap to be the time when the shock 

is at 55 pm, which gives tmap = 2.5 ns. By design, the laser drive turns off at 1 ns and the 

x-ray drive is rapidly diminishing by 2.5 ns. Hence, the hydrodynamics at the z = 55 pm 

is decoupled from the radiation drive, as we discuss in a moment. 

In the HYADES simulation, we use 152 zones in the Cu, feathered upwards in size 

from the drive side of the Cu, SO that we resolve the hydrodynamics more accurately 

as the laser energy enters the problem on the drive side. We use 70 zones in the CH2, 

feathered upward in size from the interface. The zones in the less dense CH2 next to the 

interface are A: 3 times as wide as the ad.jacent zones in the more dense Cu, because a 

Lagrangian code like HYADES gives more accurate results if adjacent zones are closer in 

mass; this prescription for zoning is known as ‘mass matching’. 

Figure 4.3 shows density vs. 1D position x in the init,ial target (at time t = 0), at 

time tmap = 2.45 ns, and at 5, IO, 20 and 30 ns, from a HYADES simulation. In Figure 
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Figure 4.4: Pressure and density vs. position at t = 2.5, 5, 10, and 20 ns, from HYADES 
simulation. 
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Figure 4.5: Velocity and density VS. position at t = 2.5, 5, 10, and 20 ns, from HYADES 
simulation. 



77 

- 

- 

2.0 Jy 

1.5 GA 

1.0 ” 

0.5 s 

0.03 

Position (pm) 

Figure 4.6: Pressure and density vs. position at t = 20 ns from HYADES and 1D CALE 
simulations. 

4.4 we show the density and pressure profiles at the same times, and in Figure 4.5 we 

show the velocity and pressure profiles at those same times. At t = 2.5 ns in these figures, 

we can see the sharp rise in density and velocity at the ablation front, and the smooth 

rise of pressure and velocity from the ablation front to the shock, which shows that the 

target is decompressing. At t = 5 ns in these figures we can see the rarefaction moving 

backwards from the Cu-CH2 interface into the Cu; the leading edge of the rarefaction is 

at about position z = 78,~m. It is evident in density, velocity and pressure. The fluid 

velocity is higher beyond the rarefaction as the shock speeds up in the CH2 after crossing 

the Cu-CH2 interface. At t = 5 ns, the shock is spread out by the artificial viscosity 

in the code; the spreading is accentuated by the large zones in the CH2 prescribed by 

mass matching. The density, pressure and velocity profiles at t = IO ns and t = 20 

ns are similar, suggesting that the 1D hydrodynamics approaches a state of self-similar 

expansion. At t = 10 ns and t = 20 ns the dense Cu spike forms a thin shell that expands 

over time, from a half-height thickness of about 35,~m at t = 10 ns to a half-height 

thickness of about 65pm by t = 20 ns. 

A weak reverse shock is visible at t = 10 ns at 2 z 135 pm by a steeper rise in pressure 

and density and a steeper fall in velocity. This reverse shock is reminscent of the reverse 

shock that forms in the He layer in the 1D SN 1987A simulation shown in Fig. 2.3 at 
* 

t = 2000 s. A reverse shock is more likely to form in spherically expanding ejecta as 

in the SN than in the decompressing planar target in the laser experiment, because in 

spherical geometry the expanding ejecta below the interface converts internal energy to 

kinetic energy more quickly. 
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Figure 4.7: (a) Pressure and density vs. position at t = 20 ns from HYADES and 1D 
PROMETHEUS simulations. (b) Velocity and density vs. position. 

At t = 30 ns in Figure 4.3, the shock has reached the end of the CH2 at z = 685 pm 

and a rarefaction has begun to come back into the target. The leading edge of the 

rarefaction is visible in Figure 4.3 at about II: = 580pm. We stop collecting data from 

the experiment by t = 40 ns, before the rarefaction reaches the Cu-CH2 interface. If we 

wished to run the experiment longer, we would simply need to make the CH2 thicker. 

In Figure 4.6 we compare density and pressure in HYADES and in 1D CALE at t = 

20 ns, long after the mapping from HYADES to CALE. In the HYADES run shown in 

Figure 4.6 we have continued running HYADES after the mapping time, with radiation 

transport and conduction still turned on. In the region of the problem that interests us, 

near the interface, CALE and HYADES are in very good agreement at this late time. 

The profiles at the former ablation front, at 2 M 0 pm in Figure 4.6 look different, because 

in HYADES the tail of the radiation drive after the mapping time continued to heat the 

rarefied Cu below the ablation front and keep its pressure high, while in CALE the blowoff 

simply began cooling. This excellent, agreement except for at the ablation front suggests 

that diffusion of energy by radiation transport and heat conduction is unimportant after 
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Figure 4.8: Velocity of Cu-CH2 interface VS. time from 1D HYADES simulation. Figure 4.8: Velocity of Cu-CH2 interface VS. time from 1D HYADES simulation. 

the laser energy has entered the problem, and that the pure hydrodynamics which CALE 

is calculating is entirely adequate to describe the problem after the mapping time. The 

behavior in the former ablation front, well removed from the interface, is only properly 

described by including radiation transport and heat conduction, but as we see Figure 4.6, 

significant information from this region is not transmitted to the interface region during 

the time of interest in the problem. 

In Figure 4.7 we compare a 1D PROMETHEUS simulation of the experiment (using 

ideal gas EOS) at 20 ns to the results from HYADES. Figure 4.7a compares densities and 

pressures, and Figure 4.7b compares velocities. The densities and pressures are in reason- 

able agreement; the shock pressure is slightly higher. The density profile is less smooth 

in PROMETHEUS, because the Lagrangian code HYADES, which stabilizes shocks with 

artificial viscosity, represents a shock differently than the PPM code PROMETHEUS, 

so mapping the HYADES shock onto the PROMETHEUS grid initially causes small 

disturbances in the flow behind the shock in PROMETHEUS. The interface velocity is 

well reproduced, and the shock velocity is slightly higher with PROMETHEUS. Back at 

the former ablation front, the material has decompressed more in PROMETHEUS; as 

with CALE, the lack of radiation transport in PROMETHEUS causes disagreement with 

I-WADES far from the region of interest near the interface. 
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Figure 4.9: Scaling of hydrodynamics between SN and Nova laser experiment. (a) Nor- 
malized density and pressure VS. position from 1D PROMETHEUS simulation of SN 
1987A and 13 HYADES simulation of Nova Cu-CH2 experiment. (b) SN 1987A He-H 
velocity vs. time from 1D PROMETHEUS, and Nova Cu-CH2 velocity vs. time from 
HYADES. 
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Figure 4.8 shows the velocity of the Cu-CH2 interface vs. time, from the 1D HYADES 

simulation. There is a sharp acceleration due to the shock at z 3.8 ns, and then a 

protracted deceleration as the lighter CH2 layer slows down the heavier Cu layer. 

The sharp acceleration of the CU-CH2 interface by the shock suggests that the interface 

will be subject to the RM instability. The crossed gradients at the O-He interface by t = 

10 ns (Figure 4.4), and the deceleration of the Cu-CH2 interface until the end of the 

simulation (Figure 4.8) suggest that the Cu-CH2 interface will be subject to the RT 

instability as the lighter CH2 layer slows down the denser Cu layer. 

There are some obvious similarities between the hydrodynamics shown in Figures 

2.2, 2.3, 2.4 and 2.5 from the 1D PROMETHEUS simulation of SN 1987A and the 

hydrodynamics shown in Figures 4.3, 4.4, 4.5 and 4.8 for the Nova experiment. Both 

the He-H interface in SN 1987A and the Cu-CH2 interface in the Nova experiment are 

subjected to rapid acceleration and then to deceleration, and thus to the RM and RT 

instabilities. Figure 4.9 compares the 1D hydrodynamics for the SN and Nova experiment 

directly. Figure 4.9a compares the normalized pressures and densities at characteristic 

times which correspond to each other from the scaling argument in Section 3.23. Figure 

4.9b compares the normalized velocity vs. time trajectories for the He-H and Cu-CH2 

interfaces. The similarity of the overlaid curves in Figures 4.9 is a pictorial representation 

of the scaling argument in Section 3.2. The Euler equations are invariant under the 

transformations described in Section 3.2.2. The transformations account for the difference 

in units. 

4.3.2 2D simulations and data 

Figure 4.10 shows the evolution of the Cu-CH2 interface in time, from a 2D CALE 

simulation. CALE is run in ALE mode, with tabular EOS. As with the 1D CALE 

simulation shown in Figure 4.6, we begin the CALE simulation by mapping from HYADES 

at the mapping time, t = 2.5 ns. In this simulation, we set the grid points in the 7~ direction 

in the CALEgrid such that the initial interface is a piecewise smooth 2D perturbation 

(see the discussion in Section 4.5) running along a line of nodes that separates zones with 

only Cu on one side from zones with only CH2 on the other. In doing the interpolation 

from HYADES, we account for the variation in interface x coordinate by adjusting density 

and the CALE quantity that records the material in each zone, accordingly. 



Cu spike 

10 ns 

Figure 4.10: Evolution of 2D interface in Nova Cu-CH2 experiment from a CALE simu- 
lation. 
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Figure 4.11: Nova experiment at t = 30.2 ns. (a) Radiograph from experiment. (b) 
CALE simulation using ALE mode, tabular EOS and smooth initial interface. (c) 
PROMETHEUS simulation using fixed (Eulerian) orthogonal grid, ideal gas EOS and 
stairstepped initial interface. (d) CALE simulation using fixed orthogonal grid, ideal 
gas EOS and stairstepped initial interface (same as PROMETHEUS.) Evolution of 2D 
interface in Nova Cu-CH2 experiment from a CALE simulation. 

In Figure 4.10 at t = 0 ns we are looking along the 2D ridges of Cu and troughs of 

CH2 in the initial interface perturbation, the same as in Figure 4.2. At t = 10 ns we 

can see the inversion of the initial interface shape due to the RM instability. At this 

time the perturbation is growing both by the RM instability and by the RT instability 

as the CH2 slows down the Cu. At t = 15 ns, rollups due to the KH instability (see the 

discussion in Section 1.3.4.4) are evident at the Cu spike tip. At t = 30 ns. the growth is 

becoming deeply nonlinear and the KH instability has produced pronounced vortices at 

the Cu spike tip. The average Cu-CH2 interface moves several hundred pm in 30 ns, as 

expected from the interface velocity from the 1D HYADES simulation (Figure 4.8). 

Figure 4.11 compares radiographs from the experiment at t = 30 ns to the results 
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of simulations. Figure 4.11 is a radiograph from the experiment at t = 30 ns. The 

dark shadows are the Cu spikes. The distance between the spike tips is 200pm, the 

same as the wavelength of the original perturbation. Some of the indistinct grey regions 

are background noise. Some of the finer filaments independent of the spikes may be 

material curling up from the edges. Figure 4.11b is the result of a CALE simulation 

using ALE mode, tabular EOS and a smooth initial interface. The right side is the mass 

fraction of Cu from the simulation. The left side is a simulated radiograph made from the 

simulation. To calculate the simulated radiograph, we simulate shining the backlighter 

through the result of the simulation and recording the image with the gated camera. This 

involves calculating the attenuation of the backlighter through the Cu, and then applying 

the known point spread function of the camera pinholes to the attenuated output. The 

spread caused by the pinhole ‘smears’ the image, limiting the resolution to no better than 

10 pm. As a result of this limit on the resolution, and the background noise, as well as 

the relative paucity of material in the rollups at the tip, we are not able to resolve the 

rollups in the data. 

