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Abstract 

A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic 

mechanical properties to basic physical laws governing dislocation mobility and related 

interaction mechanisms, has been under development. In this model there is a set of critical 

reactions that determine the overall results of the simulations, such as the stress-strain curve. 

These reactions are, annihilation, formation of jogs, junctions, and dipoles, and cross-slip. In this 

paper we discuss these reactions and the manner in which they influence the simulated stress- 

strain behavior in fee and bee metals. In particular, we examine the formation (zipping) and 

strength of dipoles and junctions, and effect of jogs, using the dislocation dynamics model. We 

show that the strengths (unzipping) of these reactions for various configurations can be 

determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon 

of hardening in metals subjected to cascade damage dislocations. The microstructure investigated 

consists of small dislocation loops decorating the mobile dislocations. Preliminary results reveal 

that these loops act as hardening agents, trapping the dislocations and resulting in increased 

hardening. 



1. INTRODUCTION 

Constitutive modeling of deformation of metals under extreme loading conditions depends 

critically on our understanding of the relationship between the macroscopic mechanical 

properties and the underlying dislocation sub-structures. Such structures could be highly 

heterogeneous and include dislocation cells, slip bands, microshear bands, persistent slip bands 

and dislocation tangles, all of which are critical to material properties [l-7]. Understanding how 

these structures form and evolve and how they affect work hardening is, perhaps, one of the most 

difficult tasks which is still rife with controversy. The main difficulty has been in dealing with 

large numbers of dislocations. For example, Kuhlmann-Wilsdorf [7] has proposed that the 

structures can be understood as a progression of low energy thermodynamic states with 

something like a conventional phase transition taking place between carpet structures and 3D cell 

structures at the end of Stage II. However, Holt [S] proposed that dislocation structure evolution 

can be viewed in the spirit of spinodal decomposition by the introduction of local densities of 

diffusing dislocation populations. This approach has been adopted in later models. In particular, 

Walgraef and Aifantis [9] developed a model of dislocation patterning to describe the evolution 

of ordered structures in chemically reacting systems. In this model, several types of dislocation 

populations are introduced as density functions of position in space, with the evolution 

determined by diffusion and reaction terms. Although these reaction-diffusion schemes have 

been successful in modeling 2D dislocation patterns, they have a number of difficulties 

associated with determination of model parameters and they do not yet address realistic 3D 

dislocation configurations. 

By viewing the dislocation structures problem as a dynamical system, one can establish a 

number of discrete models to understand the origin of dislocation structures in deformed crystals. 

Although the method was initiated over a decade ago, most of the original models were two- 

dimensional and consisted of periodic cells each with dislocations of infinite length. These 2D 

models have provided some understanding of rules of interaction and glide mechanisms of 

dislocations. However, since these 2D models are based on the idealization of infinite dislocation 

lines, a number of important mechanisms and dislocation interactions are either not included into 

these models or accounted for in an implicit manner at best. These mechanisms include, cross- 

slip, junctions, jogs, multiplication by Frank-Read sources, and line tension associated with self- 



energy. These difficulties have been addressed in a pioneering three-dimensional dislocation 

model which was developed by Kubin and his co-workers [lo] and Canova, et al. [ 111. Their 

model was based on the discretization of dislocation curves into succession of pure edge and 

pure screw dislocation segments of fundamental length, corresponding to the discretized lattice. 

More recently, a new approach for 3D dislocation dynamics has been established by Zbib, Hirth 

and Rhee [ 12-141. In this approach arbitrarily curved dislocations are decomposed into piecewise 

continuous arrays of mixed straight segments in a continuum crystal and long range interactions 

are treated using super-dislocations, allowing for the treatment of large dislocation densities, 

The 3D discrete dislocation model (micr3d) developed at WSU simulates the dynamical 

behavior of large numbers of dislocations of arbitrary shapes, interaction among groups of 3D 

dislocations and, therefore, the behavior of prescribed cell walls. In the model there are a number 

of rules and models for short-range reactions which, in turn, have a decisive effect on the 

predicted hardening and evolution of the structure. These issues have been, recently, addressed 

by Rhee et al. [ 131 who developed numerical rules for implementation into DD models to treat 

short-range interactions, by introducing a critical force criterion. In this paper, we investigate 

these reactions and corresponding mechanisms that contribute critically to work hardening 

during deformation using the dislocation dynamics model. The main issues we address are 

junction formation and strength through the process of “zipping” and “unzipping”, jog formation 

and strength, and dipole strength. It is shown that the full dynamics of these interactions can be 

explicitly captured via dislocation dynamics simulations, where the dynamics of these 

configurations is determined by direct calculation of driving forces and internal stresses. The 

simulation model is then utilized to provide possible explanations of irradiation induced 

hardening in metals subjected to cascade damage. 

