
UCRL-JC-134161 
PREPRINT 

Least-Squares Streamline Diffusion Finite 
Element Approximations to Singularly 

Perturbed Convection-Diffusion Problems 

R.D. Lazarov 
P.S. Vassilevski 

This paper was prepared for submittal to the 
Conference on Singularly Perturbed Convection-Diffusion Problems 

Lozenetz, Bulgaria 
August 27-31, 1998 

May 6,1999 

This is a preprint of a paper intended for publication in a journal or proceedings. 
Since changes may be made before publication, this preprint is made available with 
the understanding that it will not be cited or reproduced without the permission of the 
author. 

. 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



Least-squares streamline diffusion finite element 
approximations to singularly perturbed 

convection-diffusion problems 

Raytcho D. Lazarov *t and Panayot S. Vassilevski t 

Abstract 

In this paper we introduce and study a least-squares finite element approximation for singu- 
larly perturbed convection-diffusion equations of second order. By introducing the flux (diffusive 
plus convective) as a new unknow the problem is written in a mixed form as a first order system. 
Further, the flux is augmented by adding the lower order terms with a small parameter. The 
new first order system is approximated by the least-squares finite element method using the 
minus one norm approach of Bramble, Lazarov, and Pasciak [2]. Further, we estimate the error 
of the method and discuss its implementation and the numerical solution of some test problems. 

1 Introduction 

Mathematical models in physics and engineering often lead to differential equations with coefficients 
that may differ by several orders of magnitude. Such problems can be found when modeling processes 
in chemical kinetics, transport of heat and mass, plate bending etc. Important characteristic of such 
problems is that the solution are highly localized by exhibiting boundary and internal layers, point 
and line singularities etc. The aim of a numerical technique for solving such problems is to find a mesh 
which resolves these localized phenomena. This in turn is related to the question how accurately (and 
inexpensively) one can obtain information about the solution. A reasonable approach should include 
both a priori analysis of the problem and its solution and a posteriori analysis of the computational 
results in order to verify their accuracy and subsequently improve the results by refining the mesh. 

The a priori analysis can be used to a priori construct the mesh. For the state-of-the-art research 
in this direction we refer to the monographs of Miller, O’Riordan, and Shishkin [13], H.-O. Ross, 
M. Stynes, and L. Tobiska [16]. The a posteriori analysis is used to construct the “best” mesh for 
the solution of a particular problem within given tolerance for the error. Practically, this means that 
starting with a very coarse initial mesh, further in the solution process, the mesh is refined in a fully 
adaptive way, namely new grid points are added in the areas where the a posteriori error estimators 
and indicators suggest. For studies in this direction we refer to the monographs of I. BabuSka, 
0. C. Zienkiewicz [l] and R. Verfiirth [19]. 

The aim of the present paper is to derive and study unconditionally stable approximations of 
singularly perturbed problems of second order based on least-squares finite element method. Using 
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a minus one inner product we derive stable approximations of the problem in mixed form. Further, 
we derive a priori error estimates under minimal smoothness of the solution. 

We consider the following singularly perturbed problem: find w E N:(R), such that 

Lw = -V-(~Vw+bw) +cc,w =f in R, and w =0 on Xl. (1) 

We assume that R is bounded domain in Rd, d = 2,3 with Lipschitz boundary dQ and Q(X) and 
b(x) (a vector column) satisfy the following condition: 

co(x) - ;V. b(z) _> PO = const > 0 for all IC E R 

Without loss of generality, we can take ,Ds = 1. This condition guarantees that the bilinear form 
defined on H,‘(R) by 

A(w, II) = (E-VW, Vu) + (bw, Vu) + (cow, TJ). 

defined on H,‘(R) is coercive. 

(3) 

The weak form of (1) will be: find w E Hd (fl), such that 

A(w, u) = (j, ZJ) for all u E: Hi (0). (4) 

By Lax-Milgram theorem, this problem has a unique solutions in Hi(a) for any f E L’(R), and the 
solution satisfies the a priori estimate EJJVWJ~~ + l)wl)’ 5 llf112. 