Figure 4.11~ is the result of a PROMETHEUS simulation using a fixed (Eulerian) 

orthogonal grid, ideal gas EOS and a stairstepped initial interface (the latter unavoidable 

in PROMETHEUS.) As we will discuss in a moment, both CALE and PROMETHEUS 

reproduce the gross hydro correctly, that is, the positions vs. time of the bubble and spike 

tips. We show this in Figure 4.12 by a plot of bubble and spike position vs. time from 

the experimental data and from the 2D CALE and PROMETHEUS simulations shown 

in Figure 4.11b and 4.11~. Also shown is the position of a 1D (unperturbed) interface 

as calculated by CALE and by PROMETHEUS. It is with respect to this unperturbed 

interface that we calculate the bubble and spike velocities for the purpose of theoretical 

analysis. We present a theoretical analysis of the bubble and spike tip velocities in Section 

4.4.5. 

There are obvious differences in fine structure between the CALE and PROMETHEUS 

simulations imFigures 4.11b and 4.11~. We will discuss the differences in Section 4.5, and 

suggest that they are mainly due to stairstepping the initial interface as opposed to rep- 

resenting it as a smooth sinusoid. TO show that the difference between the codes is not a 

fundamental issue in the way the two codes calculate hydrodynamics, we have also tried 

running CALE in much the same way we ran PROMETHEUS, using a fixed orthogonal 
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Figure 4.12: Positions of bubble and spike VS. time from the experimental data and 
from the 2D CALE and PROMETHEUS simulations. Also shown is the position of a 1D 
(unperturbed) interface as calculated by CALE and by PROMETHEUS. The uncertainty 
in the bubble and spike positions in the date is f 35pm. 

grid, ideal gas EOS and stairstepped initial interface. The result is shown in Figure 4.11d. 

The general shape of the interface is now very similar (compare Figures 4.11~ and 4.11d). 

There is still more fine structure in PROMETHEUS, perhaps owing to the intrinsically 

higher accuracy of the PPM method. There is also material diffusion in,PROMETHEUS, 

evidenced by the greyish fringes on the interface, in which the mass fraction is a mixture 

of Cu and CH2. These simulations are high resolution, in the sense that the gross hydro- 

dynamics (bubble and spike positions) are well converged at this resolution. The bubble 

and spike posi$ons in a simulation at one quarter the resolution differ only by one or two 

zone widths from the positions in these higher resolution simulations. 

In the fixed grid simulations (Figures 4.1 lc and 4.lld), we used 200 zones per wave- 

length of the perturbation, that is, 1 pm per zone, in both the z and y directions. In the 

CALE simulation, we used similar zoning, 200 zones per wavelength in the y direction 



Figure 4.13: Grid in simulations of 2D Nova experiment at t = 30 ns. Left: fixed Eulerian 
grid (PROMETHEUS). Right: ALE grid (CALE). 

(parallel to the 1D interface), but feathered the zoning upward in size in the z direc- 

tion away from the Cu-CH2 interface. Figure 4.13 shows the difference in the CALE and 

PROMETHEUS grids at t = 30 ns. Because of the natural compression of zones in CALE, 

in the regions of interest near the Cu-CH2 interface. the resolution becomes similar 

of instability growth 4.4 Analytic theory 

4.4.1 Overview 

In this section we present a preliminary theoretical analysis of the bubble and spike 

velocities shown in Figure 4.12. We compare predictions for bubble and spike velocities 

from potential flow theory (see Refs. [5, 6, 811) an d our modification of the Ott thin shell 
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theory (see Refs. [120, 171) to the results of a CALE simulation of the Nova experiment. 

Since the CALE (and PROMETHEUS) simulations agree well with the data (see Figure 

4.12 and the accompanying discussion in Section 4.3.2), this is equivalent to comparing 

the theory to the experimental data. 

We use Meyer-Blewet (MB) theory (see the discussion in Section 1.3.4.2 and see Refs. 

[ill, 571) for the linear stage of bubble and spike growth, to provide initial conditions 

for the potential flow and thin shell theories. The reason we consider thin shell theory is 

seen in Fig. 4.6; in terms of density, the half-height thickness of the dense Cu is is small 

at 20 ns - about 50 pm - compared to the perturbation wavelength X = 200 ,um. By 

comparison, the shocked CH2 layer is comparable in thickness to X. The potential flow 

assumes two adjacent fluids of semi-infinite extent perpendicular to the interface between 

the fluids. A low density bubble should rise faster if it has to push aside only a thin shell 

of dense material than if if had to push aside a deeper extent of material (see [113] and 

references therein for a study of RT instability in finite thickness fluids.) 

Potential flow theory also assumes that the fluids do not decompress over time. In the 

Nova experiment, the fluids do decompress over time, because of the pressure gradient 

from the shock backwards through the Cu-CH2 interface and into the Cu - see the profile 

of pressure in Figure 4.6 (the pressure gradient is also responsible for the deceleration of 

the interface and thus the RT component of the instability growth.) Thus, before applying 

the potential flow theory to the results of the simulations, we first ‘undecompress’ the 

bubble and spike velocities, as discussed in Section 4.4.5. 

4.42 Meyer-Blewett theory 

The Meyer-Blewett (MB) theory [ill, 571 predicts the amplitude $ and rate of change of 

amplitude rj* of a material perturbation at the interface between two fluids after a shock 

has passed the interface. Intuitively, the shock will reach the ‘valley’ of the perturbation 

first, and compress the valley before the shock reaches the peak of the perturbation. Thus, 

the amplitudeof the perturbation should be decreased by the shock. The prediction of 

MB is 
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where 70 is the preshock amplitude of the perturbation, k = 27r/X is the wavenumber 

of the perturbation, A* is the postshock Atwood number (& - p;)/(& + pr), and ui 

and ~1, are the fluid velocity behind the shock, and the shock velocity, respectively. The 

original RM theory [130] made a prediction for +* which was found experimentally to be 

incorrect. MB theory is an ad hoc modification to the original RM theory in which the 

term (q. + $)/2 is used instead of the more intuitively obvious qo. 

4.4.3 Potential flow theory 

Potential flow theory predicts the rate of change of the single mode bubble and spike 

velocities in the nonlinear stages of instability growth (See the discussion in Section 

1.3.4.3 and see Refs. [5, 6, 811). The prediction of the theory for the velocity u of a 

bubble or spike is (see Refs. [6, 811) 

Ii(t) = Cbg(t) - C&t)2/X, (4.3) 

where the buoyancy coefficient is cb = A*/( l+A*) and the drag coefficent is CD,bubble = 37r 

for the bubble and cJj,spike = 37r(l - A*)/(1 + A*) for the spike. In applying this theory 

we will take initial conditions from MB and numerically integrate this equation forward 

in time to predict bubble and spike velocities vs. time. 

4.4.4 Thin shell theory 

In his original thin shell theory [120, 171 Ott solved the equations of motion for an infinitely 

thin shell with massless fluids at constant pressure above and below, and a gravitational 

force acting perpendicular to the initial average interface. The equations of motion are 

where where 5 is the Lagrangian coordinate of a point on the thin shell, and x and z 

are the Eulerl%n coordinates parallel and perpendicular, respectively, to the unperturbed 

interface, g(t) is the gravitational field, the dot refers to derivatives with respect to time, 

and the prime to derivatives with respect to the Lagrangian coordinate. 

In [12O], Ott presented the solution for the case of a constant gravitational field 

g(t) = go. In Ref. [17], Basko presented the solution for the case g(t) cx l/t2. In the 
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Figure 4.14: LFitting g = a/(t - to) to the actual interface deceleration in the Nova 
experiment. We fit g = cr/(t - to) to the simulated interface deceleration at t = to = 1.8 
ns and t = 24 ns. The resulting (2 is -4.67 pm/ns. (a) Comparison of g = a/(t - to) for 
a = 3.1 pm/ns to the interface acceleration from HYADES. (b) Comparison of integrating 

9 = a/@ - to) over time to the interface velocity from HYADES. (c) Comparison of 
integrating g = a/t over time twice to the interface position from HYADES. 
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HYADES calculation of the laser experiment, (see Section 4.3.1) the effective deceleration 

g(t) of the interface after the sharp acceleration due to shock is fit extremely well by the 

simple form g(t) = a/(t- to). We fit g = a/(t-to) to the simulated interface deceleration 

at t = to = 1.8 ns and t = 24 ns, resulting in 01 z -4.67 pm/ns; using this to and Q, we 

integrate g(t) over time to reproduce the 1D interface velocity and position. We illustrate 

this in Figure 4.14. In Figure 4.14a we compare g = a/(t - to) for a! = 4.67 pm/ns to 

the acceleration of the interface zone in the HYADES simulation, calculated by taking 

the time derivative of the interface velocity as calculated in HYADES. In Figure 4.14b we 

compare the result of integrating g = a/(t - to) over time to the actual interface velocity 

profile shown earlier in Figure 4.8. In Figure 4.14~ we compare the result of integrating 

g = a/(t-to) t wice over time to the actual interface position profile from HYADES. The 

fits in acceleration, velocity, and position are extremely good until t = 40 ns. 

Here we present the solution to equations 4.4 for the case g(t) = a/t, namely, 

xK, t> = 5 + f(t) ~0s (W 
z(t, t) = zo + f(t) sin (6) 

x0(t) = g(t) 

alIl= - blKlm}, 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

where k = 27r/X is the wavenumber of the perturbation, and 11 and Ki are the growing 

and damped modified Bessel functions, respectively. The two constants al and br are 

set by the amplitude and velocity of the initial perturbation. In the exact solution of 

this case, with massless fluids above and below, the quantity A* (the postshock Atwood 

number) in Eq. 4.6 equals unity. TO crudely account for the arbitrary postshock Atwood 

number, we insert A* back into the A = 1 solution, replacing all factors of ka with A*kcr. 

Thus A* in this ad hoc modification to the exact solution plays the same role that it 

does in the original RT linear stage growth rate solution [104, 1451, $ = qOexp(-yt), 

where the gr%wth rate y is given by y = dAkg), A being the Atwood number and g 

the constant gravitational force (See the discussion in Section 1.3.4.1). The effect of A* 

in both cases is to slow the growth rate. For the Cu-CH2 experiment, our simulations 

predicted a post-shock Atwood number of 0.65. 
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Figure 4.15: ;omparison of simulations to analytic theory for the Nova Cu-CH2 experi- 
ment. (a) Meyer-Blewett (MB) theory mapped to potential flow theory and to modified 
Ott thin shell theory. (b) Spike velocity minus bubble velocity for simulation and for MB 
mapped to potential flow theory (solid line), and the result of integrating Eq. 4.3 with 
the g(t) set to zero (dashed line). 