2. BASIC EQUATIONS 

The complete description of the 3D dislocation model (DD) can be found in [ 12-141. Here 

we give a brief outline of the main features of the model and basic governing equations. The 

main problem is that of nonlinear interaction of large number of curved dislocations of arbitrary 

shapes. The crystal is treated as a continuum with dislocations restricted to move on 



crystallographic slip systems. The model has been developed for both fee and bee single crystals. 

For bee single crystals we consider the { 11 O}<l 1 l> and { 112) ~11 l> slip systems which are the 

most close packed slip systems and both are active at low temperatures. The (123}<11 I> slip 

systems are less close packed and become active at high temperatures. For fee single crystals, 

{ 111)~ 01 l> slip systems, and hence glissile dislocation lines can only lie on { 1111 planes. 

Each plane contains a number of dislocation curves and loops whose configurations are 

approximated by a series of straight segments of mixed character as illustrated in Figure la. 

There are a number of advantages in using mixed segments of arbitrary lengths and orientation: 

1. Segment length depends upon the local curvature. Dislocation curves with small curvature 

are segmented with long segments, while those with large curvatures are meshed with shorter 

segments (typical segment size could vary from 50 b to a few hundred b, where b is the 

Burgers vector). 

2. With mixed segments of arbitrary length and orientations, dislocation interactions such as 

junctions with any arbitrary configuration can be formed. 

3. Mobility and strength of dislocation reactions, such as jog motion through dislocation bow- 

out at the jog and junction destruction by the process of “unzipping” can be readily captured. 

4. The stress field of arbitrary mixed straight dislocation segment in an isotropic medium is 

given in a closed form. 

2.1 Long Range Interaction and Self-Force 

The stress field of a finite dislocation segment is given by Hirth and Lothe [15] and deWit 

[16]. The interaction force per unit length (Peach-Koehler force “PKfirce”) a given segment 

exerts on a remote segment is evaluated at the center of the remote segment. This approximation 

is valid for two segments that are far apart from each other since the variation of the interaction 

force along the segment length is very small. For adjacent segments forming a bend the 

interaction force and self-force varies significantly along the dislocation line; it is singular at the 

bend and decays as I/r. Therefore, we treat this case in a more rigorous way as described by 



Zbib et al. [12]. The solution for the total interaction force between the two adjacent segments 

shown in Figure 2b is developed along the same lines described by Hirth and Lothe [ 151 for a 

dislocation bent with the same Burgers vector. The two segments could belong to the same 

dislocation line with the same Burgers vector or they could be at a junction node with two 

different Burgers vector. The result is an average glide force per unit length given by 

The normal force component out of page is given by 

F,,= ’ 1n-Q byA 
vsine + c0se - 1 

44-v) Ps sine + b&2 
c0se - co28 - vsin2e 

sine 

+ bz,b,,2 (1 - v )(l - c0se)+ b,,,b,,v(2 - c0se) 
- b,,b,,,vcose + b,,b,,,cos~ + b,,b,,,vsine 1 

(2) 

Here p is the elastic shear modulus, v is the Poisson’s ration, L is the dislocation segment, and 

p is the core parameter. For the case of general bend of two segments only (ignore segment “3: 

in Figure 2a) b, = b2 and equations (1) and (2) reduce to the expressions given in [15]. In 

passing we emphasize that equation (1) accounts explicitly for the self-force which gives rise to 

the so call “line tension”. 

2.2 Dislocation Mobility 

The motion of each dislocation segment is determined by first evaluating the total PKforce 

which arises from all other dislocation stress fields and the applied stress, such that 
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where N is the total number of dislocation segments, 07 is the stress tensor from a remote 

segment j, oa is the applied stress tensor, ci is the line sense vector, and q,i+, and 6 i-, are the 

interaction forces between segments i and i+ 1, and i and i-l, respectively, as computed from 

equations (1) and (2). The effective shear stress rei on segment i is given by 

where fgi =pi. ,I th ‘V. is e magnitude of the glide force per unit length with Ci being a unit vector in 

the direction of slip, and D/. is the friction stress arising from lattice damping effects. The 

velocity vector of segment i is given by vi = vgi vAi where the basic relation for vgi is discussed 

below. 

