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ABSTRACT In this paper, we consider approximation of a second order convection- 
diffusion problem by coupled mixed and finite volume methods. Namely, the 
domain is partitioned into two subdomains, and in one of them we apply the 
mixed jinite element method while on the other subdomain we use the finite vol- 
ume element approximation. We prove the stability of this discretization and 
derive an error estimate. 
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1. Introduction 

Coupling different numerical methods applied to different parts of the do- 
main of interest is becoming an important tool in numerical analysis, scientific 
computing, and engineering simulations. In the coupling process several im- 
portant mathematical issues arise that have to be addressed. 

First problem is to find what natural and stable mathematical formulation 
will lead to a good computational scheme. In the case of different methods 
used in different parts of the domain this means to find a stable way of glu- 
ing together the solutions in the subdomains. Secondly, we have to find an 
approximation of the mathematical formulation which is stable, convergent, 
and accurate. And finally, we have to construct and study efficient solution 
methods for the resulting algebraic problem. 



We shall consider the following homogeneous Dirichlet boundary value prob- 
lem for the convection-diffusion-reaction equation: 

LP = f(z), z E Q p(z) = 0, II: E xi, (1) 

where L = &, + C, Cop 5 -V . aVp is the diffusion operator, and Cp e 
V. (pZ$ + cop is the convection-reaction operator. Here 0 is a bounded polygon 
in Rd, d = 2,3 with a boundary 80, a = a(z) = {ai,j(x)} is a d x d symmetric 
and uniformly in R positive definite matrix, and f = f(x) is a known function 
inL2(R). Alsol!=b(z)=(bl,...,bd) is a given vector field and CO = CO(Z) is 
a given function. We assume that b( ) x an co x are uniformly bounded in 0 d ( ) 
and satisfy the condition 

co(x) + :V *b(x) 2 7s = const > 0, x E R. (2) 

This in turn guarantees the coercivity of the operator C in L2(Q) and the 
existence and uniqueness of its solution in the Sobolev space Hi(a). This 
problem is a prototype of mathematical models in heat and mass transfer, 
diffusion-reaction processes, flow and transport in porous media, etc. 

In this paper we propose and study numerical methods for this problem 
when in different parts of the domain different discretizations on independent 
meshes are used. Namely, we consider mixed finite element approximation in 
one part of the domain and finite volume element method in the rest of the 
domain. It is important to note that coupling mixed finite element and finite 
volume or Galerkin finite element approximations does not require any auxiliary 
(mortar) space on the interface of the subdomains. This is due to the fact 
that the Dirichlet boundary conditions are natural for the mixed formulation, 
while the Neumann boundary conditions are natural for the standard weak 
formulation of a second order elliptic problem. 

In the recent years there has been growing interest in the finite volume 
method (called also control-volume method or box-schemes). This interest is 
mostly due to the requirement of many applications of having locally conserva- 
tive discretizations. This is a discrete variant of the property of the continuous 
model which expresses conservation of certain quantity (mass, heat, momen- 
tum, etc) over each infinitesimal volume. The finite volume method has been 
combined with the technique of the finite element method in a new develop- 
ment which is capable of producing accurate approximations on general sim- 
plicial and quadrilateral grids (see, e.g. [4, 5, 6, 7, 8, 14). For a collection of 
theoretical results and various applications we refer [2]. The main advantages 
of the finite volume method are compactness of the discretization stencil, good 
accuracy, and discrete local conservation, which for many applications is a very 
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desirable feature of the approximation. Also, this method has well developed 
approximation schemes for convection and convection-dominated problems. 

The structure of the paper is the follow. In Section 2 we introduce all 
necessary notations and the weak form of the problem (1) in a two domains 
setting. In the subdomain where the mixed formulation is used we apply the 
more general concept of the discontinuous Galerkin method for second order 
equations in mixed form. In the case of convection-diffusion problems the 
pressure should be smoother than just L2 so we use the space H&,. Further, 
we study the stability and derive an a priori estimate for the solution. 

Section 3 is the central part of the paper. Here we introduce and study the 
coupling of the mixed finite element and the finite volume element method. 
Further, in Subsection 3.2 we discuss the coupled mixed and finite volume ap- 
proximation of convection-diffusion-reaction equations. Finally, in Subsection 
3.3 we prove the unconditional stability of the discrete scheme and derive an 
estimate for the error. 