92 

4.4.5 Comparison of theory to simulations 

As discussed in Section 4.4.1, before applying potential flow theory we must ‘undecom- 

press’ the bubble and spike velocities. One way to do this would be to gauge the decom- 

pression by the change in average density in each fluid, that is doing the transformation 

u(t) -$ u(t) * m/P 0, where u is a bubble or spike velocity, p(t) is the average density 

at time t in the appropriate fluid (the dense fluid for the spike and the light fluid for 

the bubble.) However, there are some difficulties with applying this procedure for the 

experiment. First of all, it is not entirely clear how to calculate the average density; 

should the massively decompressed Cu blowoff be included? The answer is probably not, 

since the huge volume in the blowoff would lower the averge density considerably and 

yet the blown off material does not affect the hydrodynamics at the interface (see Figure 

4.6 and the accompanying discussion in Section 4.3.1). Also, as the shock advances into 

the CH2, CH2 enters the problem. The unshocked CH2 should not be considered part 

of the problem, as it can not play a part in the hydrodynamics in the rest of the target. 

Yet, should shocked CH2 that enters the problem at a later time be included in trying to 

determine the decompression of material that was shocked earlier? A possible solution is 

to track the fluid element at a bubble or spike tip at all times and normalize to its initial 

density. Care must be taken, though, that the initial density taken is the post-shock 

density. 

A simpler procedure is to assume a 1D ‘accordion-like’ expansion velocity ~(2, t) = 

V(z, t) - Ui(t) about the Cu-CH2 interface for each point (z, y) in the entire target, where 

Ui(t) is the rest frame velocity of the interface, and V(z, t) is the 1D fluid velocity in the 

rest frame. The velocity V(z, t) can be obtained at each coordinate z in the fluid at each 

time t from a 1D simulation of the experiment. Given a bubble or spike velocity U(X, y, t) 

in the rest frame, we can then subtract V(Z, t) from U(Z:,~, t) to get the undecompressed 

bubble or spike velocity ~(5, y, t). That is, the decompressed (‘raw’) bubble or spike 

velocity with respect to the interface is U(X, g, t) - vi(t), and the undecompressed bubble 

orspikeveloci%yis (U(~,y,t)--Ui(t))-(V(z,t)-Ui(t)), ie. ~~(x,y,t) = U(z,y,t)-V(z,t). 

With this procedure we avoid having to decide which parts of the fluid to consider in 

estimating the decompression. A more elaborate version of either scheme is probably not 

warranted, given the crudity of the approximations in each scheme. 
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In Figure 4.15 we compare the undecompressed bubble and spike velocities from the 

2D CALE simulation shown in Figures 4.10 and 4.11b to the predictions of MB theory 

mapped to potential flow theory and MB theory mapped to the modified Ott thin shell 

theory. In Figure 4.15a, the heavy solid lines are undecompressed bubble and spike 

velocities (in the rest frame of the 1D unperturbed interface.) The light solid line is the 

prediction of MB mapped to potential flow theory and the dashed line is the prediction of 

MB mapped to the modified Ott thin shell theory. MB mapped to potential flow theory 

predicts the spike velocity reasonably well. The modified thin shell theory predicts the 

bubble velocity well at early times, while at later times the potential flow theory predicts 

the bubble velocity better. 

The bubble and spike velocities are considerably slower than the sound speed in the 

fluids - 2-3 pm/ns (see Figure 4.15a) vs. M 10 pm/ns. That is why we can apply 

incompressible theory at all. Thus, the hydra at the bubble and spike tips should be well 

coupled, suggesting that we consider the velocity at which the bubble and spike tip are 

separating from each other. In Figure 4.15b, we show the prediction of MB mapped to 

potential flow theory for the spike velocity minus bubble velocity; the heavy sold line is 

the undecompressed spike velocity minus bubble velocity, and we also show the results of 

integrating Equation 4.3 both with g(t) cx a/t (light solid line) and with g(t) set to zero 

(dashed line). In the case g(t) 0: cr/t we account for both the RM instability due to the 

shock and the RT instability due to the deceleration, while in the case g(t) = 0 we ignore 

the deceleration and show the prediction for the pure RM case. In the case g(t) = 0, 

Equation 4.3 reduces to 

?i(t) = -CI)U(t)2/X, (4.10) 

which has the solution 

u(t) = -2. (4.11) 

The RM plus RT case predicts the velocity difference much better than the pure RM 

case; it appears that the instability growth is partly RM-driven and partly RT-driven. 4 
In general, then, potential flow theory appears to describe the undecompressed peak-to- 

valley velocity, while a modification of the Ott thin shell theory appears to describe the 

bubble velocity at early times. This result can be understood if at early times the thin 

shell effect is strong, while at later times, the thin shell effect has weakened as the shell 
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decompresses and widens. 

4.5 Numerical differences in fine structure 

In Figure 4.11 there is a noticeable difference in the fine structure between the CALE 

and PROMETHEUS simulations of the Nova Cu-CH2 experiment. CALE was run with 

tabular EOS in ALE mode, while PROMETHEUS was run with a fixed rectilinear grid 

and using ideal gas EOS. The difference in the grids in these two simulations at t = 30 

ns is shown in Figure 4.13. AS we stated in Section 4.3.2, we have investigated the fine 

structure issue further using CALE, and our investigation suggests that the difference in 

fine structure is mainly due to stairstepping the initial interface as opposed to representing 

it as a smooth sinusoid. As we also said in Section 4.3.2, when we run CALE in a similar 

manner to the manner in which we ran PROMETHEUS, using a fixed orthogonal grid, 

ideal gas EOS and stairstepped initial interface, shown in Figure 4.11d. The general 

shape of the interface is now very similar in CALE and PROMETHEUS. Holmes et al. 

[84] have done an experimental and numerical study of RM instability, using three codes, 

the Automatic Mesh Refinement (AMR) code RAGE, the front tracking code Frontier, 

and PROMETHEUS. They observed somewhat more fine structure in PROMETHEUS 

than in the other two codes; we do not know if stairstepping was an issue with the Holmes 

et al. simulations. 

We have looked further at this question using CALE alone. We are able to run CALE 

in a number of different ways. We can use (1) tabular EOS or ideal gas EOS, (2) ALE 

mode or Eulerian mode, and (3) a smooth interface or a stairstepped initial interface. 

The difference between a stairstepped and smooth initial interface is shown in Figure 

4.16. In fact, there are other options for EOS in CALE, such as an inline (quotidien) 

EOS, a moving grid (though less flexible than the moving grid in PROMETHEUS), and 

the initial interface could be represented as a combination of smooth and stairstepped. 

However, as a first investigation into the fine structure issue, we simply simulate all 23 = 8 

combinations%f the choices in (l)-(3) b a ove. The result is shown in Figure 4.17 by the 

shape of the interface at t = 40 ns from all of the eight simulations. Parts a-d (the left 

panels) in Figure 4.17 show the results of the simulations with smooth initial interfaces, 

while parts e-h (the right panels) show the results of the simulations with stairstepped 

initial interfaces. Parts a,b,e and f (the top four pmcls) in Figure 4.17 show simulations 
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Figure 4.16: Stairstepped vs. smooth initial interface in CALE simulation of Nova Cu- 
CH2 experiment. 



(c) 

Eulerian 

Figure 4.17: Result of using a stairstepped vs. a smooth initial interface in CALE 
simulations of the Nova Cu-CH2 experiment. (a)-(d) smooth initial interface. (e)-(f) 
stairstepped initial interface. One wavelength (200 pm) of the initial interface is shown. 
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simulations. 
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using tabular EOS, while parts c,d,g and h (the lower four panels) show simulations using 

ideal gas EOS. Within the tabular EOS simulations, parts a and e are for ALE mode, 

while parts b and fare for Eulerian mode. Similarly, within the tabular EOS simulations, 

parts c and g are for ALE mode, while parts d and h are for Eulerian mode. 

Thus, the only difference in going from a simulation shown in a panel on the left to 

the simulation shown next to it on the right is in going from a smooth to a stairstepped 

initial interface. All of the panels on the left show simulations where the final interface 

at t = 40 ns still has little fine structure, compared to the corresponding simulation on 

the right, regardless of whether tabular or ideal gas EOS was used, or the simulation was 

run in ALE mode or Eulerian mode. Even for the case (ideal, ALE, smooth) shown in 

Figure 4.17c, which has the most fine structure of all the simulations which began with a 

smooth initial interface, the corresponding simulation on the right, the case (ideal, ALE, 

stairstep) has significantly more fine structure. 

These results suggest that stairstepping the initial interface is indeed the main cause 

of the extra fine structure seen in Figures 4.11c-d compared to Figure 4.11b. However, the 

difference in fine structure does not greatly affect the gross hydro, that is, the positions of 

the bubble and spike tips vs. time. This is shown in Figure 4.18a by a plot of bubble and 

spike position vs. time for two representative simulations of the eight described above, 

the cases (tabular, ALE, smooth) and (ideal, Eulerian, stairstepped). The length of the 

interface vs. time is clearly different for these two interfaces, looking at Figures 4.17a and 

4.17h. This is further shown in Figure 4.18b by a plot of interface length vs. time for 

the two simulations, where interface length is crudely estimated by laying down a thread 

along the interface at each time and measuring its length. A more precise measurement in 

the simulation is difficult and somewhat ambiguous, because the interface does not stay 

connected, and pieces of material break off into islands in the flow. The measurement 

of the path length in the vortices is also difficult, because there can be considerable 

length along the edge of a vortex that has rolled up several times. However, this simple 

measurementshould give a reasonable sense of the difference in the length of the interface. 

The difference in path length could be of interest for processes whose rate is proportional 

to the area of an interface, such as molecular mixing. It would be of interest to study the 

difference in path length as a function of resolution, and also to extend this study to 3D 

simulations, for which the interface surface area would have to be tracked and measured. 
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CHAPTER 5 

FURTHER WORK 

5.1 2D vs. 3D hydrodynamics laser experiments 

In Section 2.4 we discussed differences in 2D vs. 3D hydrodynamic instabilities in SN 

1987A, concentrating on single mode instabilities. In Section 1.3.4.5 we discussed the 

reason for the differences in 2D vs. 3D hydrodynamic growth. The motivation for study- 

ing 2D vs. 3D hydrodynamics was discussed in Section 1.2: the velocities observed for 

56Co in the ejecta of SN 1987A are underpredicted in 2D simulations by at least a third. 

We have begun work on analogous 2D-3D experiments at the Nova laser. In the exper- 

iments discussed in Section 4, we used a 2D single mode (sinusoidal) perturbation. 3D 

numerical simulations are very expensive to carry out routinely, and intractable to carry 

out routinely at the higher resolutions used in 2D simulations, such as the ones presented 

in Fig. 4.11b-d. However, a laser experiment with a 3D perturbation is no more difficult 

to perform than an experiment with a 2D perturbation, and thus offers a useful tool for 

studying SN-relevant hydro. 