The relationship between the glide velocity and the glide force per unit length (or effective 

shear stress) is temperature-dependent. At high temperatures, dislocations (pure edge, pure 

screw, and mixed) move by the phonon drag mechanism and the driving effective force is 

athermal. There are a number of relations for the dislocation glide velocity vg , including 

relations of power law forms and forms with an activation term in an exponential or as the 

argument of a sinh form. Often, the simple power law form is adopted for expedience, e. g. 

vg = v, 0,/-q )” . In a number of cases of pure phonon/electron damping control or of glide 

over the Peierls barrier a linear form of equation (l), m  = 1, predicts the results very well. The 

linear form has been theoretically predicted for a number of cases as reviewed by Hirth and 

Lothe [15] leading to 



m’+,, + vglAkf, = Fg; i = e (for edge/mixed dislocation), 

or s (for screw dislocation) ’ 
(5) 

where rn* is the effective mass and Msi is the dislocation mobility and, in general, it dependence 

on the character of the dislocation. Generally, Mgi could be, among other things, a fuction of the 

angle between the Burgers vector and the dislocation line sense, especially at low temperatures. 

In bee single crystals, at low temperatures a pure screw dislocation has a rather complex three- 

dimensional core structure, resulting in a high Peierls stress which is overcome by stress-assisted 

thermal activation [12]. This leads to a relatively low mobility for screw dislocations while the 

mobility of mixed dislocations is very high [ 171. 

In a more general treatment, the inertia term should be included in equation (6). However, 

recent studies have shown that the rise time for a dislocation to reach a steady state is on the 

order of 10-i’ s for a dislocation velocity below 0.4 times the shear-wave velocity [18]. A typical 

time step in computer simulation is of the same order, making it possible to neglect the inertia 

term, especially for low mobility dislocations in bee metals. This inertia term, however, plays an 

important role for fast moving dislocations in fee metals where the mobility is a few orders of 

magnitude higher than that in bee. 

The result of the above formulation is a set of nonlinear first-order differential equations 

governing the motion of the dislocation segments. The motion of the dislocations gives rise to 

plastic strain Dp and spin @  which are calculated from 

(6) 

where ei is the segment length, vgi is the segment, bi is the Burgers vector, ki is the sense vector, 

and V is the volume of the simulated crystal. 

2.3 Short Range Interactions 

For short-range interactions basic theories, which describe the underlying physical 

mechanisms at the core level, may be rigorously included into the 3DD model. Such an approach 



may be important when investigating the local interaction between two dislocations over small 

distances (close to the core). However, this approach is not desirable numerically or even 

important when dealing with relatively large numbers of dislocations on a large scale (1 O’s of 

w ). It is more numerically efficient to develop rules based on a rigorous investigation of the 

two-dislocation interaction problem. Then, we implement these rules directly into the 3DD 

model for large-scale simulations. Therefore, in [ 131 we developed numerical rules for 

implementation into the 3DD model to treat short-range interactions. These rules are: 

Rule 1: Critical force criterion “F ? F” ” for short-range interaction. 

Rule 2: Critical force criterion for annihilation. 

Rule 3: Critical-angle criterion for junction formation;8,, 5 8,; . 

Rule 4: Critical-angle criterion for jog formation; 8,, ? 6Jg. 

Rule 5: Critical-angle criterion for jog strength;e, 5 ei”gS . 

Here 8,, is the angle between two dislocation segments, 8, is the bow-out angle at a jog, and 

e;,&“,and8? J@ are the critical values for junction formation, jog formation and jog strength, 

respectively. Each of these rules involves a critical value that determines the interaction. We 

suggest that numerical values for 6;” and eTg should be determined from a rigorous investigation 

of the two-dislocation interaction problem, similar to those performed by Huang et al [19] for the 

dipole problem. Values for the critical force, jog strength, as well as dislocation mobility maybe 

quantified explicitly by means of simulations at the core level, such as MD simulations [20]. 