2. Variational formulation 

In this section we first introduce all necessary notations for splitting the 
domain of the problem (1) in two subdomains a = ni U ns and using two 
different formulations in each subdomain. The weak mixed formulation in fir 
is derived when the pressure p is in the space H:o,(R1). In 0s we use pressure 
space H1 (Rs). We prove that the coupled mixed/Galerkin formulation is stable 
and derive an a priori estimate which is the prototype of estimates for the 
approximations schemes established further in the paper. 

2.1. Two-subdomain coupled formulation 

We partition R into two subdomains with an interface boundary r, i.e. 
R=R1Ul?Ufl ( 2 see Figure 1) and use the standard notations for Sobolev 
spaces of functions defined on Rr and &: H(div, Qr), L”(&), i = 1,2 and 
H,1(&, dRs \ I’). Here the last space denotes the functions defined on 0s 
having generalized derivatives in L2(&) and vanishing on dR2 \ r. The inner 
products in these spaces are denoted correspondingly by 

(UT v> H(div, n,) E s 
(u . v + Vu Vv)dx, 

Ql 
(wi,zi) = .I’ wi,zidx, 

a 

and (VP, w2)~1 (oz) = (~2,~s) + (Vvs, Vws), which in turn define norms denoted 
bY IIVIIH(div, nl)’ Ilvill~, ni and 117~2111, oz. 
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Figure 1: Domain partitioning: fl = Rr U I’ U 02. 

Whenever possible we skip the subscript in L2-norms. The dual space of 
H,1(fl2, =h \r) ’ d is enoted by H-l (Rs), the space of the traces of the normal 
component of the vector-functions in H(div, 0,) is denoted by H-‘/2(l?), 
and the space of the traces of functions in Hi(&, 802 \ I’) is denoted by 
H,‘,/“(r). The trace spaces are equipped with the standard Sobolev norms. 
Finally, we shall use the notation < I,. >r for the duality pairing between 
Hti2(I’) and H-1/2(lT). Further, we denote by ni the unit vector normal to 
dRi for i = 1,2 and pointing outward to the domain. Finally, we split the 
interface boundary I’ = r- u r+ where r- = {x E r : b(x) . nl < 0) and 
r+ = Ix E r : bcx) . ni 2 0). Note, that this splitting is with respect to the 
vector ni. An illustration of these notations in 2-D is given on Figure 1. 

In fir we use a mixed setting of the problem (1). That is, we introduce 
the new (vector) variable u = -aVp. To distinguish the solutions in the 
subdomains we denote by pl = pln, and p2 = P/,~. The composite model 
will impose different smoothness requirements on the components pl and ~2. 
More specifically, we will require that u E H(div, RI), pl E L2(s2,), and 
pz E HA (Rs, dR \ r). Note that p2 is required to vanish on 802 \ I’. 

Testing the equation a-r u + Vpr = 0 by a function v E H(div, Cl), using 
integration by parts, the zero boundary conditions for pl on dRr \ r, and the 
fact the trace of pl on r is the same for the trace of p2 on l?, one ends up with 
the equation, 

(a-ru, v) - (pi,V . v)+ < ~2, v. nr >r= 0 for all v E H(div, RI). (3) 

Further, in order to describe the weak form of the equation 

V. u + V . @pi) + COPI = f(x) in Rr 
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we need to allow discontinuous functions p1 from the space Hfo,: 

$Xh) = 
i 

Vl f L2(R1) : there is a partition K of Rr 

such that vr]~ E H1(K) for all K E K: ’ 

The functions in Hto,(R1) have traces from both sides of the interfaces of the 
subdomains K. Namely, for a given function pl E Hio,(R1) we denote these 
traces by p: and pi, where ‘lo” stands for the outward (with respect to K) 
trace and respectively, “i” stands for the interior trace. 