We are currently investigating two types of 3D material interface perturbations, de- 

signing experiments where we shoot targets with 2D perturbations and targets with 3D 

perturbations. The different perturbations are illustrated in Figure 5.1. Figure 5.la 

shows the form of the 2D perturbation used in the experiment decribed in Section 4.2. 

We choose the amplitude and wavelength of the perturbations such that the growth rate 

of the 3D instability is the same as the growth rate of the 2D instability in the linear 

regime. The difference in growth occurs in the nonlinear regime. The reasoning here 

follows the discussion in Section 2.4.1. 

The first type of 3D perturbation, the ‘eggcrate’ or ‘crosshatch’ pattern, is shown in 

Figure 5.lb. It has the form 

5(y, z) = q-0 sin(k39) x sin(kaz), (5.1) 
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Figure 5.1: 2D vs. 3D material interface perturbations. (a) 2D sinusoidal perturbation. 
(b) 3D crosshatch perturbation. (c) Bessel dimple perturbation. (d) Truncated (flattened) 
Bessel dimple perturbation. (e) Amplitude vs. radius for Bessel dimple perturbations. 
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where z is the coordinate direction perpendicular to the unperturbed interface, y and ,Z 

are the coordinate directions parallel to the unperturbed interface, and /Q = 27r/Xa is 

the wavenumber of the single mode perturbation of wavelength As. We choose 21c,2 = kz, 

where kz = 27r/Xz is the wavenumber of the 2D perturbation of wavelength X2. That is, 

As = fi x Xz. The amplitude of the perturbation, 70, is the same in 2D and 3D. These 

choices gives the same 2D and 3D growth rates in the linear regime (see Refs. [5l, 81, 

1071 and see the discussion in Section 1.3.4.5). 

The second type of perturbation, the ‘dimple’ pattern, is shown in Figure 5.1~. It has 

the form 

44 = -rloJo(kzr), (5.2) 

where the coordinates are cylindrical (T, z), z now being the direction perpendicular to 

the interface, and T being the distance from the axis of symmetry. The minus sign means 

that there will initially be a dimple on-axis; this dimple will be inverted by the RM 

instability into an axially symmetric 3D spike. The next ‘ring’ out, initially a peak, will 

be inverted into a bubble ring. To produce the same growth rate for the dimple as for the 

2D perturbation, in the linear regime, we use the same wavenumber k = k2 for the Bessel 

perturbation as for the 2D perturbation (see Refs. [51, 811.) We define the radius RI of 

the dimple as the first peak of Jo(kzr), the first zero of the first derivative with respect to 

r of -Jo(kp-), which is Jo. The radius Rr is larger than X2/2 by a factor of about 

1.22 (that is, the diameter of the dimple is about 1.22 X2), as follows. The zeros of Jl(kzr) 

occur at kr = 0 and at kp- = ,&,P2, ,B3,/34.. . M 3.8317,7.0156,10.1735,13.3237,. . . . Thus 

the radius Rr of the dimple is given by 

,&A 3.8317 R1 = PI/k2 = F M F& M 1.22 x2/2. (5.3) 

Experimentally, it is desirable to use only the central portion of the Bessel function 

out to r = RI, as shown in Figure 5.ld. In this perturbation the profile has been 

flattened past T = RI, as shown in Figure 5.le. The reason for doing this is that the 

outer rings of?the perturbation will grow as (2D) spikes and bubbles which will obscure 

the view of the central spike in a side-in radiograph (see Section 4.2). Flattening the 

outer rings will change the hydrodynamics of the instability somewhat. However, we 

have simulated targets in CALE both with and without the outer rings, and found no 

significant difference in the hydrodynamics of the central spike and bubble ring between 
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Figure 5.2: Target for two layer Nova experiment with CHBr and foam. 

the two cases. This suggests that during the time of interest in the experiment, little 

information is transmitted from the outer rings to the central bubble and spike that 

would change the evolution of the latter. 

In the first set of experiments, we use targets with the 2D and 3D perturbations shown 

in Figures 5.la and 5.lb. The target is a planar two-layer target, the same as the Cu-CH2 

target which was discussed in Section 4.2, and shown in Figure 4.2. The target, described 

here is shown schematically in Figure 5.2. The materials in the target are now different; 

we use 6% brominated plastic, CHBr, with molecular formula CsO:H44:Brc, as the dense 

material instead of Cu, and we use a foam with molecular formula Cs:Hs:Oi, as the light 

material, instead of CH2. The Br serves two purposes. First, it absorbs wavelengths of the 

x-ray drive which could penetrate well beyond the ablation front and preheat the target. 

Second, it absorbs the backlighter x-rays more strongly, which improves the quality of the 

radiographs. The density of the CHBr is 1.54 g/cm3, and the density of the foam is 0.10 
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d cm3. In our simulations, this choice of foam density gives about the same post-shock 

Atwood number, A* = 0.65, as we had in the Cu-CH2 experiment. The thickness of the 

CHBr is 200 pm, as compared to 85/~m in the CU-CH2 experiment shown in Figure 4.2. 

We use a thicker layer here because the shock travels faster in the CHBr than in the Cu, 

and we want the hydrodynamics near the interface to become decoupled from the drive 

by the time the shock has crossed the CHBr, similar to what we had with the Cu-CH2 

experiment. The thicker layer also ensures that there will be virtually no preheating of 

the materials near the interface. Thus, with this design we again have an experiment 

that is hydrodynamics-dominated except near the ablation front. 

For the 3D perturbation, we use a wavelength X3 = 200pm, and for the 2D perturba- 

tion, we use a wavelength X2 = 2OO/fip m. Once again, as with the Cu-CH2 experiment, 

we begin our simulations with a 1D run in HYADES, stopping now at a mapping time of 

3.6 ns. The energy input to HYADES is once again the measure radiation temperature 

T,(t) of the x-ray drive coming from the hohlraum. To simulate the 3D experiment after 

the mapping time, we need a 3D code. Thus, we turn to PROMETHEUS, simulating 

both the 2D and 3D experiments with this code. We use ideal gas EOS, once again 

choosing a fixed ideal gas y for each material such that 1D PROMETHEUS reproduces 

as closely as possible the shock speed, interface velocity and compression of the materials 

from HYADES. We use YCHB~ = 56/30 and ^/foam = 45/30. 

In Figure 5.3 we show the results of the PROMETHEUS simulations of the 2D and 

3D CHBr-foam experiments. Figure 5.3a shows the CHBr-foam interface at t = 30 ns 

as 3D surface plots. Figure 5.3~ show the positions of the bubble and spike tips in the 

rest frame of the 1D unperturbed interface as calculated by PROMETHEUS, for the two 

simulations. The interface in the 2D simulation looks similar to what we saw in Section 

4.3.2 for the interface in the Cu-CH2 experiment. In the 3D simulations we can see the 

narrow finger-like spikes of CHBr bordering the bubbles of foam, and we can see the 

2D saddle lines connecting the spikes and separating the bubbles. At this low resolution 

there is only &tint evidence of KH rollups on the saddle lines. The KH rollups on the 

spike tips also appear to be less well-developed in 3D than in 2D. The 3D spikes grow 

z 30-35% faster in 3D compared to 2D, as we can see in Figure 5.3~. This difference in 

growth is similar to what we saw in the simulations of the Hc-H and O-He layers of SN 

1987A, in Section 2.4. Thus, we have a hydrodynamics-dominated experiment which can 



(c> 

(b) 3D (t = 30 ns) 

200 

g 100 
- 
E .- .e! 0 
g 
cL -100 

-200 

4. 

L PROMETHEUS CHBr-foam L PROMETHEUS CHBr-foam 
:: -30 :: -30 
I --- 2D I --- 2D 

20 

Time (ns) 

Figure 5.3: PROMETHEUS simulation of CHBr-foam Nova 2D-3D experiment. (a) 2D 
sinusoidal perturbation at t = 30 ns. (b) 3D crosshatch perturbation at t = 30 ns. (c) 
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Figure 5.4: Nova Cu-CH2 experiment using a dimple perturbation. (a) Radiograph from 

a Nova shot. (b) CALE simulation of a similar experiment. 

potentially be used to study the difference in 2D vs. 3D hydrodynamic instability growth 

that occurs in SNe. 

To date, several preliminary shots of the CHBr-foam 3D crosshatch vs. 2D sinusoid 

have been performed. Initial results were encouraging: finger-like structures of CHBr 

were imaged for both the 2D and 3D targets. However, the data were not of sufficient 

quality to allow a quantitative analysis of bubble and spike positions. 

We have also shot preliminary Cu-CH2 targets in which we use a truncated dimple 

perturbation like the one shown in Figure 5.ld. The side-on radiograph from one of the 

shots is shown in Figure 5.4a. Figure 5.4b shows a CALE simulation of a similar target, 

but of smaller dimple radius and amplitude. In the CALE simulation, density is plotted 

as a color scale intended to be qualitatively suggestive of the measure of optical depth 

which the radiograph supplies. In the CALE simulation, the shock is visible ahead of the 

spike tip; it is being bowed by the very fast growing spike. 

For the experiment, 16 simultaneous radiographs were taken at t = 33 ns. Each of the 

16 radiographs corresponded to one of the sixteen pinholes of the gated x-ray camera. As 
48 

a result, each image was taken from a slightly different angle. The sixteen images were 

combined numerically, subtracting out the background noise in the numerical procedure. 

Because of this procedure, the fine structure at the tip vortex has now become visible in 

the radiograph in 5.4a, and is in good qualitative agreement with the type of structure 
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Figure 5.5: Design of a direct drive three layer laser experiment. 

seen in the CALE simulation in Figure 5.4b. This technique offers the hope of beginning 

to examine the fine structure issue, discussed in Section 4.5, experimentally. 

A campaign of Cu-CH2 shots with sinusoid and dimple perturbations is scheduled for 

the Phebus laser in France (see Section 1.4.2.4) for March, 1999, by Remain Teyssier and 

collaborators [146]. The goal of this campaign is to systematically study the 2D vs. 3D 

difference in growth, by using the same wavenumber k, and amplitude v. for the sinusoid 

and the dimple, as discussed in this section. 

5.2 Muliiple-layer experiments 

An important aspect of the hydrodynamics in SN 1987A may be the coupling of instabil- 

ities between layers, as we saw in Section 2.4.2. As a first step in studying such coupling, 

we are designing laser experiments with three-layer planar targets. These experiments 

are scheduled for the OMEGA laser (see Section 1.4.2.1) at the University of Rochester 
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in June, 1999. Our goal in these experiments is to study the imprinting (‘feedthrough’) 

of a perturbation from one interface to another. The target for the experiment is shown 

schematically in Figure 5.5. We extend and adapt the Cu-CH2 target discussed in Section 

4.2, adding a third layer of foam, of lower density than the CH2. At the Cu-CH2 interface, 

we once again impose a single mode perturbation, such as sinusoid, crosshatch or dimple 

(see Figure 5.1). The second interface, the CH2-foam interface, is flat. 