These simulations could be very extensive since one would have to examine a number of 

possible combinations of Burgers vectors and slip planes. 

3. BASIC REACTIONS AND STRENGTHENING MECHANISMS 

(In the following discussion we consider the deformation of a single crystal Ta at room 

temperature for which b = 2.86t10-‘0m, p = 7OJGPa, V = 0.339, 0~ =~J&IO-’ P ). 



3.1 Junction Formation - Zipping 

The process of dislocation junction formation has been addressed schematically by many 

authors, but no quantitative analysis has been performed except by the recent work of Bulatov et 

al. [21]. We study this phenomenon using the DD dislocation dynamics model. The process 

begins when two attractive dislocations gliding on intersecting planes (Figure 2a) meet at the line 

of intersection and combine if the reaction is favorable (Figure 2b). In the DD simulations this is 

captured through explicit evaluation of the system dynamics, i.e. there is no need to check if 

Frank’s rule (i.e. 16, + b2 I2 < (4 I2 + lb, r ) is met before combining the segments, If the two 

segments are attractive (Rule 1) and their energy would be at a minimum by forming a junction, 

they would approach each other, align themselves into a parallel configuration (Rule 3), react 

and form a junction. Once initiated, the junction extends along the line of intersection by the 

process of “zipping” as anticipated by the Friedel-Saada model [22] (Figure 2~). The 

configurations shown in Figures 2a-h and 3a-b are typical examples of junctions formed using 

DD simulations. 

3.2 Junction Destruction - “unzipping” 

The extension or destruction of the junction takes place by the motion of the dislocationnode 

at the triple point along the line of intersection as anticipated by the Freidel-Saada mode1[22] and 

the recent MD simulations of Bulatov et al. [21]. This process is captured by DD simulations as 

shown in Figures 2d-f and 3a,b. Thus, as also pointed out by Bulatov et al [21], the force driving 

nodal stacking-fault energy determines the strength and fate of the junction. 

The process of junction formation and destruction is a balance between applied stress, 

dislocation interaction forces and core energy around the junction node. As the reversed stress 

increases to a critical value the forces on the dislocation nodes increase and move the nodes 

towards each others along the line of intersection. In the simulation, once the junction is formed 

and reaches a stable configuration as shown in Fig. 4a, the applied stress is reversed 

incrementally. Due to the line tension effect, a higher stress is required to overcome the elastic 

interaction energy and core energy to unzip the junction. Figure 4b shows the effect of line 

tension on the critical stress to unzip and break a junction. We can deduce from the figure that 

for a longer dislocation branch from the source (L) less force is required to overcome the elastic 



energy barrier for the unzipping process to occur. This is due to the fact that the force associated 

with line tension is larger with larger “L”, resulting in higher self-force at the junction node. 

3.3 Jog Strength 

Jogs can move by creating point defects such as vacancies or interstitials. The strength of 

these defects is balanced by the total line tension of two adjacent segments around a jog, leading 

to the following expression for the critical bow-out angle OlgS for jog to move [ 141 

where W is the interstitial or vacancy formation energy. To investigate the effect of the critical 

jog angle on the corresponding critical stress for jog motion, we carried out DD simulations for 

the configuration shown in Figure 5. The result is obtained by considering a simple Frank--Read 

source with a jog located in the middle. For a given eJgS the stress is increased incrementally 

until the jog begins to move. Figure 4a shows a snapshot of the simulation result after the jog 

has moved from its initial position. As the critical angle decreases, higher stress is required to 

move the jog as shown in Fig. 5c. However, further decrease in the angle (less than 60 degrees) 

does not result in a significant increase in the critical stress. This is because once the bow out 

reaches the unstable configuration as in the Frank--Read source, less stress is required for the 

dislocation to wrap around the source. In the absence of a jog, the critical stress required to 

bowout a Frank--Read source of length 6000b or 3000b is 11 MPa or 23 MPa respectively. This 

value is, indeed, the minimum threshold for the critical stress to bowout the Frank--Read source 

with a very weak jog, corresponding to a critical jog angle approaching 180 degrees. 

3.4 Dipole Strength 

Although models describing the dipole strength are available, the dipole is assumed to be 

infinitely long. In our approach, dipole break occurs naturally if the stress required to cause it to 

unzip apart is sufficient. Consider, for example, the dipole which is formed by the bow-out of 

dislocations from Frank-Read sources shown in Fig. 6a. The strength of the dipole depends on 



the normal separation h and the length of the distance from dipole position to the dislocation 

endpoint d where the dislocations emanate. 