Next, we give the weak form of the above equation. We borrow this formu- 
lation from the discontinuous Galerkin methods (see, e.g. [lo], pp. 189-196) by 
testing the equation by a function 201 E Hfo,(R1). We note, that this setting 
is quite similar to the mixed finite element method for convection-dominated 
convection-diffusion-reaction equations (see, e.g. [12]). Since the functions 
from H&,(fl~) are piece-wise smooth with respect to the partition K we shall 
integrate over each K E K: and then sum the results. Following [lo] we find 
first the contributions of the advection-reaction operator Cp, by introducing 
the bilinear form C~(p1, wr) for any subdomain K E Ic: 

CK(PI, WI)= K(V.(bpd+c~(x)~~) wldl:+~K-(p;l-p;)w:~.nda 
J 

Here n is the outer unit normal vector to 8K. Next, we integrate by parts in 
each subdomain K and sum over all K E K. Thus, for ~1, w1 E H&(01) we 
get: 

+ J co(x) PI wldx + 
K J pf wi b.nds > (4 

. 
aK+ 

Note that this bilinear from is well defined for both continuous and discontinu- 
ous functions with respect to the partition K. From this expression we see that 
if the subdomain K has a side/face on r- then the trace py should be replaced 
by its counterpart from Q2, namely by ~~(2). Also on l?- we have wi = wr 
and on dflr- \ r- we take py = 0. Further, for a given function t(x) we denote 
by t- = min(O, t) and t+ = max(O, t). Thus, we get the following weak form of 
the second equation valid for all wr E H,1,,(R1): 

-(V -u, WI) - all(pl, WI) - alz(P2, WI) = -(f,w), (5) 
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where 

@i(Pi, WI> = KTK ./aK,80,m ((b . 4- PY + (b . n)+ pi) wl ds 

- 
cs 

PI b f Vw dx + (COPI, WI) for PI, WI E H,1,,(%) 
KEK K 

(6) 
and 

%2(P2, Wl) = 
J 

P2(X) W(x) h-m ds for w2 E W2, w1 E H,l,,(R1). (7) 
r- 

Finally, testing the equation (1) by a function ws E Hi (Rs; dR2 \ I’), using 
integration by parts, the zero boundary condition for w2 on 222 \ I?, and the 
fact that II. nr = -aVpr . nr = aVp2 . ns on I’, one arrives at, 

< u-nl, ~2 >I- -(~VP:!, Vw2) - (V~@PP~),WZ) - (~0~2~~2) = -(f, w2), (8) 

for all 202 E HA (0, ; Xl2 \ I’). 
There are various ways one can take into account the influence of the prob- 

lem in the domain Rr on the problem in as. One of the possibilities, which we 
shall use further, is to try to make a formulation, which is stable for small diffu- 
sion coefficient (or even for vanishing diffusion). In this case it is very important 
to formulate correctly the boundary conditions. Namely, at the “inflow” part 
of the interior boundary the solution should be specified from the “outside” 
data. Taking into account that J?+ is the “inflow” part of r for the subdomain 
02, we add s’, plw2 b. ns ds and subtract its equal Jr+ pzw2 b. n2 ds since on 
r we have pl = ~2. Thus, we get the following form of the last equation: 

< u.nl, w2 >r -a21(pl,w2) -a22@2,w2) = -(f,w2), (9) 

for all w2 E Hi (0,; Xl2 \ I’), where 

a21 (Pl, w2) = 
J 

p1w2 b. m  ds, 
r-c 

(322CP2, w2) = (UVP2, Vwz) + (V . (&32), w2) 

+(copz, w2) - J p2w2 b. n2 ds. 
r+ 

(10) 

(11) 

Thus, the coupled system for the three unknowns u E H(div, or), pl E 
H&,(fh) and ~2 E f7,@2; a02 \ r) consists of the equations (3), (5), and (9) 

6 



summarized as: 

(a-h, v) -(p~,V.v) + <p2, v.nl >r =O, 

-(V . u, w> -ull(Pl,w) -%2(P2,W) = -Lf,w), (12) 

< U.nl, w2 >r -aa~(Pl,wa) -a22(P2,w2) = -(f, w2L 

for all v E H(div, RI), w1 E Hfo,(R1), and w2 E Hh(f12; dSt2\l?), respectively. 
The bilinear forms aij (., .) are defined by (6), (7), (lo), and (ll), respectively. 