We assume that E is a positive, but small parameter, i.e. 0 < E < lb]. Our goal is to develop 
a numerical method, based on the least-squares approximation, which is unconditionally stable and 
convergent under minimal regularity of the solution U. 

There are several known discretization methods for convection-dominated diffusion problems. 
Our approach is based on the one of the most powerful techniques for such problems: the streamline 
diffusion finite element method originating in the paper of Hughes and Brooks [9]. This methods has 
the advantage over the more classical Galerkin method and the artificial diffusion methods in the 
fact that it allows to obtain convergence in a norm that contains and additional term 6l/“(]b VU]]. 
Then taking 6 N 11 we get a suboptimal convergence rate of O(h3/“) for sufficiently smooth solution 
~1. For the analysis of the streamline diffusion finite element method we refer to [II] and for various 
extensions to incompressible Euler equations and Navier-Stokes equations to [12, 171. 

Another approach is based on the mixed formulation. In many applications, the flux (diffusive 
plus convective) plays an essential role. Introducing the physical flux as a new unknown the problem 
(1) is written in the mixed form 

& = -cVw - bw, v~&+c~w= f. (5) 

Here &, . n has a meaning of the amount of heat transferred through a unit surface area with a unit 
normal (vector to the surface) n. 

One can numerically approach the problem (1) by the Gale&in method, either applied to the 
original equation (1) or to its mixed form (5). In both cases the analysis of the method when E 
is very small (or E 3 0) is not well understood. It is well known that the Galerkin method for 
the equation (1) is not stable (unless the mesh step-size Iz is sufficiently small) and stabilization or 
special treatment of the convective term is necessary. 

There are two competing techniques for approximation of the mixed system (5): (a) mised finite 
element method based on its weak formulation (see, for example, [4]); (b) least-squares finite element 
method based on the least-squares formulation of (5) (see, for example, [2, 5, 6, 7, 14, 151). Both 
approaches produce symmetric algebraic systems, but while the former produces indefinite system 
the latter leads to a positive definite one. 
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We here derive a stable least-squares finite element approximation of the problem (1) based on 
a modification of the system (5). Name11, following [14] we introduce a corrected flux by adding 
a weighted steam-line derivative with a small parameter 6 and thus modify the mixed system. In 
general, this approach leads to stable Galerkin schemes with relatively good approximation properties 
(see, e.g. [9, 10, 11, la]). Following [a], we introduce a least-squares method which uses the sum of 
the weighted L2-norm of the equation for the new flux and the discrete H-l-norm of the differential 
equation. For a computable H-‘-norm for the singularly perturbed problem we use the algebraically 
stabilized version of the hierarchical basis method (see, e.g. [Ml). The new moment of the paper 
is that we modify this method to suit to a singularly perturbed problem and track the dependence 
of the coercivity constant on the small parameter E. The use of the discrete H-l-norm allows us 
to obtain quasi-optimal error estimates for H2- and H3-regular solutions. The method of [14] has 
the same convergence rate for H3-regular solutions, but does not provide an estimate when the 
solution is only H2-regular. This deficiency is common for some of the least-squares methods (see: 
e.g. [6, 151). 

Finally, in the last section we provide computational results that illustrate the asymptotic con- 
vergence rates of the method on a model problem with a smooth solution. 

2 Streamline-diffusion approximation of the mixed system 
First attempt is to correct the flux &, in such a way that adds more from the streamline derivative. 
Namely, we add to the flux the term bLu weighted by small parameters 6 > 0 to get a new flux 
denoted by X 

X = -E-VW - bw + GbLw. (6) 

If we take divergence of the equation (6), add QU to the left hand side, and take into account that 
V. (bLw) = V . (bf), we get the following equation for X and w: 

V.x+~w=f+W-(bf)zf6. (7) 

The equations (6) and (7) were obtained from the original equation (1) and therefore the solution 
(A, w) of (6) and (7) will satisfy (1). 