When the shock passes through the CU-CH2 interface, it is perturbed by the material 

interface perturbation. The shock speeds up in the lighter CH2; as a result, the part of 

the shock which hits the valley of the perturbation (the thinnest part of the Cu) moves 

ahead of the part of the shock which hits the peak of the perturbation (the thickest part 

of the Cu). The result is a shock which is bowed in shape. Such a shock will oscillate 

in the CH2, with the phase of shock inverting after the shock has traveled a distance 

approximately equal to one wavelength X of the perturbation. The amplitude of the shock 

becomes damped over time. The amplitude changes with time approximately proportional 

to the Bessel function Jo(plz/X), where 2 is the coordinate direction perpendicular to 

the unperturbed interface, and /3r M 3.83 is the first zero of J1 (see Ref. [117]). The 

perturbed shock then hits the CHz-foam interface, and imprints a perturbation onto that 

interface in the same phase as the shock. By the RM inversion, the spike at the Cu-CHz 

interface will grow in opposite phase to the initial perturbation. After the shock has 

traveled a distance M X, it will be in the same phase as the initial perturbation, and so 

if the flat CHz-foam interface is at a distance X from the Cu-CH2 interface, the shock 

will produce a perturbation at the CH2-foam interface which has the same phase as the 

initial perturbation and which is out of phase with the bubble and spike at the Cu-CH2 

interface. If the CH2 is thicker still, then the shock will invert once more before hitting 

the CHZ-foam interface, and the bubbles and spikes at the two interfaces will be in phase. 

This phase effect is shown in Figure 5.6 by plots of density and material interfaces 

from CALE simulations with two different thicknesses of the middle CH2 layer. In Figure 

5.6a-d we sho?v a simulation using a CH2 thickness of AXE = 200pm, and in Figure 

5.6e-f we show a simulation using a CH2 thickness of AQ = 400 pm. In Figure 5.6a and 

5.6a at t = 2 ns we can see the shock approaching the initial Cu-CH2 interface (from 

the bottom of the plots.) In Figure 5.6b t = 4 ns for Ax2 = 200pm, we can see that 

the Cu-CH2 interface has inverted by the RM instability, and that the shock is moving 
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Figure 5.6: Feedthrough in CALE simulation of three-layer laser experiment - imprinting 

of an oscillating shock from one interface to a second. 



io9 

towards the CHZ-foam interface. We can see the same in Figure 5.6b at t = 6 ns for 

&rz = 400pm. By t = 8 ns in Figure 5.6~ for Ax2 = 200 pm, the shock has passed the 

CHZ-foam interface and the perturbation at the Cu-CH2 interface is growing strongly. 

The shock is visible moving into the foam. The same has occurred by t = 10 ns in Figure 

5.6g for Ax2 = 400pm. For Ax2 = 200pm in Figure 5.6c, the phase of the perturbation 

imprinted at the CHZ-foam interface is opposite to the phase at the Cu-CH2 interface, 

while for ax2 = 400pm in Figure 5.6g, the phase of the perturbation imprinted at the 

CH2-foam interface is the same as the phase at the Cu-CH2 interface. In the experiments 

at OMEGA, we first hope to see at least the difference in phase at the CHZ-foam interface, 

and possibly be able to image both interfaces at once. 

As mentioned, we could potentially use 3D as well as 2D perturbations at the Cu- 

CH2 interface. The 3D spikes should grow more quickly, perhaps significantly changing 

the perturbation at the CHz-foam interface. Again, such an effect is of particular in- 

terest in light of the difference in 2D vs. 3D hydrodynamics in SN 1987A seen in the 

PROMETHEUS simulation discussed in Section 2.4.2 and shown in Figure 2.8. 

5.3 Three layer divergent geometry experiment 

Another important aspect of the hydrodynamics in SNe is the spherical geometry. The 

experiments we have described so far in Chapter 4 and in this chapter are all in planar 

geometry. Figure 5.7a shows a CALE simulation of a spherical geometry three layer 

target with multimode perturbations at the initial interfaces. Material from the lowest 

layer has been mixed well into the outer layer by the interacting instabilities at the two 

interfaces. Such mixing is reminiscent of the mixing of the 0 layer into the II envelope 

in SN 1987A, illustrated in Figure 2.8 by a PROMETHEUS simulation of SN 1987A, 

and in 5.7b by an image reproduced from [115] of a PROMETHEUS simulation of SN 

1987A. This target is being designed for SN experiments on the National Ignition Facility 

(NIF), now under construction. This target is again an adaptation of the basic designs 

discussed in <ections 4.2 and 5.2. We use an inner dense Cu layer, a lighter CH2 layer 

and an outer layer of foam. For each interface, we first produced a material interface 

perturbation of random zone-by-zone amplitude up to a maximum amplitude 70, and 

then removed short wavelengths and the longest wavelengths from the Fourier spectrum, 

resulting in a superposition of a range of wavelengths of different amplitudes and random 





il0 

Figure 5.7: (a) CALE simulation of a spherical geometry three layer target with multi- 
mode perturbations at the initial interfaces (b) PROMETHEUS simulation of SN 1987A. 
Reproduced from [115]. 

phases. The initial inner radius of the Cu was 800 pm. The thicknesses of the Cu, CH2 

and foam layers were 85 pm, 120 pm and 2000 pm, respectively. In such an experiment, 

the target expands considerably, so that the optical depth of the material being imaged 

goes down significantly (such expansion is desirable, since it also occurs in SNe). Hence, 

these experiments will present challenges to our diagnostic skills. The energy delivered 

to the target by NIF will be on the order of 40 times as much as at Nova. This much 

higher energy is needed to produce a shock strong enough to cause considerable mixing 

in the experiment discussed here. 
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CHAPTER 6 

CONCLUSIONS 

We have presented experiments at the Nova laser and other large lasers whose hy- 

drodynamics are scalable to the hydrodynamics of SNe. A key motivation in doing these 

experiments was observations of SN 1987A, which implicated hydrodynamic mixing in the 

explosion, and suggested the possible importance of 3D hydrodynamics in the explosion. 

We have shown that these experiments can be used to test the modeling of multidi- 

mensional hydrodynamic instabilities in hydrodynamics codes used by astrophysicists to 

model SNe, and demonstrated how these experiments could be used to study difficult-to- 

model issues in SNe, such as the difference between 2D and 3D hydrodynamics. 

We have numerically explored the difference in single mode 2D vs. 3D hydrodynamics 

in SN 1987A using the SN hydrodynamics code PROMETHEUS, and found that the 

hydrodynamics of single mode instabilities may be a significantly different in 3D com- 

pared to 2D. We have shown in detail why the hydrodynamics at intermediate times in 

SN 1987A (after the input of energy from the collapse and rebound of the core) scale 

to the hydrodynamics in the laser experiments at intermediate times (after the input of 

energy from the laser); the reason is that both scenarios are described well by the pure 

compressible hydro equations - the Euler equations. Our first laser experiments were in 

planar geometry, with targets composed of two layers of different and constant density, 

and with controlled 2D material perturbations at the interface between the two layers. 

The passage of the laser-induced shock produced RM and RT instabilities, similar to 

what is seen in PROMETHEUS simulations of SN 1987A. We showed that the hydrody- 

namics codes CALE and PROMETHEUS can reproduce the gross 2D hydrodynamics in 

these experimimts, that is, the bubble and spike positions vs. time, although there are 

differences in the fine structure predicted by the two codes. We presented analytic theory 

that appears to describe the velocities of the bubble and spike tips in these planar exper- 

iments. We used the Meyer-Blewett theory for the post-shock conditions at the interface, 

and used potential flow theory and our modified version of the Ott thin shell theory to 
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describe the growth of the bubbles and spikes. We have also explored the difference in 

fine structure predicted by the codes CALE and PROMETHEUS in simulations of the 

laser experiments, concluding that a stairstepped (as opposed to a piecewise smooth) 

representation of a single mode interface perturbation is the cause of the fine structure. 

We have presented further and ongoing work in astrophysics experiments on large 

lasers, and also explored the RM instability in SNRs. One direction in further experiments 

is to study 2D vs. 3D hydrodynamics in laser experiments. Other directions involve 

including more aspects of the actual SN progenitor star in the laser target, including 

multiple layers, density gradients, spherical geometry, and multimode perturbations. An 

important direction in further work will be developing theory to account for the instability 

growth in these more advanced targets, accounting in particular for the effect of spherical 

geometry. The scaling arguments presented in Ch. 3 should be improved to account for 

the difference in geometry between the SN modeled in Ch. 2 and the planar experiments 

described in Ch. 4. However, these improvements to the scaling argument may become 

moot once we are able to use the advanced spherical targets at high powered future lasers 

like the National Ignition Facility. 
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APPENDIX A 

RICHTMEYER-MESHKOV HYDRODYNAMIC 
INSTABILITIES IN SNR FORMATION 

A.1 Richtmeyer-Meshkov hydrodynamic instabilities in SNR 
format ion 

A.l.l Overview 

We present an initial evaluation of the role of the Richtmyer-Meshkov (RM) instability in 

supernova remnant (SNR) formation. Although the Rayleigh-Taylor (RT) instability is 

most often considered in the canonical picture of SNR formation, the theoretical penetra- 

tion depths for the RM instability suggest that it could play a significant role in the early 

stages of SNR formation. We have used the code PROMETHEUS to perform a sequence 

of 2D hydrodynamic simulations in order to test this possibility. Here we discuss a case in 

which we impose a large perturbation in the expanding ejecta behind the reverse shock. 

The interaction of the reverse shock with the perturbation produces significant early RM 

growth, with spikes penetrating from the contact surface to near the forward shock. Then 

the RM instability weakens, RT growth eventually dominates, and the perturbation of 

the forward shock diminishes. We conclude that RM instability growth due to the type 

of perturbation we have studied might contribute to, but alone cannot account for, the 

observed radio and x-ray structures which extend to the forward shock in such SNRs as 

SN 1006. 

This material was first presented in almost the form shown here in [94]. My main 

contribution to this work was performing and discussing the PR,OMETHEUS simulations 

of SNRs. I a&o contributed the mention of the polar protrusions from Reference [27], 

the summary discussion of why conduction and radiation transport are not expected to 

be important during the stages of the SNR we are studying, from work done by Dmitri 

Ryutov and Paul Drake in Ref. [134], with myself as third author, and also the summary 

description of global analysis of instabilities. Paul Drake had the original idea for the 
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paper and wrote the first draft, contributing most of the observational and theoretical 

discussion of SNRs, and writing much of the summary of the theory of RM instability. 

Bruce Remington considerably improved and augmented not only our understanding and 

description of the RM instability, but also the flow of the text, suggesting the description 

of global instability and the discussion of conduction and radiation transport, to which 

discussion he also contributed as a coauthor in Ref. [134], and adding the discussion of 

the mixing layer evolution of the SNR, in particular the description of bubble merger 

dynamics. 