2.2. Well-posed-ness of the composite problem 

Here we verify the existence a.nd uniqueness of the solution of problem (12) 
and its stability in an appropriate norm. For this we shall need some additional 
notations. Let & = {e} be the set of edges/faces of the subdomain Rr from K: 
and Es the set of interior for s1r edges/faces. Recall, that nl and n2 are the 
outward unit normal vectors to Rr and 02, respectively. For any edge e E &s 
denote by n, a fixed unit vector normal to e and let K$ and K, be the two 
adjacent to e subdomains from the partition K. For edges/faces that are on 
801 we shall always assume that n, = nl. Further, denote by [VI] and Vr the 
jump and the average of the discontinuity of VI, respectively, along any edge 
e. More precisely, this is the difference and the arithmetic mean of the traces 
wrlK+ and urIK- taken from both sides of e: e e 

[wl] = v1 IK,+ - vl IK, , VI = ;(w&$ + “l/K,)’ 

Further, we use the following natural norm for wr E Hfo,(R1) and 2)s E 
13,Z(f2~; m2 \ r): 

lblll2,,Q, + l17J211:,nz = ; c J’M~I~. no ds + “iow~;,nl+ 11~211;,n,) 
eEEo e 

1 J 1 
+ 5 

vfb.nlds-- 
m+w+ J 2 aol-\r- 

wf benI ds 

1 
+ z r+(wl - t12)~b. nl ds - i J (wl - wZ)~~. nl ds J r- 
+ (aVw2, Vw2). 

(13) 
All terms in the expression on the right are nonnegative and this defines a norm 
on the space H&,(Rl) x Hi(&; Xl2 \ I?). Note, that under certain conditions 
on the vector field b this is a norm even if “/o = 0. 
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The stability of the composed problem (12) is based on the following theo- 
rem: 

Theorem 1 The solution of the problem (12) satisfies the a priori estimate: 

I141~~(nI) + llPlll3, n1 + llPall2, n, i cllfll;, n> (14) 

where the *-norm is defined by (13). 

The proof of the above theorem is based on the following lemmas. 

Lemma 1 The bilinear form (6) defined for wl, w1 E H&,(01) can be trans- 
formed to the following form: 

all(vl,w) = 1 2 C J[wl][w~]~h-n~ ds+ J b.nl ~1 WI ds+ (COQ, ~1) eG0 e a%, 
+i C /b.n,[wl](wrlK: + 2~11~;) ds - C J ~1 b.Vwldx- eE&o e KEK K 

Furthermore, 

all(wl,wl) = f C J[vi121h.nel ds+ ((~0 + :v-~)w, ~1) eEEo e 
+A J 1 

2 aa+ 
wf b. nl ds - z J wf b.nl ds. 

im1- 

Lemma 2 For all ‘02 E Ht(&, dR2 \ I?) 

a22(212,02) = (aVv2, Vw2) + ((co + ;V . b)w2, w2) 

1 J 1 

+ 5 r+ 
wz b. nl ds - - J 2 r- 

w?j b. nl ds. 

3. Coupling mixed and finite volume approximations of the convection- 
diffusion equation 

Our approximation strategy is based on the finite volume method in the 
framework studied by Cai [4], C ai, Mandel, and McCormick [6] and also by 
Bank and Rose [l]. 

8 



3.1. An outline of the finite volume element method 

We first outline a finite volume discretization method for the case of pure 
diffusion problem posed on &, 

-V.aVps = f(x) in &, p2 = 0 On dfi2\r, -avp2-n2 = ?jW on r. (15) 

Here f E L2(R2) is g’ rven and qN, for the time being is assumed given in the 
space L2(r). The finite volume method under consideration uses two different 
finite dimensional spaces: a solution space Ws and the test space W$. The 
W2 is the standard conforming space of piecewise linear functions over the 
triangulation 72 = (2’) of 0s into triangles in 2-D and tetrahedra in 3-D (we 
call them simplices). To introduce the test space W,* we need a dual partition 
V2 of the domain into the finite (control) volumes V. Let J\/ denote the set of 
all vertices (nodes) of the triangles/tetrahedra from 7s and let NO be a subset 
of those vertices that are not on the Dirichlet part of the boundary 692 \ l?. 
In each simplex T E 72 one selects an interior node 5~. Next, in 2-D one links 
ZT with the midpoints of the sides of the triangle. In this way the triangle is 
split into three quadrilaterals. In 2-D, one can select XT to be the orthocenter 
of the finite element T and then the edges of the volume V(x) will be the 
perpendicular bisectors of the finite element edges (see the right Figure 2). 
With each vertex x E N of a simplex from 72, we associate a volume V = V(x) 
that consists of all quadrilateral/polyhedra having IC as a vertex (see Figure 2 
for finite volumes in 2-D). The splitting of 02 into finite volumes V forms the 
partition V2 (see, Figure 3). 