Unfortunately, (7) is not an equation of second order (since Lw contains term -EAw) and it 
does not fit into our approximation framen-ork. In order to avoid this inconvenience, we make a 
modification of the equation. Namely, instead of the flux X defined by (6), we introduce the truncated 
flux a by replacing the operator Lw in (6) by its truncated version 

Rw - -V. (bw) + c,,w, 

i.e. instead of the flux defined by (6) we consider the folloCng “truncated flux” 

g = -&Vu - bu + 6bAu i.e. a = --EVU - b,u + 6b( - V . (bu) + c,u) 

but keep the right hand side of equation (7) the same: fa(zr). Therefore, instead of the problem (l), 
we consider the following mixed system: find a E H(div; 0) and ‘LL E HA(R) such that 

g+cVu+bu-SbAu =0 in 0, 

V.g+q,u=f+N.(bf) rfa inR. 
(8) 

Obviously, the solution (&w) of the problem (6), (7) 1s not equal to the solution (a, u) of the 
problem (8). One can easily estimate the difference U = u - w. Indeed, (8) can be reduced to 

V. (-cVu. - bu + 6bRu) + CQU = fh in R (9) 

3 



while (6) and (7) will lead to 

V . (--EVW - bw + bbLw) + c,,w = fs in R. (10) 

By subtracting (10) from (9), we get the following problem for U = u - w: 

V . (-NJ - bU + dbAU) + c,,U =&V . (bAw) in R, U = 0 on Xl. 

We multiply this equation by U and integrate over R. Taking into account the boundary condition 
we get the following inequality for U 

dlvu112 + I(u112 + 4lb . Vu(12 + @co - V . b), U”) 6 &(Aw,b . Vu). 

Let maxn (IQ - V. b/l = ,13 1 and a.ssume that S > 0 is sufficiently small so that /3,S < l/2. 
Therefore 

or 

2#7Uf + IIUIf” + Sllb. VUII” 5 b~~/jAw/f. (11) 

We now introduce the following norm in HA (Cl): 

The estimate (11) essentially says that IIUII1,* 5 ~&~~Aw~~, -1 . w lele PU is the solution of the original 
problem (1). We shall approximate the problem (8) by finite element method on a grid n-ith grid- 
size Iz. In this case one chooses 6 z h and assumes that the diffusion parameter E < h! which 
results in the following estimate for the difference between the solutions of the problem (1) and 
(8): IIUJJI,, < CIL”‘“JlAwll. Tl d’ff ns 1 ercncc is in general smaller than the error of the finite element 
approximation of the problem (8). Further in this paper we shall consider the problem (8). 

TYe shon- that the problem (9) (which is equivalent to (8)) h as unique solution in HA(R). We 
first introduce the bilinear form 

-A(u, v) = ~(vu, vu) + (bu, VIJ) + 6(b. Vu, b . Vu) + 6((V . b - q,)u, b Vu) + (cou> u), 

which is obviously bounded in the norm ll.l11,*. Next, we prove that for sufficiently small d > 0 the 
form =l(u,v) is coercive in the norm 1).1)1,*. Indeed, for v = u we have 

A(u, u) = tllVul12 + ((co - $7 . b) u, u) + 61/b. Vull” + S((V . b - q,)u, b . Vu) 

L t/lVuII” f ~~u~~2 + d/lb. ul12 - 6~~~~~~~ I/b. Vu/l 

2 ~(IVu11’ + +~l” + (1 - $) bllb. VU//~. 

Thus, if S/3: 5 1, then 

24~ 7~) 2 #‘412 + Ilull + 6))b . VuJ? = ))uIJ;,,, 

which is the required coercivity. The boundness of the bilinear and linear forms in the same norm 
follows easily. Then by Lax-Milgram lemma the problem (8) has unique solution u E H,(R). 
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3 Least-squares form of the streamline-diffusion system 
We apply H-l-norm least-squares method for the system (8): namely, we seek the minimum of the 
quadratic functional 

J(a, u) = c-l I/a + EVU + bu - 6bhu(12 + (IV . a + c,,u - f6(IH1,* (13) 

over the space H(div; 0) x Hh (0). Here 11 . )I- I,* is the dual of the norm (12) and is defined by 

u) (.fY Ilfll-I,* = uy;A ,1211,1,* for all f E HelW 

This norm is equivalent to the norm defined by )lfllyl,* = (Tf, f). Here the operator T : H-l -+ Hi 
is the solution operator of the problem: find u E HA such that 