Although this work is somewhat tangential to the main work described in this dis- 

sertation, that is, developing and analyzing scalable laboratory astrophysics experiments 

(but see the discussion of SNR-relevant laser experiments in Section B.2 and the scaling 

arguments in [134]), doing the simulations and tackling the theoretical material in this 

paper proved invaluable for the main work. The SNR problem led me to some insight 

into the nature and structure of spherical explosions, and the structure commonly seen 

in such explosions: unshocked ejecta; reverse shock; shocked ejecta; contact discontinu- 

ity; shocked medium; forward shock; unshocked medium. Furthermore, to simulate this 

problem I first had to become considerably more sophisticated in my methods than I 

had to be to do simulations in planar geometry. I was forced to use the moving grid, a 

tool which requires some care to employ, and to develop robust methods of tracking the 

shock. The moving grid in turn proved essential for simulating the intermediate stages 

of the explosion of SN 1987A (Ch. 2). Furthermore, in the course of doing this work, 

I was forced to confront and expose a serious ‘bug’ in the version of PROMETHEUS 

I had obtained; the artificial viscosity was formulated incorrectly for spherical geome- 

try. I discovered this bug when I found that PROMETHEUS was unable to calculate a 

single mode hydrodynamic instability; the spike and bubble structure rapidly broke up 

into a mass of fine structure. This bug had prevented me from simulating single mode 

instabilities in SN 1987A much earlier in my dissertation, and considerably delayed these 

important simulations. Finally, by showing that CALE was able to grow single mode 

instabilities as expected in spherical problems where PROMETHEUS was not, I was able 

to rally interest in the problem and obtain a corrected version of the artificial viscosity 

from Ewald Miiller, coauthor of PROMETHEUS. This corrcct,cd version of the artifi- 

cial viscosity was also then distributed to other workers who had the older versions of 
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PROMETHEUS with the incorrect artificial viscosity. The length of time that the bug 

had gone undetected was a testament to the tremendous complexity of the PPM method. 

A.1.2 Introduction 

A supernova remnant (SNR) forms as the ejecta from an exploding star expand into 

the circumstellar medium (CSM). The ejecta, which have initial velocities above 10,000 

km/s, drive a blast wave out through the CSM, producing a forward shock in the CSM, 

a contact surface between the ejecta and the shocked CSM, a region of shocked and 

stagnated ejecta, and a reverse shock in the ejecta. In the first phase of SNR formation, 

this entire structure moves outward. As increasing amounts of matter are swept up, the 

expanding ejecta are decelerated, producing conditions that may favor the growth of the 

Rayleigh Taylor (RT) [104, 1451 and related hydrodynamic instabilities at the contact 

surface. It has been thought that the structure observed in young SNRs, including for 

example Tycho [137, 551 and SN 1006 [123, 1291, and anticipated in 1987A [29], reflects 

in part the development of these instabilities during their expansion. The present paper 

is written to explore whether the structure of SNRs may be enhanced by the Richtmyer 

Meshkov (RM) [130, 1101 instability which occurs as the forward and reverse shocks 

progress through the CSM and the ejecta, respectively. 

The initial, qualitative, one-dimensional (ID) behavior of a SNR has come to be 

understood by analyzing the expansion and the subsequent shock structures as self-similar 

phenomena. The equations for a radial, spherically-symmetric expansion admit self- 

similar solutions (see Ref. [43]). Th e radii of the reverse shock, the contact discontinuity, 

and the forward shock are found to have the same time dependence and to remain in 

a constant ratio to one another. The shocked regions can be subject to hydrodynamic 

instability growth. In the typical case of an RT-unstable contact surface, spikes of denser 

ejecta penetrate forward into the less-dense, shocked CSM. Prom a self-similar, one- 

dimensional analysis, one can determine the linear regime growth rate of the RT instability 

within the pro#ile, either by a local analysis, or by a global analysis which may prove more 

reliable at identifying regions affected by instability (see Ref. [44]). The global analysis 

assumes that the hydrodynamic variables are perturbed throughout the shocked regions, 

and assumes that they can be written in a self-similar form which includes an expansion 

in spherical harmonics and a power-law dependence on time. The exponent in the power 
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law is then iterated until the Euler equations can be integrated from each shock to the 

contact discontinuity while satisfying the boundary conditions at all three surfaces. In 

the global analysis, the forward shock, contact surface and reverse shock can be coupled, 

so that growth at one surface can distort the other surfaces. 

Simulations of RT evolution at the contact discontinuity show multimode spikes that 

initially grow rapidly towards the forward shock, enter the nonlinear regime, eventually 

saturate, and fall back toward the contact layer (see Refs. [44]). This behavior differs 

from the standard nonlinear inverse cascade for steady-state evolution of an RT-unstable 

interface between incompressible, semi-infinite fluid layers [141, 58, 1351. The difference 

in RT behavior in the SNR case is due to three effects. (1) The growth is constrained 

to a finite layer bounded by the forward and reverse shocks. (2) The 1D velocity profile 

between the forward and reverse shocks is not uniform, but rather slowly decreasing with 

radius. The latter effects mean that the kinematic drag felt by the spikes growing radially 

outward from the contact surface increases with the extent of the spike. (3) The shear 

along the spike tips (and hence Kelvin-Helmoltz instability) also increases with the extent 

of the spike. These three effects modify the standard Youngs RT mix width evolution 

[160], where the mix width is ART = aAgt2, Q M 0.05, A = (ph - pl)/(ph + ~1) is the 

Atwood number, h and 1 referring to the heavy and light fluids, respectively, and g is the 

acceleration of the mixing layer. 

The mixing layer evolution for the SNR case is analyzed as follows. If the radius of 

the unstable layer is increasing with R = P, with m < 1, as is thought to be common, 

then g is proportional to tmV2. The penetration depth of the saturated RT turbulence 

is found to be (as just discussed) d - 0.05gt2 = 0.05P = 0.05R. Because the instability 

is located near the contact discontinuity, whose radius is < 0.8R, (from the Chevalier 

self-similar solution), where R, is the radius of the forward shock, the RT turbulence 

is predicted to be confined to a definite volume well behind the forward shock. This 

conclusion is supported by 2D simulations [44]. In the simulations, as the old spikes fall 

back toward the contact surface, new ones rise, with the process repeating itself in a 

dynamic quasi-steady state. A simple explanation is that the dynamics are driven by the 

bubbles, with the spikes simply acting as the repository for the denser material pushed 

out of the way by the bubbles. As bubble merger dynamics sets in [141], old dominant 

bubbles (and consequently their corresponding spike partners) give way to new larger 
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dominant bubbles, which leads to new dominant spikes. As the old spikes are no longer 

replenished with material flowing down around the bubble, they give way, and fall back 

to the contact surface. We believe it is fair to say that the above picture is the standard 

current view regarding the development of young SNRs. 

Jun, Jones and Norman [88] have attempted to address the problem of observed 

protrusions into the forward shocks of SNRs which conflict with this model. They consider 

the development of a SNR with an age of about 500 years. A turbulent RT layer is 

produced by evolving a SNR in the ambient, uniform CSM using ejecta with a power-law 

density profile. The turbulent RT layer is allowed to interact with a random distribution 

of dense and local clouds within a uniform CSM. The clouds were assumed to have a 

density 5 times that of the background CSM, to be randomly distributed in space, and 

to have radii of 0.05 pc. They find that the interaction with the clouds, and the resulting 

vorticity, can at times give the RT spikes sufficient additional energy to distort the forward 

shock. (Previous work with cloud models has included parameterised 1D modeling by 

Dickel et al. [53, 541. This is a promising approach to the explanation of such phenomena. 

We note, however, that it does not explain some other discrepancies in the data, discussed 

below. In addition, we suggest here that the physical system which interacts with any 

clouds may be different from the RT turbulent layer used to date. 

We would like to suggest that the existing analysis may take up the problem of 

instability at too late a stage in the unstable evolution. Before the system of shocked 

CSM and shocked ejecta begins the gradual deceleration that produces RT growth, the 

ejecta and the CSM are first subject to the violent disturbances of the forward shock 

and the reverse shock, respectively. The impulsive acceleration of the shocks subject the 

CSM and ejecta to the RM instability [130, 1101, which Dimonte [57] (p. 614) describe 

as follows. “When a shock encounters a fluid discontinuity, reflected and transmitted 

shocks are generated, which are refracted by any perturbations at the fluid interface. 

The modulated shocks produce pressure variations in the upstream and downstream 

fluids that reinforce the initial interface perturbations and cause them to grow.” The RM 

instability can be viewed as the impulsive limit of the RT instability, in the sense that 

there is an acceleration but that it acts for only a very brief time [130, 1101. Any density 

structures present in the inital SNR system, including modulations in the radius of the 

inner edge of the CSM and the outer edge of the ejccta, are subject to growth by the 
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RM instability. Only later will the resulting turbulence undergo RT growth. However, a 

simulation which begins with spherically symmetric ejecta and CSM, run on a spherical 

grid, may not observe the effects of the RM instability, as the perturbations would have 

to grow from numerical noise and may not grow long enough to be observed. Depending 

on the treatment of viscosity in a simulation, small structures due to noise which might 

otherwise grow by RM instability may be stabilized. 

Indeed, Borkowski [30] encountered the RM instability when treating a non-spherical 

bow shock on a spherical grid in the context of the interaction of Kepler’s SNR with the 

interstellar medium (ISM). They identified the resulting grid scale noise as the source 

of unstable RM growth, and identified that the bow shock might be perturbed by the 

RM instability. They did not, however, evaluate the impact of this process on the earlier 

development of the SNR or on the development of structure and shocks within the bow 

shock. In the realistic case, the ejecta and the CSM are not spherically symmetric. This 

may give the RM instability a very different role. Because the RM and RT instabilities 

scale differently, this leads to different expectations regarding the structures that might 

be observed in the SNR. We explore this in the following. 

Al.3 Theoretical evaluation of penetration depths 

The theory of the RM instability has been significantly advanced in recent years (see Refs. 

[74, 5, 81, 6, 163, 150, 1121 and references therein.) Unfortunately, the theory to date 

has been developed only for incompressible media, and for compressible media which can 

be considered as incompressible because the velocities of interest (eg. bubble and spike 

velocities) are much lower than the sound speed. 

The behavior of RM in compressible media and the behavior of RM.driven by a blast 

wave of rapidly increasing density remain to be studied. Here we first ask what the 

implications of incompressible theory would be for the behavior of the RM instability in 

a developing SNR. Then we discuss the simulations we used to explore the more realistic 

compressible ease and the nonlinear saturation. 

The RM instability occurs whether the Atwood number, A, is positive or negative. 

Here A = (~2 - pr)/(p2 + PI), with the shock propagating from region 1 to region 2. We 

take A < 0 for this discussion, as the ejecta rapidly become more dense than the shocked 

CSM in the typical case. Our qualitative conclusions would also apply for A > 0. When 
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A < 0, a perturbation of [initial] amplitude [~a] q is predicted [III, 1581 and observed 

[57] to grow in the linear regime by the RM instability as 

dq/dt = A*Ulc(7jo + 77;)/2, 

where Ic is the wavenumber of the perturbation and A*, U, and 7: are the post-shock 

Atwood number, interface velocity, and perturbation amplitude, respectively. 

The instability rapidly reaches a nonlinear regime, once the amplitude becomes a 

significant fraction of the wavelength, and this has been an active area of recent study 

[74, 5, 81, 61. In the nonlinear limit, the penetration velocity, u,, for a spike of wavelength 

X becomes u, - -(x/t)*2]A]/(l-]A]), where t = 0 when the shock crosses the interface [6]. 