Consider now the test space I&‘,* spanned by the characteristic functions of 
the volumes V E V2 and that vanish at the nodes N \ No on the boundary 
802 \ r. If one defines the piecewise constant interpolant Ii with respect to 
the volumes V E Vs, then the space W; is actually equal to Ihl4’2 because they 
have the same degrees of freedom (associated with the vertices x E N). 

The L2(R2) and Hl(&) norms in W2 are defined in a standard way. We 
shall need also discrete variants of these norms for functions in W$. First, we 
define the interpolation operator Ih : W; H Wh by the following natural rule: 
Ihws is the piece-wise linear interpolant of wz over each finite element T E 72. 
Then we define 11~ .$ r,h = Illhw~IIr,~~. This norm is essentially formed by the 11 
squared differences of the values of w; at the vertices of each finite element. 
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Figure 2: A finite volume V associated with a vertex from the primal triangu- 
lation. Left: the vertices of V interior to the triangles T are arbitrary, whereas 
those on the edges of T are midpoints. 

Figure 3: In Rr we use the lowest order Raviart-Thomas spaces over the finite 
elements T; in 02 we use a solution space W, of continuous functions that are 
linear over the finite elements T and a test space W,* of pice-wise constant 
functions over the volumes V. 
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Next, we define the following, in general nonsymmetric, bilinear form on 
w, x w;: 

a2,h(w2,wS) = - C wz*(x) J aVm,h.nds 
ZEN0 av(z) 

=- ES aVp2,h . n wf ds, for all 7~2 E WZ, w; E W,*. 

-b(z) 

Then the finite volume approximation of (15) is: find w2 E W2 which satisfies 
the following identity for all wz E W;; 

aqh(w2,wg) = (f,wg) - J’qNw$ds. W 
r 

We note that the integrals over dV for V = V(x) a volume corresponding to a 
Neumann node IC (i.e., if x E I?), contain only the interior (to R2) part of dV. 

We assume that the triangulation 72 is aligned with the possible jumps of 
the coefficient matrix a(x), i.e. over each finite element T E 72 the matrix a(x) 
has smooth elements. Therefore, there is a constant CO > 0 such that for all 
T E 72 

-Cohii(x) 2 a(x) - 6(x) L C~hli(x), 

where G(x) = J a(s)ds/meas(T), z E T. 
(17) 

T 

These inequalities of two d x d matrices with real elements are understood 
in the sense of inequalities for the corresponding bilinear forms, i.e. a 2 
qx), iff tTa[ 2 tT6(x)<, V 5 E Rd. Also, the above equality of the matrices 
a(x) and SC(z) is understood in element-by-element sense, i.e. the elements of 
G(x) are the mean values over T of the corresponding elements of a(x). Obvi- 
ously, in case of piece-wise constant coefficients a(x) E 6(x) and CO = 0. 

The well posed-ness of the finite volume element approximation follows from 
the weak coercivity of the bilinear from a2,h(vs, wa) for sufficiently fine parti- 
tions 7-s. We have: 

Lemma 3 Let the partition 72 be so fine that h < l/Co, where the constant 
CO is determined in (I?‘). Then the following inequality holds true 

a2Ph(w27W’) 2 CIIv2lll,n,, for all v2 E W2 
w;2& ll$ Ill,h 

with a constant C independent of h. 
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In 521 we use the lowest order Raviart-Thomas spaces. Thus, V as a sub- 
space of H(diw; fir), and WI is the space of piece-wise constant functions with 
respect to the partition 71 and therefore a subspace of H&,(fil) for K = 71. 
Thus, the advection term Cp, will be discretized using the pressure space WI 
of piecewise constant functions on the triangulation 71. For the discretization 
in 02 we will use the space WZ c H,j (02, dR2 \ r) of continuous piecewise 
linear functions on 72. Further, in the finite volume setting we use as a test 
space W,* of piecewise constant functions on Vs. Thus, applying equation (4) 
consecutively for (wr, wl) E WI x W2, and (‘us, 10;) E W2 x W,*, respectively, 
we get the mixed finite element and finite volume approximations, respectively, 
of the bilinear form corresponding to the first order term. However, like in the 
standard Galerkin finite element method this approximation of the operator 
C will lead to central differencing, which in turn will lead to a conditionally 
stable (only for sufficiently small step-size h) scheme. In order to derive a 
unconditionally stable scheme we shall use upwind approximation in es. 