Figure 6b shows the critical stress to unzip a dipole as a function of the normal separation 

and the separation between the original sources. For a constant dipole separation h, dipole with a 

smaller value d requires higher stress to unzip it than the case with larger distance. This is due to 

the line tension from the dipole to the pinning point. For larger distance of d the curvature of the 

dislocation at the dipole position is larger. This, in turn, results into a larger line tension, making 

it easier to unzip the dipole, similarly to the case of junction unzipping. Furthermore, we note 

that, due to the line tension, the critical shear stress to break the dipole is much smaller that that 

predicted for the case of two infinite dislocation segments which is given by 

7, = NJ 1 
8x(1-v) d (8) 

4. DOUBLE SLIP DEFORMATION 

In this section we present typical results of the deformation of single crystals. Figure 6 

shows a cubic cell of size 10~. In this case, the material is simulated is single crystal Ta whose 

properties are given in Section 3. The crystal contains 50 Frank-Read source distributed 

randomly on the two slip planes (110) and (110) as shown in Figure 6. The size of the 

dislocation sources varies from 5000b to 8000b. This gives an initial dislocation density of 10’ ’ / 

m2. The load is applied in the [ 1001 direction with a constant strain rate of 1 O/ s. The resolved 

shear stresses on both planes are equal, activating both slip systems. The mobility of edge and 

general dislocations is lo2 / (Pa. s) and that of screw character is assumed to be smaller by one 

order of magnitude. 

A snapshot of the dislocation structure after 163,000 iterations is shown in Figure 7. As a 

result of dislocation intersections, many jogs and junctions form and their total number increases 

with further deformation (the total number of jogs in Fig. 7 is 184). The simulation is performed 

for a jog critical angle (strength) of 120 degrees. A typical stress--strain curve is shown in Figure 



8. We can be deduce from the figure that significant strain hardening occurs as a result of 

formation of jogs and functions. The dislocation density in Figure 7 is 4.3x101’/m2. 

Figure 9 shows results obtained for a single crystal Molybdenum deformed at room 

temperture. The size of the simulation cell is 301-w. For MO: b = 2.725+-iO-‘” m, lo = 123 G&, 

v = 0.305, cry = 3+-lO-‘p . The mobility of edge and general dislocations is lo3 / (Pa. s) and 

that of screw character is assumed to be 25 /(Pa.s). This estimate is based on the experimental 

results of Prekel and Conrad [23]. The low mobility of the screw segment results in a dislocation 

structure dominated by extended screw dislocations consistent with typical TEM results [23]. 

5. Irradiation Induced Hardening 

Finally, we consider the problem of irradiation induced hardening problem in alloys 

subjected to cascade damage. In order to illustrate the possibility of the DD simulation in 

providing rigorous understanding of this phenomenon, we consider the defect structure in Cu. 

The structure consists of prismatic dislocation loops resulting from collapse of vacancies or 

interstitials [24-291. The main issue we look into is the phenomenon of increased yield stress 

resulting from radiation. The subsequent phenomena of yield drop and localized deformation 

will be investigated later. 

As pointed out by Trinkaus et al. [28], the irradiated induced hardening cannot be 

rationalized in terms of conventional dispersed hardening. However, this phenomenon may be 

understood in terms of cascade induced source hardening in which the dislocations are 

considered to be locked by the loops decorating them. Figure 10a shows a dislocation decorated 

by loops as described in [28]. For an infinite dislocation, the critical stress to unlock the 

dislocation is approximated by [28] as 

p b-d2 
ou z 0.069-- - d 1-VL yJ (9) 

For Cu with CL= 55 Gpa , v = l/3 , L=200 b, d/y = 3/2, equation (10) yield G,, = 61 MPa-. 

However, when we consider a finite dislocation pinned at both ends as in Frank-Read Source, the 



critical stress required to unlock the dislocation will depend upon the dislocation length as well 

as the loop structure. This is shown using the DD simulation and the result is given in Figures 

1Oc and 10d. In Figure 1Oc the dislocation becomes unstable when the stress reaches 100 MPa. 