Dr(u, u) z 
.I 

(Cih~Vv + uu+6b.Vub.Vv)dx= 
s 

fv for all v E Hi. (14) 
R n 

The minimum (CT, 7~) E H(cliv; !J) x Hi (0) of the quadratic functional (13) will satisfy the fol- 
lowing integral identity: 

where 

K(LT_,u;~,u) = (Tfa, V. x + COU) for all (x,u) E H(div; 0) x H,‘(0), (15) 

K&T, IL; x, r~) = e-l (a f EVIL + bu - bbhu, x + EVW + bv - Sbhv) + (T(V . c + c,,u), V . k + cOv). 

We show that K(.; .) is bounded and coercive in the norm \I +1)1,+. It is important to find the constants 
of equivalence. 

Lemma 3.1 For suficiently small b the bilinear form K is bounded from below by (1~1(~,*+11~.\11121,*, 
namely 

G&Vi XI w) 2 co (ll41~,* + IIV #I,*) 
for all x E H(div; Cl) and v E Hi’(R) with a constant co > 0 independent of E. 

Proof 1 We start with the tern1 ~IJVUIJ~: 

~(VV, VU) = (x + CVV + bv - Gbhv, Vu) - (x + bv - 6bAv, Vv) - 

5 C-~//X: + tVv + bv - GbAvjl” + ;llV~l/~ - (x: Vv) - 

(16) 

+ ;(V b,v2) + G(bAv, Vu) 

2 c-l 11s + EVW + bv - bbAvl12 + il\Vt~((~ + (V x + cov, v) 

- ((c+b) ,v2) +S(Av,b.Vv) 

(17) 

5 6-l Ily + EVU + bv - 6bAvl12 f $Vvl12 - llvl12 

+ IIV . x I- COVII-l,*lI II u 1,* - 6)/b . Vvj12 + S((Q - V . b), v2). 

We now choose 6 such that GmaxzE~ IQ,(Z) - V. b(x)1 2 f and transfer the terms ~llVv/l’. ~~v~~2 
and Jib . VvJj2 to the left hand side to get 

Ilvll;,* L 2+1/g + EVV + bv - 6bAvjj2 + 2ljV . x + COV~~~~,*. (18) 
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Further; 

IIV -&1,* = &swn) ‘T;,f”’ _ 
< sup (V . x + cozI, 4) + sup (co? 4) 

0 114111,* 114111,* (19) 
I IIV . x + cg+1,* + P2bJll, 

where ,& = m;xi~(z)l = const > 0. The //vl1-t erm is bounded by (18) so that (19) yields 

IIV.#.,,* SW+ P,2)110 ~~+cov~~~~,,+ 4&-71x+ ~VU fbv - 6bAv112. 

This estimate combined with (18) gives the coercivity estimate (16), which completes the proof of the 
Lemma 3.1. 

Remark 3.1 The constant in coercivity estimate of the bilinear form K depends on the maximum 
value of the coeficient co(x). If this coeficient is relatively large (i.e. CO(X) 2 ,& >> 1) then one 
should scale the zero order term in the norm with the constant &. 

Once the coercivity of K has been established, we need to show the boundness of K for u E HA (n) 
and x E H(div; n). 

Lemma 3.2 There is a constant cl, independent of E and such that the bilinear form X: satisfies the 
following estimate 

K(p~;~,w) 5 cl(Ilullf,. + (IV. &,, + ~-~llxll” + E-~I/~u~:~I~ + t+6”llb. VU\/‘) 

for all x E H(div; CL) and v E HJ (Q). 

(‘20) 

Proof 2 The proof follows immediately from the definition of the bilinear form K. 

Remark 3.2 The boundness of the linear functional of the right hand side in the norm IIV.~ll-1,* + 
Il~lll,~ is immediate since I\V ‘x+ COWJJ-I,* < JIV .J$~,+ + JJcOWJJ-~,~ 5 110 -x11-1,* + hllull. 