We take X = 27rR/& where e is the mode number corresponding to X. The corresponding 

lower limit on the penetration depth d for a dominant, imposed perturbation is d = 

log(t/to) . (27rR/L) . 2]A]/(l - [AI). This q uantity can approach or may even exceed 

the position of the forward shock. Physically, the penetration depth for RM cannot 

outrun the forward shock [57], although the perturbation can distort the shock. For a 

distribution of modes, one must consider the competition among the modes, which leads 

to the merging of some bubbles. In this case, theory and simulation indicate [6] that the 

penetration depth of the RM spikes is hs N &(Ut/&)e3, where X0 is the mean initial 

wavelength of the perturbations and 8, increases from 0.4 to 1 as A increases from 0 to 1. 

(The theory was done for A > 0, but one would expect similar results for A < 0). This 

penetration depth can clearly be a large fraction of the shocked layer depth. Note that 

these scalings are very different from those of the RT instability, discussed above. Thus, 

in the environment of an expanding, young SNR, it would appear that at early times the 

RM instability may perturb the medium more extensively than the RT instability. This 

is the case whether a distribution of modes is present or a single mode dominates the 

response, because of a large local perturbation. 

A.1.4 Simplations 

To investigate the degree to which this actually might occur in the compressible and 

radially varying environment of a SNR blast wave, we used PROMETHEUS, a Piecewise 

Parabolic Method (PPM) [154, 471 code, to simulate the evolution of a young SNR in 

two dimensions. We have done a number of simulations, one of which we present here. 
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Figure A.1: 1D density profile at 0.6 y, before the 2D perturbation is applied. The solid 
line shows original density at 0.6 y from the 1D simulation. The dashed line shows the 
altered, 8 times higher density profile inside the reverse shock. The 2D perturbation 
will be applied at the new rise. Also indicated are the positions of the forward and re- 
verse shocks, the contact discontinuity (CD), and the unperturbed circumstellar medium 
(CSM) outside the forward shock. 

We initialized the problem spherically (lD), after Refs. [89, 901 and [48], to correspond 

to a Type Ia SN. The outer 3/7 of the star, of mass 1.4 Ma, has a power law density 

profile p - rem, with m = 8 in the case we present, and the inner 4/7 of the star has 

constant density. The explosion energy of 1051 ergs is deposited as kinetic energy, with 

velocity linearly proportional to radius. The background density is chosen to be uniform 

and equal to 1.67 x 1O-24 g/cm3, and the initial temperature is taken to be 10,000 K 

throughout. We use a moving grid that expands homologously with the forward shock. 

We feed in constant density CSM at the radial boundary above the shock, and simulate 

only the required part of the ejecta, feeding in the exact 1D homologously expanding 

profile at the radial boundary below the reverse shock. We have 200 zones in the radial 

direction in th4e intershock region, and ‘squarish’ aspect ratio zones (Ar = TAO). As a 

check on our methods, we first successfully reproduced the 1D and 2D results in Ref. [89]. 

One would expect that the hydrodynamic code PROMETHEUS would reproduce the 

results from the MHD code ZEUS for this case, as the magnetic field is not dynamically 
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significant here. 

Likewise, following [134], heat conduction and radiation transport are not expected 

to be important during the stages of the SNR we are studying, taking into account the 

expected atomic number, ionization level, densities and temperatures at various times 

(eg. 1, 10 and 100 years.) To study the effects of heat conduction, we estimate the Peclet 

number, the ratio of heat convection to heat conduction for electrons, which dominate 

the heat conduction. We expect magnetic fields on the order of a few PG in a SNR of the 

ages we are studying [88, 901. Using this value, along with the expected atomic number, 

ionization level, densities and temperatures, we can compute expected Peclet numbers for 

magnetized electrons which turn out to be >> 1 during the times of interest, indicating 

that heat conduction effects are negligible. Similarly, we can compare the estimated 

radiation cooling time for the optically thin SNR at these stages, again as functions of 

atomic number, ionization level, densities and temperatures, and find that the radiative 

cooling time is much greater than the age of the SNR at any time of interest, indicating 

that radiation is unimportant. 

The simulation discussed here is motivated by the possibility that structure in the 

ejecta itself might seed RM growth. We start the simulation with the radius of the 

ejecta, R,, equal to 5 X 1Or6 cm, and with equal ejecta and CSM densities at R,. We 

first run the problem in ID with no perturbation, until 0.6 y, by which time a distinct 

reverse shock-contact discontinuity-forward shock profile has developed, with the reverse 

shock, contact, and forward shocks at R, = 1.2 x 1017 cm, R, = 1.27 x 1017 cm, and 

Rf = 1.45 x 1Or7 cm, respectively, as shown by the solid line in Fig. A.l. 

We then perturb the additional ejecta flowing into the system in a way that will initiate 

RM growth. Following a suggestion by G. Bazan, we consider a perturbation in the ejecta 

below the reverse shock [18]. We choose a perturbation radius R, = 1.15 x 1Or7 cm, just 

inside the reverse shock. We then replace the 1D result with the exact homologously 

expanding solution that gives 8 times higher density in the ejecta at R,, as shown by the 

dotted line in&g. A.l. That is, we impose a density rise in the ejecta that is about to 

strike the reverse shock. At this time we map into 2D PR.OMETHEUS. We impose a 

mode C = 24 material perturbation at R,, with To/X0 = 0.1. In separate simulations, we 

also add either a 2% or no zone-by-zone random density perturbation between the two 

shocks, to see how the usual RT seed perturbations (as in Ref. [89]) break the symmetry. 
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We simulate 3 wavelengths of the perturbation. 

Figure A.2 shows the density structure at 4 times during the simulation of the case 

with the added 2% density perturbation. Fig. A.2a is a contour plot of density at 0.6 y, the 

starting time for the 2D simulation, while parts b-d show the same at 7, 10 and 100 years. 

The sinusoidal perturbation’ feeds through the reverse shock and perturbs the contact 

surface, from which spikes develop rapidly, approaching and noticeably perturbing the 

forward shock by about 7 years. The longest spikes grow at the imposed RM wavelength, 

and other spikes and rollups grow from nonlinear effects. By 10 years the spikes begin 

to weaken. By 100 years, the spikes have fallen back toward the contact surface, and the 

intershock region looks very much like the canonical picture, except for persistent regions 

of lower density which originated in the vortices at the tips of the inital spikes (isolated 

white vortices in Fig. A.2d at 100 y.) Th e result looks very similar at all times when 

we have no added random density perturbation (not shown); however, in that case the 

initial imposed symmetry persists slightly longer, and the density fluctuations from the 

spike tips are slightly more sustained and are closer to the forward shock at 100 years. 

In both the 2% and the no random perturbation case, the fine RT and Kelvin-Helmholtz 

structure has noticeably asymmetric features, indicating that numerical noise contributes 

to seeding the fine structure. 

Thus, structure in the ejecta can perturb the forward shock, but only for a limited 

time. It would appear that the ejecta would have to be very inhomogeneous in order to 

continuously perturb the forward shock. 

We have tried a number of other initial conditions, with (1) a material perturbation 

either below the reverse shock or above the forward shock, or at the edge of the initial 

ejecta; (2) both rises and drops in density at the perturbation with (3) density ratios 

between 2 and 8; (4) mode numbers between 16 and 96; (5) both a 2% and no additional 

random density perturbation in the intershock region; (6) values of R, between 5 x 1016 

and 3 x 1Or7 cm. We have also tried a variation of the case presented in detail above, 

in which we replace the perturbation by isolated hemispherical density enhancements 

(like dense isolated ‘mushroom caps’.) The case we have presented gives the most dra- 

matic RM growth; in most cases we have tried, the spikes do not approach the forward 

shock, although there is always considerable early penetration of spikes. The added ran- 

dom density perturbation makes no significant difference in any of the results; the RM 



Figure A.2: 2D density structure at 0.6, 7, 10 and 100 y. 
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perturbation dominates the early growth. 

The initial conditions presented above are quite extreme; a density change by a factor 

of 2 is more realistic for ejecta that has expanded considerably [9]. We conclude that the 

canonical reverse shock-contact discontinuity-forward shock picture is very robust, at 

least to the type of perturbations we have examined here. However, these perturbations 

do produce penetration of the spikes to near the forward shock which endure for a few 

years, and also produce considerable early mixing of CSM and ejecta in the intershock 

region. 

A.1.5 Discussion of observational data 

The RM instability provides a potential explanation for several features in the obser- 

vational data which are difficult to explain in the-standard model. The radio emission 

and radial magnetic fields in SNRS typically extend to the location interpreted to be the 

forward shock. This is the case in Tycho (SN 1572); Dickel et al. [55] show that the radio 

emission and radial magnetic field extend to the location interpreted to be the forward 

shock, even in regions where the x-rays are weak. In SN 1006, the radio [I291 and x- 

ray [123] emissions show the same sharp outer edge, which is interpreted as the forward 

shock. Reynolds and Gilmore note that the bright radio shell corresponds to the sharp 

outer edge of the emission, and that the brightness is apparently not due to interaction 

with a denser external medium, which would result in deceleration that is not observed. 

Dickel et al. [55] suggest that the radial magnetic field may be produced by RT in- 

stabilities along the lines suggested in Refs. [76] and studied recently in Refs. [91] and 

[90]. However, the RT instabilities cannot penetrate to the forward shock (see Ref. [44]), 

as discussed above. Jun [90, 911 have observed the production of radial magnetic fields 

using 3D simulations of RT growth and conclude that “an extra mechanism is required 

to generate radial magnetic fields at the outer shock front”. Our simulations suggest that 

at early times, the RM instability could transport compressed magnetic flux towards the 

outer shock frant, but also indicate that at later times further mechanisms than the per- 

turbations we have considered in this paper would be needed. One such mechanism could 

be the later time growth of longer wavelengths from an initial multimode perturbation [6]. 

Another possible mechanism is a continuous reseeding of the RM instability by clumps in 

the outer parts of the SN ejecta; such clumps could arise from the nonlinear instability of 
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the blast wave accelerating in the steep density gradient of the outer envelope [IO51 and 

references therein.) We suggest that perhaps the brighter radio regions are a consequence 

of increased magnetic field compression and transport by the RM instability, in regions 

whose initial conditions encouraged larger RM growth. 

Seward [137] interpret the x-ray data from Tycho to find the same forward shock 

location, but find evidence that some of the ejecta has penetrated to 0.9 Rs. This is farther 

than RT models [44] predict (at least in two dimensions) but could be a consequence of 

RM. In addition, the x-ray emission from the region near the forward shock appears 

clumpy and not smooth. This could be due to structure in the ambient medium, but any 

such structure would have been enhanced by the RM instability. To infer the structure in 

the medium from the observed clumpiness, one must in some sense deconvolve the effect 

of RM. 