In this case the dislocation is not decorated by loops. However, when the dislocation is decorated 

with loops the yield stress increases to 130 MPa. The reason the stress obtained from the DD 

simulation is higher that that obtained by the simple model is due to the line tension. 

The results just presented illustrate the basic mechanism of hardening as captured by the DD 

simulation. Full analyses with large dislocation densities and various distributions are currently 

under way. Typical results are shown in Figures 11 and 12. In Figure 11 we show a periodic 

distribution of loops decorating dislocations with a loop density of 1 019/m3. For random 

distribution of loops, the dislocation percolates around the obstacles as shown by the DD 

simulation given in Figure 12. Typical predicted stress-strain curve is shown in Figure 13. 

Detailed analysis along these lines are now underway and will examine the effect of radiation 

dose (loop density) on the initial yield stress, yield drop and localization. 

6. CONCLUSIONS 

Basic dislocation mechanisms, which contribute to yielding and strain hardening in metals, 

have been investigated using dislocation dynamics. These mechanisms include, dipole, 

dislocation intersections (junctions and jogs formation), and dislocation-defect interaction 

(cascade damage). These mechanisms are studied according to DD rules and models that have 

been developed to treat short-range reactions in bee and fee metals. We have shown that these 

mechanisms have on the overall stress-strain behavior of metals has been illustrated. The result 

suggests that the DD simulation model provide a very valuable tool for investigating critical 

dislocation phenomena that control plastic deformation and hardening in metals. This type of 

microscopic modeling of deformation provides a natural transition from the atomic scale to the 

continuum crystal scale. It is suggested that, while MD simulations may provide needed rules of 

dislocation dynamics and interaction based on fundamental principles, DD simulations provide 

the most rigorous means for transmitting the influence of these critical mechanisms from the 

dislocation length scale to the macroscopic scale. 
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Figure 1. a) Discretization of a dislocation curve, b) Dislocation bend or junction. 



b) initiation 

e) unzipping f) Breaking 

I 

Figure 2. a-b) Junction formation “zipping” with stress of 20 MPa applied in the [OOl] direction. 

d-f) Junction destruction “unzipping” with reversed stress (-30MPa). 

Dislocation “1” : bl &[il l] (110) ; dislocation “2”: bl &[l 1 i] (170) . Sessile junction is in 

the [OOl] direction with Burgers vector 2b / &[OlO] . 
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Figure 3. a) Formation of partial junctions and unzipping with stress increased to 50 MPa (not 

reversed). b) A pileup of dislocations at a fully extended junction. 



Figure 4. a) Fully extended junction formed as in Figures 2a-c, then the stress is reversed 

incrementally until the junction is completely destroyed as in Figure 2f. b) The corresponding 

critical stress to break the junction as a function of “L” 
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Figure 5. a,b) Pinned dislocations with jogs. c) Critical stress required to bow out and propagate 

the jogged dislocations as a function of jog critical angle (strength). 



Figure 6. a) Two dislocations with opposite Burgers vectors emanating from two Frank- 

Read sources on parallel planes separated by distance “h”, forming a dipole “lock” at distance 

d/2. B) Critical stress to unzip the dipole. 
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Figure 7. a) DD simulation of double slip deformation in Ta, b) [OOl] view, c) [OlO] view. 
Simulation cell size = 10 p 



Figure 8. Stress-strain curve as predicted by the DD simulation of double slip deformation, 

resulting into the formation of jog and junctions and yielding strain hardening. 



Figure 9. a) DD simulation of double slip deformation in MO, b) [l lo] view. 
Simulation cell size = 30~. 
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Figure 10. a) Prismatic dislocation loops decorating a mobile dislocation in Cu. b) Side view 

showing b= stand-off distance, d=30 b is the loop size, L=200 b ). c) Dislocation propagating 

from a Frank-Read Source and is not pinned by dislocation loops. d) Dislocation propagating 

from a Frank-Read Source and is pinned by dislocation loops. 



Figure 11. Simulation of dislocations decorated by dislocation loops in Cu. Cell size = lop, 

loop density = 1 019 / m3 . 
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Figure 12. Dislocation percolation around loops. The stand-off distance between the plane of 

the dislocation and the plane of the loops is 5 b. 



Figure 13. Predicted stress-strain curve showing the effect of dislocation loops in irradiated 

materials (Cu) on yield stress. 