4 Finite element method for the least-squares formulation 

Let W’h C Ilo’ and VI, c H(div; fl) be finite element spaces of piece-wise linear funct,ions over 
the quasi-uniform triangulation 7;, of the domain CL We assume that for some integer s 2 1 the 
following approximation properties of the spaces IV, and Vh are available: 
(H.l) for any 11 E H’(s2)d n H(div; 0) and 1 5 r < s - 

x~$, (lb- XII + fdlv~ (g- x)ll) I Ch’ll~llr,n; - 
(H.2) for any w E Hd(s2) n H’(R) 

“$ (lb - 41 + fdlV(w - v)II> i C~f+lIIWIIT+l,R; 

(H.3) there is an orthogonal projection operator Qh : L2(R) -+ W’ h, which is bounded with respect 
to the norm in H1(R), i.e. 

IIQI~~II~,R I Cllvll~,n for all u E H’(R). 
Most of the known finite element spaces satisfy the above assumptions. ‘In general, the solution u 
has low regularity and it makes sense to consider only the case s = 1 and both IV], and Vh consist 
of piece-wise linear functions over the triang-ulation 7-h. 



In order to define the finite element approximation to the problem (15), we need a definition of a 
discrete analog of the norm I]. (I-r,*. H ere we borrow the concept of computable discrete H-l-norm 
from [2, 31. Similarly to the continuous case, we first define the operator T,, as a solution operator 
of the problem: find oh E IVh such that 

D, (wh ,4) = (f, 4) for all 4 E Wh , (21) 

where the bilinear, form D, (uh, 4) is defined by (14). Then the operator Th is defined by v/1 = TIL f. 
Let Bh be a preconditioner for Th, which is symmetric, positive definite and spectrally equivalent 

to Th in the L2-inner product, i.e. there are constants 0 < cl 5 ca independent of h, such that 

Remark 4.1 One possibility to construct preconditioner B,, for the operator Th corresponding to the 
bilinear form D+(u, u) = ((~1 + bb*)Bu, Vu) + (IL, ZI), f or u, v E WI, is an algebraically stabilized 
version of the hierarchical basis method, which is known to be more robust with respect to various 
problem parameters. For more details, cf., [ld]. 

Finally. following [2, 31 we define Y?‘h = ll’1 + B,, and introduce the finite element approximation 
of the least-squares mixed method: find ‘uh E W and gfL E V,, such that 

6, (a,,: ‘WI; Y u) = (Gfa 1 v . x + w) L: 

for all y E V,, and u E IV,,. Here L 

Kh ((Th, uh; x, u) f (fh(V a,, + COUh), v . x + cow) - - 
+c-‘(CT,, + FVU,~ + huh - 6bAuhT x + EBZI + bv - Sbh) 

(22) 

(23) 

is the discrete analog of the bilinear form AE(., -). 
The least-squares method (22) leads to a symmetric and positive definite algebraic problem. The 

symmetry is by construction and the positive definiteness follows from the coercivity of the bilinear 
form K(-. .) in the semi-norm ]]u]]:,* + I/V jJ]t,,,. 

5 Error estimate of the least-squares method 

Let gh = a - a, and eh = u - ZLh then xl, (Q, . ch; x, U) = 0 for all x E V,, and ‘u E IV,, . The coercivity 
of the form K^ then implies: 

Thus, the task to bound the error )\V . gh]j-i,* + l\ehl]r ,* reduces to best approximation of the 
solution from the finite element space V,, x IV/L in the energy norm defined from the form K. Hence 
it is sufficient the estimate of the error for a suitable chosen function x and u from Vh and IV,, close - 
to a and U. 