A.1.6 Future work and conclusions 

Several issues should be addressed in future work on this subject. Fundamental issues 

include in what ways the RM instability differs in compressible and spatially varying 

media from the RM instability described by the standard incompressible models with 

fixed Atwood number. Other work should include quantifying the behavior of the RM 

instability under the range of conditions believed to be present in various SNRs, includ- 

ing, for example, stellar-wind profiles of the CSM appropriate to the explosion of red 

supergiant or blue supergiant stars. An evaluation of the observable emissions produced 

by saturated RM structures should also be undertaken. In addition, it would be valuable 

to undertake extended simulations to explore the effect of deeply structured ejecta on 

the forward shock. One option would be to use a calculation of the structures produced 

during the stellar explosion as an input to the remnant calculation. This all may lead to a 

clear conclusion as to the degree to which the RM instability can be used as a diagnostic 

of the irregular structures present in the explosion and/or the pre-SN CSM. 

Kepler’s S&R offers the potential opportunity to develop and test models of these 

effects. The observed data from this SNR provide support for a model in which the motion 

of this SNR in the ISM has produced a significant bow shock [15, 30, 311. Observations 

of the SE edge of this remnant can probe the interaction of the blast wave with the bow 

shock. The structure of the reflected shock within the blast wave can determine whether 
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or not the blast wave and the shell are smooth, and may provide clues as to the type of 

structure in each. These issues can potentially be addressed by study of this object with 

the AXAF observatory. 

The forthcoming collision between the developing remnant in SN 1987A and the cir- 

cumstellar ring there may also provide a definitive opportunity to determine what the 

structure of the shocked shell is [143, 1081. The much-denser ring will cause definite 

reflected shocks within the SNR shell [29]. Their timing and structure will show whether 

or not there is a smooth, unstructured layer behind the forward shock. Further study of 

this specific interaction would be warranted, SO as to better guide the observations. 

We note that the RM instability requires only small spatial variations, on the order 

of a few percent, in the shape of the ejecta or the CSM relative to the blast wave, 

to generate large structures. Such perturbations are essentially certain to be present. 

Clouds, meaning local clumps of much denser material, may be present and if so will have 

consequences similar to those described in Refs. [90] and [91], although the structure which 

interacts with the clouds will be the consequence of both the RT and RM instabilities. 

Blondin et al. [27] have considered the case of a CSM with a density variation at the 

poles, and find that strong protrusions of the intershock region can occur at the poles, 

which may explain protrusions in VLBI radio images in the remnants 41.9+58 in M82 

and SN 1986J. The protrusions seen in Ref. [27] are large scale and dramatic, but suggest 

that RM instability seeded by initial conditions, and other effects such as the chaneling 

effect in [88] and some variant of the above protrusion effect, may occasionally combine 

fortuitously to produce smaller scale protrusions into the forward shock. 

In conclusion, it appears as though the Richtmyer-Meshkov instability, because it acts 

first, may amplify the nonuniformities present in the material which forms a SNR. All 

of the structures observed in a SNR show us the post-Richtmyer-Meshkov environment. 

This instability could alter the subsequent development of the SNR, including the devel- 

opment of Rayleigh-Taylor instabilities. Clumps in the emission throughout the forward 

shock and radial magnetic field structures are two of the likely consequences, though 

our work would indicate that continuous reseeding of the Richtmyer-Meshkov instability 

would be necessary to produce this result. It may be that the ejecta are always highly 

structured, due to instabilities during the explosion, and/or that the CSM is structured 

due to variations in its source. In this case, the combined impact of Richtmyer-Meshkov 
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and Rayleigh-Taylor instabilities may imply that the standard model of a SNR should be 

altered to show a forward shock that is structured througout. 

I 



1.28 

APPENDIX B 

CONTEMPORARY WORK IN LASER ASTROPHYSICS 

In this Appendix we review some contemporary work in laser astrophysics. Previous 

work was described in Section 1.5. 

B.l Density gradient experiments 

In the initial model of SN 1987A shown in Figure 2.1, we note that in addition to the 

sharper changes in density at the O-He and He-H interfaces, there is an overall density 

gradient in the layers of the star (see the discussion in Section 2.2). A shock moving 

down such a density gradient will proceed faster than if the density were constant; the 

fluid velocities behind the shock will also be higher. In the laser experiments discussed 

in this chapter and in Chapter 4, we have used targets with layers of constant densities. 

There are various ways of producing density gradients in laser targets. Using one such 

method, Romain Teyssier and collaborators will do a campaign of shots at the OMEGA 

laser in June, 1999 to study shocks moving in density gradients in planar targets [147]. 

The design of the target is shown schematically in Figure B.la. An indirect x-ray laser 

drive is created by illuminating a thin Au foil with 3 kJ of Omega laser light. This 

indirect laser drive volumetrically heats one side of a CH target, creating a low-velocity 

density gradient on that side. Meanwhile, other Omega beams illuminate the other side 

of the CH, sending a strong shock through the CH which then moves down the density 

gradient. The evolution of the density in the target from a HYADES simulation of the 

target is shown in Figure B.lb. The design of the target and the simulation shown were 

done by Rom$n Teyssier. 

It is possible that at larger lasers like NIF, another effect of the density gradient on 

the shock could be observed. AS the shock moves down the gradient, it heats up, that 

is, the fluid immediately behind the shock becomes hott,er as the shock moves into less 

and less dense material [152]. With a strong enough shock and a steep enough density 
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Figure B.l: Density gradient experiment. (a) Schematic of experiment. (b) Density vs. 
position from 4D HYADES calculation. The heavy solid line is density vs. position at 
t = 0.1 ns. The light solid lines show the formation of the density gradient, at t = 0.5, 1, 
and 2 ns. The dashed lines show the shock moving down the density gradient at t = 3, 
3.5 and 4 ns. 
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gradient, such a shock could become radiative. A possible laser experiment would involve 

producing such a radiating shock and measuring its temperature. 

B.2 SNR ring experiments 

As the ejecta from SN 1987A expand after the explosion, they encounter first the circum- 

steller medium (CSM) which surrounded the progenitor star and then the central ring of 

the famous SN 1987A ring structure [29]. A Hubble Space Telescope image of the the SN 

1987A ejecta and ring structure is shown on the right side of Figure B.2a. RM and RT 

instabilities occur as the ejecta encounters the CSM and the ring (see Appendix A for 

discussion of simulations of RM instabilities in SNRs.) 

An experimental effort has been made at the Nova laser to investigate the hydrody- 

namics of these encounters [61, 601. A schematic of the experiment is shown in Figure 

B.2a and a Hubble Space Telescope image of the SN 1987A ejecta and the ring structure 

is shown in Figure B.2b. In the experiment, a plastic ‘plug’ is mounted in a window in 

the hohlraum, which is an analog to the progenitor of SN 1987A. The x-ray drive from 

the hohlraum causes a shock wave to propagate through the plug and break out the back 

side, sending a shower of ejecta off the backside. The ejecta has a power-law density 

profile, similar to the ejecta from a SN. This ejecta is allowed to cross a void and then 

interact with a low-density foam, which is an analog to the CSM. Simulations and data 

appear to suggest formation of an SNR-like double shell structure of shocked ejecta and 

foam between a reverse and a forward shock, as shown in Figure B.2c by a spatially 

averaged, time streaked radiograph of optical depth in the target. Figure B.2d shows the 

averaged optical depth at t = 6 ns. RM and RT instabilities occur at the CD between 

the ejecta and foam. Preliminary data from experiments in which a ripple is placed on 

the foam surface facing the void to seed the RM and RT instability appear to show the 

formation of bubbles and spikes at the ejecta-foam CD [70]. In further experiments, the 

entire assembly of shocked ejecta and foam will be allowed to collide with a further piece 

of plastic, an a%alog to the central ring structure of SN 1987A. The actual collision of the 

SN 1987A ejecta with the central ring is expected to produce a strong display of x-rays, 

giving astronomers information about the ejecta, ring and forward shock structures and 

the evolution of the collision [29]. 
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B.3 Blast wave and jet experiments 

Two other examples of astrophysical experiments on large lasers are the blast wave ex- 

periments at the Falcon laser at LLNL, and the radiative jet experiments which have 

been carried out recently at the Nova laser and at the Gekko laser (see Section 1.4.2.3) 

in Osaka, Japan. 

A schematic for the Falcon blast wave experiment is shown in Figure B.3a, and results 

from the experiment are shown in Figure B.3b-c. The figures are reproduced from [138]. 

The goal of the experiment was to observe blast waves in high-temperature cylindrical 

plasmas, establishing a testbed for the study of astrophysically-relevant shock physics. 

Gas targets of Ar, N2 and Xe at densities of 1Ol8 cmm3 were irradiated with a 30 fs 

Ti:sapphire laser. Atomic clusters form in the gas jets; the clusters strongly absorb the 

laser light, creating the high temperature plasma. The electron density was measured 

by Michelson interferometry, and the creation of the cylindrical plasma of dimensions 50 

pmx 5000 pm was observed, using F/15 optics. 

A strong blast wave was observed in the electron density profiles. In the case of Xe 

gas, shown in Figure B.3b, a radiative precursor was observed ahead of the shock; a 

precursor was not seen for Nz, and was seen for Ar. A radiative precursor is expected for 

the higher atomic number (Z) gases. The trajectory of the blast waves were compared to 

simulations using HYADES (see Section 1.6.1). The simulations predicted a Sedov-Taylor 

expansion of the blast wave, when radiation transport was not included in the simulation, 

but overpredicted the blast wave velocity in this case. With radiation transport turned 

on, the simulation reproduced the blast wave trajectory; this suggested that radiative 

cooling of the blast wave slowed the blast wave. The thin shell Vishniac instability, seen 

in Xe in the Grun et al. [75] experiments described in Section 1.5, was not seen in the 

Falcon experiments. The researchers concluded that the effective adiabatic exponent y 

was closer to 5/3 than to the 1.2 threshold required for the Vishniac instability. 

Farley et al. [65] have recently performed a superb radiative jet experiment at the 

Nova laser. H&h Mach number radiatively-cooled jets are observed throughout our galaxy 

[65], and proper modeling of the radiation is required to numerically simulate such jets. 

A schematic for the radiative jet experiment is shown in Figure B.3. A conical dimple is 

machined in a target of high-Z material. The inside of the cone is illuminated in direct 
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Figure B.3: Falcon laser blast wave experiment. (a) Schematic of experiment. (b) Elec- 
tron density p”rofile for Xe gas, showing radiative precursor. (c) Blast wave trajectory for 
Xe gas, showing effect of radiative losses. Figures reproduced from [138]. 
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Figure B.4: Radiative jet experiment. 

drive by the laser beams, which produces a blowoff that crashes in on-axis and jets out 

along the axis. The jet becomes hot enough to radiate, and then cools radiatively and col- 

lapses. Clear observations of the high speed jet and its radiatively cooled core were made, 

and were in good agreement with sophisticated numerical simulations. This experiment 

is an excellent test of radiation hydro codes; simulations of the experiment will require a 

proper treatment of radiation, which is not needed for the hydrodynamics-dominated ex- 

periments we have described in Chapters 4 and 5 and in this chapter. Similar, extremely 

succesful experiments with a number of different target materials have recently been done 

at the Cekko laser (see Section 1.4.2.3) at Osaka University. 

4 
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