3.2. Derivation of the coupled method 

Since both wr and wr are discontinuous piece-wise constant functions with 
respect to the triangulation 71 the formula (4) is applied in a straightforward 
manner for K = 71 so we get the following approximations at1 and ak2 of the 
forms all and a12, respectively: 

and 

at2(v2, w) = J 1; 02 wl b . nl ds for 212 E W2, w1 E WI. (1% 
r- 

Now we find the contributions of the the operator C from 02 and we define 
the approximations of the bilinear forms a21 and a22. We shall simply rewrite 
(4) for K = Vz: 

C(vz,w3= c ( -~w2b+Vw~dZ+~v-w~w~ib,nds 
VE 21, (20) + J co(x) ‘~2 w,*dx + 

V J wf wli 4. n ds . 
av+ > 

Since the functions in W2 are continuous then C(wz, w$) is well defined for 
all 212 E W2 and ws E W,*. Taking into account that the functions in W,* are 
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Figure 4: The shaded area is the volume V centered at the vertex xi; the 
doted boundary of V denotes the “inflow” boundary, while the solid one is 
the “outflow” part; on the various pieces of the boundary dV we have the 
following approximation of the convection term: on (a, b), (m, c), (f, g) and 
(g,a): v~(z) = We; on (b,m) : w2(2) = 212(P) = vz(C); on (c,d) : 2)2(x) = 
v2(z”) = Q(D); on (d,e) : 212(x) = w2(2”) = wz(E); on (e, f) : us(x) = 
212(x0) = wz(F). 

constant over each finite volume V E Vs then the contributions from each finite 
volume V E V2 are: 

J av [(b. n)-wi + (b. n)+v!J wlids + J co 7~2 $dx. 
V 

Since 212 is continuous then obviously, we have w; = wf = us(~). On the 
boundary l?+ the values w; are not defined (this is the inflow boundary for 02) 
and we shall take them from the corresponding counterpart in Rr , i.e. as wr (x). 
Thus, we split the integrals over dV into two parts and get 

J b. n wzw$“ds + J b. n wlwgids. 
aw+ avnr, 

Unfortunately, the exact calculation of the first integral in (21) will lead to 
central differences and therefore to a scheme which is stable only for sufficiently 
small step-size h. The limitation of the step-size h will depend on the magnitude 
of the convection coefficient b relative to the diffusion coefficient (matrix) a. For 
problems with dominating convection this will lead to prohibitively small h. In 
order to avoid this conditional stability we introduce an up-wind approximation 
of the integrals. This approximation is done in the following way. We denote by 
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V(zi) a finite volume centered at the vertex xi and by V(9) any of neighboring 
volumes centered at the vertices x0. The integral over dV \r- is split into sub- 
integrals over the boundaries of V y = V(zi) fl V(zf) f? T with its neighboring 
finite (control) volumes and contained in the finite element T. We assume that 
over each y the function b(z) .n does not change sign (i.e. is either nonnegative 
or negative). Then on y we use upwind approximation of the following form 
(for a 2-D illustration, see Figure 4): 

b.n~a(x) 25 @-n)+v2(xi) + (b-n)--vz(x’), for x E y. 

Note, that in the finite volume V(zi) we have I;twz(z) = w2(zi). Similar 
equalities are valid for the neighboring volumes V(z’) as well. Thus, roughly 
speaking the function ‘u2(x) has been replaced by its interpolant in the space of 
discontinuous functions W,* and then taken the appropriate (up-wind or in the 
opposit direction of the vector-field b(x)) values at the finite volume interfaces. 
A particular finite volume in 2-D is shown on Figure 4. 