Denote by & = a - x and Uh = u - C. where x E V,, and v E Wh. Then by the definition of - - 
the form Kh and the operator Th we have: 



One easily deducts that 

(Bh(V .C,~ + COUh), v .Ch + COUh) I +-‘11~,,II’ + IlUhll”)> 
SO we get the estimate 

Kh(Ch, UhiCh, Uh) I +llCh[12 + c-1[Iuh1(2 + (E-Q2 4 E)[puhl12 + h2(IV .Chl12). (24) 

Using the boundness of the bilinear form /ch from below we get: 

IIT. chll?+ 3- hiif,, 5 C(c-‘l(~,,l~2 + ~-‘llUtJl” + (~~‘6~ + E)~~VU~[(~ + h211V. &[12). (25) 

And finally, using the inequality 

~-111QJ12 5 c(hl fL chTeh;ch,eh) + (hII + S”lIb. vehl?) (- 

we get an L’estimate for crL: 

/JE,J’) 5 c(llz,Lll” + llUh112 t (6” + E2)IIVUhl12 + fAJJV~ c,ll12). (26) 

These estima.tes are quite similar to the estimates of [14]. The main difference is that the term 
(IV . &II from [14] is replaced by h/IV . &II in (24), which will result in reducing the regularity 
requirement for the convergence of the method. 

Sow choose x E Vh and ‘u E 13i,, such that the estimates of the hypothesis (H.l) and (H.2) are 
satisfied with r = 1. By (25) and (26) we conclude: 

Theorem 5.1 The finite element solution uh of the streamline difilsion least-squares method (22) 
converges in the norm 11 . I( I,* at a rate Cl(he-4 + She-$ + IL) if u is HZ-regular. 1f u is H3-regular 
the convergence rate is CI(IL"E-~ + dh~-4 + h2). In particular, if one chooses 6 N h, for h = E 
the familiar O(h+) L2-error estimate from the classical streamline diffusion method is recovered. 
Similarly, the streamline derivative b Vu is then computed with an O(h 4) error in L”. 

For H%egular solution, one can choose h 21 J;; then the error will be of order (3(6 + h) = O(h) 
for both a and 26. 

11-e remark, that in the H2-regular case, one may simply let 6 = 0. and still get the same error 
estimates of order 0(hi), which is the estimate proved in [8] for upwind mixed co-volume schemes. 
The least squares method in the present case does not exploit any upwinding, instead it requires a 
sufficiently small mesh h N t. 

The error estimate for u may seem to be quite unsatisfactory since a reasonable convergence 
rate can be achieved only for small step-size h E 6, which is quite a restrictive assumption. In fact,, 
one would like to be able to compute with much larger step-sizes (as we did in our computations), 
say 12 ci 4. None of the methods provides good error estimates for the solution u for this case for 
H2-regular solutions. However, the present method has one strong point, namely direct continuous 
approximation of the flux. Therefore, streamline methods should be used for solutions that are are 
expected to be sufficiently regular. 

6 Implementation and numerical experiments 
In this section we present some numerical results that illustrate the error behavior of the studied 
streamline diffusion least-squares finite element method. We consider the same problem as in [14], 

V. (-EUVW - bw) + cow = f&y) (z&y) E 0 = (0,l)“. (27) 
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The exact solution was chosen w = X( 1 - rc)y (1 - y) and Dirichlet boundary conditions were imposed. 
The coefficients of the operator were: a = diag(ai,a;?), ai = 1 + 10~~ i- y2, u2 = 1 + x2 + 10y2, 
CO = 1 and b = (bi,bp) where br = coscu(1 -zcoscw),b2 = sincr(l- ysina), for angles cy = -$,O, 2. 
Obviously, V . b = -1 and the condition (2) is satisfied. Note that the problem (27) differs slightly 
from (l), namely, EI is replaced by ediag(al , ~2). 

We used for both variables the space of piecewise bilinear functions Wh (zero boundary con- 
ditions) and Vh (no boundary conditions) on a square mesh (composing the triangulation 7h) of 
mesh-size h = h, = h, = 2FL for L = 4,5,6,7. 

The least-squares method leads to the following system of linear algebraic equations 

([;: Z] + PO, cop [Bo, Co] ) [ 2 ] = [ [I&, Co]% r.h.s. ] . 

We have used the same notations CT,, and ZL~ for the vectors of the coefficients in the presentation 
of a, and uh in the basis of Vh and Wh. Here, the matrices A, B, C, Bo and CO are sparse and 
assembled explicitly. IMore specifically, they are computed from the bilinear forms: 

l the bilinear form c-i (u-l (x + EUV~ + bp - SAY) , @ + aV1(, + blC, - SAT/~) defines the ma- 

trix A = [; C]~ where @ = (Qi, 02) and x = (~1, x2), and 6’i and xi run over a basis _ 

in the respective components of Vh = (Vl,h, VZ,~), and similarly ‘p and Q run over a basis of 
W,,. We have chosen as already mentioned bilinear elements for all components (1 ;,h, I/~,A 
and WJ; 

l the matrix DO is computed from the bilinear form (dive, $), where @ = (01, 02) runs over the 
basis of Vh and $ runs over the basis of Wh; 

l Co is the mass matrix (~9, $) where cp and $ run over the basis of T/r;,. 

The operator 0 is an algebraically stabilized (AMLI) multilevel preconditioner for the form 
D,(., .). Details, on the AMLI methods are found in [18]. The vector r.h.s has components (f~, cp), 
where cp runs over the basis of WI,. Recall, that f~ = f + SV . (bf). 

The least--squares system (28) is solved by the preconditioned conjugate gradient method, with an 
AMLI preconditioner coming from the explicitly available sparse matrix A + h-“[Ba, Co]*[BBo, Co]. 

In the tables below we report the following error related quantities: 60 3 ]]lhw--~h]], 61 E ]]I,Lw- 
WI/l, &SD f I/~,~~ - %((SD,h = (lb. v(I hw - utt)((, 41 = III/& - Q([, &iv z I/v ’ (I/i& - ah)ll. 

Here, w and X0 = -cuVw - bw are the exact solution and the exact continuous flux: Ih and 
Ih stand for nodal interpolation in the finite element space wh (for the scalar function U) and 
in Vh (for the vector function &,); ~1~ is the finite element solution we have computed together 
with g,. Note that ah is the approximate solution corresponding to the modified continuous flux 
a = &, - bb (V . (bu) - csu), where 6 = h is the streamline-diffusion parameter that we have used 
in the test. Hence, we cannot get better than first order approximation to the flux &. 

It is clearly seen, that the error behavior for all quantities (except do) is of approximate first 
order. For the L”-error, 60, between the interpolant and the finite element solution one may see a 
superconvergent behavior of order higher than second in some tables (see, Tables 2, 5 and 8). For 
all tests, So, is of higher than first order. 
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Table 1: Error behavior for Q = 0, E = lop2 
h = l/16 h = l/32 h = l/64 h = l/128 M order 

60 4.73e-4 2.18e-4 l.O9e-4 4.24e-5 >1 
61 l.O2e-2 S.OOe-3 2.53e-3 1.24e-3 1 

&iD 4.63e-3 2.17e-3 1.16e-3 5.81e-4 1 
Ao 3.26~~3 1.73e-3 8.82e-4 3.45e-4 1 

f&iv 2.42e-2 1.33e-2 7.19e-3 3.97e-3 1 
# unknowns 675 2 883 11 907 48 387 

Table 2: Error behavior for cy = 0, 6 = 10e4 
h = l/16 h = l/32 h = l/64 1~ = l/l28 z order 

60 3.78e-3 1.22e-3 2.78e-4 4.11e-5 >2 
61 3.09e-2 1.31e-2 4.78e-3 1.58~~3 1 

65, 2.01e-2 l.OOe-2 3.88e-3 l.l3e-3 1 
Ao 2.35e-3 l.O2e-3 6.35e-4 3.87~4 1 

f&iv 2.70e-2 1.42e-2 6.76e-3 3.21e-3 1 
# unknowns 675 2 883 11 907 48 387 

Table 3: Error behavior for cy = 0, E = lop6 
1~ = l/16 11 = l/32 h = l/64 h = l/128 M order 