Summing for all V E V2 we finally get the following form by taking also into 
account the diffusion term (16): 

for all 02 E W2, w; E W,* and the form 

Jr+ 

The coupled mixed finite element/finite volume approximation of the com- 
posite problem (12) reads as: find IQ E V, pr,h E WI, and ~.5,h E W2, such 
that 

(a-h, v) -h,h,V .v) + cp2,hv.m >r= 0, 

-(V . u/L, Wl) -&(Pl,h, WI> 42(432,h, Wl> = -(f,w), (24) 

< uh .nl, Ihw2* >r -&Pl,h7 4) -42(P2,h,w;) = -(f,4 

for all v E V, wr E WI, and 2~; E W;, respectively. 

3.3. Stability of the coupled scheme and error estimate 

An important feature of the described above discretizations is that the corre- 
sponding operator is coercive in an appropriate norm and the method is stable. 
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For proving the stability we shall follow the same argument as in the case of 
original setting. Let as before E = {e} be the set of edges/faces of the elements 
from x and let Ee be the set of interior edges/faces. Similarly, G = {y} is the 
set of edges/faces, with each y being the boundary of two adjacent volumes 
VI E V2 and V2 E V2 contained in a finite element T, i.e., y = vr n vs fl T. 
This splitting can be also used in the computational procedure, since it will 
lead to element-wise contributions of the convection term to the stiffness ma- 
trix. Note, that all edges/faces y are in the interior of 02. For the coercivity of 
the coupled problem we need the following discrete variant of the norm (13): 

+A J’ 1 

2 afh+\r+ 
v: b. nl ds - 5 

J’ 
IJ: b-n1 ds 

Xll~\r~ (25) 

+L 2 
J’ 

r 
+ 

(wl - II;)~~. nl ds - i l- (~1 - ~;)~b. nl ds 

+7olb,* II&?, + (m?&) VIjy2). 

Here zi is a piece-wise constant matrix with respect to the partition 72 defined 
by (17). 

Theorem 2 Let h < l/CO, where CO is defined by (17). Then the solution of 
the problem (12) satisfies the a priori estimate: 

ll~hllL~(~21) + IlPl,hll*,h, 01 + IlP2,hll*,h, .a I cllfll (26) 

where the (*, h)-norm is defined by (Z5) with respect to the partitions 7; and 
72. 

Proof: As in the continuous case, by testing (24) with v = uh, wr = -pl,h, 
and ws = -Iipz,h we get the equation: 

WWL, Uh) + @,(Pl,h, Pl,d + @2(Pl,h, I;tP2,h) 

+&v;P2,h, Pl,h) + &2(P2,h, GP2,d = (f, Pl,h) + (f, GP2,d 
(27) 

Further, the estimate (14) is a consequence of the simplified form (28) of u:r 
and (29) of ut2,, which are established in the lemmas below. 

Lemma 4 For any edge/face e denote by n, a fixed unit vector normal to 
e and let T,f and TeM be the two adjacent elements to e. Similarly, for any 
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edge/face y E G denote by ny a unit vector normal to y pointing to one of the 
neighboring volumes V,’ and V,-. Also, [VI] denotes the jump of a function 
across an underlined boundary (here we have either e or y) and ~1 denotes the 
arithmetic mean of the jump (introduced in Section ). Then, 

&(“l,“l) = f c /[wl][wl]lb.nl ds-t c /b-n,.[vll G lds 
eEEo e eEEo e 

+(cov, w) + J b.nl ulwl ds for q, WI E WI. 
(28) 

01, 

Similarly, for all v2 E W2, w; E W,* the following identity is valid (to simplify 
the expressions we have used the notation vz = Iiw2): 

4!(~2,WZ*) = ~~~[d[w;]lb~4ds+~ Jb.q [vG]~ads 
“Pa -Y +(cov2*, w2*) - J b.nl vows ds +a2,b(v2,w;). 

(29) 
r- 

Proof: The proof of (28) and (29) essentially repeats the arguments of Lemma 
1. There is a small difference in the proof of (29) where the integrals over each 
y E G have been computed by using up-wind approximation. 

Lemma 5 The following identity is valid for all 01 E WI: 

&(%Vl) = f C J[QI~ Il!.mI ds+ ((co + ~v.L+~, ~1) 
eEEo e 

+A J 1 J (30) 

2 801, 
VT b. nl ds - - 

2 x2- 
wf b. nl ds. 