60 1.89e-2 P.l6e-3 2.75e-3 1.31e-3 1 
61 9.31e-2 5,60e-2 2.31e-2 1.20e-2 1 

6’5D 4.96e-2 3.16e-2 1.67e-2 1 .OOe-2 1 
A0 l.l5e-2 5.06e-3 1.74e-3 9.14e-4 1 

f&iv 5.25e-2 3.35e-2 1.76e-2 1 .OGe-2 1 
# unknowns 675 2 883 11 907 48 387 

Table 4: Error behavior for ct = 2, E = lo-’ 
h = l/16 h = l/32 h = l/64 h = I/128 zz order ’ 

b0 5.50e-4 3.08e-4 2.63e-4 6.40e-5 1 
61 1.03e-2 5.30e-3 2.78e-3 1.34e-3 1 

&D 5.19e-3 2.73e-3 1.49e-3 7.13e-4 1 
Ao 3.81e-3 1.96e-3 9.93e-4 3.88e-4 1 

&iv 2.50e-2 1.31e-2 7.19e-3 4.50e-3 1 
# unknowns 675 2 883 11 907 48 387 

Table 5: Error behavior for Q: = :, E = lO-4 
h = l/16 h = l/32 h = l/64 h = l/128 M order 

60 4.46e-3 1.15e-3 2.15e-4 2.98e-5 >2 
61 3.26e-2 1.28e-2 4.44e-3 1.52e-3 1 

6SD 2.07e-2 8.2%3 2.79e-3 8.83e-4 1 
Ao 3.48e-3 l.AOe-3 8.06e-4 4.43e-4 1 

&iv 2.42e-2 1.19e-2 5.84e-3 2.93e-3 1 
# unknowns 675 2 883 11 907 48 387 , 
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Table 6: Error behavior for N = $, E = 10W6 
h = l/16 h = l/32 h = l/64 h = l/l28 M order 

60 3.17e-2 1.32e-2 2.95e-3 7.50e-4 2 
61 0.142 6.54e-2 2.41e-2 9.13e-3 >l 

&D 7.20e-2 3.96e-2 1.54e-2 5.87e-3 1 
Ao 2.10e-2 9.53e-3 2.06e-3 5.15e-4 2 

&iv 7.23e-2 4.03e-2 1.53e-2 6.08e-3 1 
# unknowns 675 2 883 11 907 48 387 

60 

61 

6SD 

Ao 

&iv 

# unknowns 

Table 7: Error behavior for 0 = -a, E = 10e2 
h = l/16 1 h = l/32 / h = l/64 1 h = l/l28 1 = order 

1.48e-3 6.34~4 3.0ie-4 1.21d-4 >l 
1.24e-2 5.94e-3 2.97e-3 1.38d-3 1 
9.95e-3 4.8%3 2.4.53 l.l3d-3 1 
7.93e-3 3.99e-3 2.00e-3 7.85d-4 1 
3.96e-2 2.04e-2 1.04e-2 4.95d-3 1 

675 2 883 11 907 48 387 

-n 

Table 8: Error behavior for cy = -T, t = lo-” 
1~ = l/16 h = l/32 lz = l/64 11 = l/l28 M order 

60 1.61e-2 3.70e-3 8.27e-4 1.55d-4 >2 
61 7.45e-2 2.37e-2 8.24e-3 2.60d-3 >l 

&D 5.71e-2 l.i3e-2 5.97e-3 1.87d-3 >l 
Ao 1.87e-2 5.93e-3 2.35e-3 1.08d-3 1 

&iv 6.95e-2 2.82e-2 1.26e-2 5.85d-3 1 
# unknowns 675 2 883 11 907 48 387 L 

Table 9: Error behavior for ct = - $. E = 10V6 
h = l/16 h = l/32 h = l/6; h = l/128 M order 

60 3.32e-2 3.11e-2 l.O8e-2 2.42e-3 >l 
61 0.148 0.139 5.28e-2 1.71e-2 >1 

6SD 0.115 0.108 3.98e-2 1.29e-2 >l 
Ao 3.55e-2 3.33e-2 l.l9e-2 2.83e-3 1 

&iv 0.115 0.109 4.29e-2 1.45e-2 1 
# unknowns 675 2 883 11 907 48 387 

II 
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