Similarly, for all v2 E Wz (here in order to simplify we use the notation vz = 
&): 

&('UZ,VZ*) = :C J[w;12 Ib.nllds+((co+~~.~)v;, vg) 
y& -f 

+I 
(31) 

2 J r + (w;)~ b. nl ds - 5 l- (r~g)~ b. nl ds. 

Finally, we have the following error estimate: 
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Theorem 3 Assume that the solution p(x) of the problem (1) is H2-regular in 
0. Then the solution (uh,pl,h,p2,h) of the coupled mixed discontinuous finite 
element and finite volume methods (24) converges to the solution (u,pl ,p2) of 
the composite problem (12) and the following error estimate holds true: 

1I~-~hll+llPl-P, II I h *,~tl + 11~2 - ~z,Al*,nz 5 C($ + h)llPllz,n. (32) 

The constant C does not depend on h but may depend on the ratios 2 and 5. 

4. Bibliography 

PI R.E. BANK AND D. J. ROSE, Some error estimates for the box 
method, SIAM J. Numer. Anal. 24(1987), 777-787. 

PI F. BENKHALDOUN AND R. VILSMEIER (EDs), Proc. First Intern. 
Symposium on Finite Volumes for Complex Applications, July 15 - 
18, 1996, Rouen, France, Hermes, 1996. 

[31 F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element 
Methods, Springer-Verlag, 1991. 

PI Z. CAI, On the finite volume element method, Numer. Math., 58 
(1991) 713-735. 

151 Z. CAI, J.J. JONES, S.F. MCCORMICK, AND T.F. RUSSELL, 
Control-volume mixed finite element methods, Computational Geo- 
sciences, 1 (1997) 289-315. 

PI 

VI 

PI 

Z. CAI, J. MANDEL, AND S.F. MCCORMICK, The finite volume 
element method for diffusion equations on general triangulations, 
SIAM J. Numer. Anal. 28 (1991), 392-402. 

S.H. CHOU AND P.S. VASSILEVSKI, A general mixed co-volume 
framework for constructing conservative schemes for elliptic prob- 
lems, Math. Comp., 68 (1999). 

S.H. CHOU, D.Y. KWAK, AND P.S. VASSILEVSKI, Mixed co- 
volume methods for elliptic problems on triangular grids, SIAM 
J. Numer. Anal. 35 (1998), 1850-1861. 

17 

*This work was performed under the auspices of the U.S. Department of Energy 
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 



PI 

PO1 

WI 

PI 

WI 

P4 

P51 

WI 

P71 

T. IKEDA, Maximum Principle in Finite Element Models for 
Convection-Diffusion Phenomena, Lecture Notes in Numer. Appl. 
Anal., Vol. 4, North-Holland, Amsterdam New York Oxford, 1983. 

C. JOHNSON, Numerical Solution of Partial Differential Equations 
by the Finite Element Method, Cambridge University Press, 1987. 

R.D. LAZAROV, J.E. PASCIAK, AND P.S. VASSILEVSKI, Iterative 
solution of a combined mixed and standard Galerkin discretization 
methods for elliptic problems, (submitted to Numer. Linear Alg. 
APP~.). 

M. LIU, J. WANG, AND N.N. YAN, New error estimates for ap- 
proximate solutions of convection-diffusion problems by mixed and 
discontinuous Galerkin methods, Univ. of Wyoming, Preprint, 1997. 

I.D. MISHEV, Finite volume methods on Voronoi meshes, Numeri- 
cal Methods for Partial Differential Equations, 14 (1998), 193-212. 

P.A. RAVIART AND J.M. THOMAS, A mixed finite element method 
for 2nd order elliptic problems, Mathematical Aspects of Finite El- 
ement Methods (I. Galligani and E. Magenes, eds), Lecture Notes 
in Math., Springer-Verlag, 606 (1977), 292-315. 

P.A. RAVIART AND J.M. THOMAS, Primal hybrid finite element 
methods for second order elliptic equations, Math. Comp., 31 
(1977), 391-396. 

M. TABATA, A finite element approximation corresponding to the 
upwind finite differencing, Mem. Numer. Math., 4 (1977) 47-63. 

C. WIENERS AND B. WOHLMUTH, Coupling of mixed and con- 
forming finite element discretizations, American Mathematical So- 
ciety, Cont. Math. 218 (1998), 547-554. 

18 


