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Molecular Dynamics Simulation of Materials 
Response to High Strain-Rate Loading 

James Belak 
University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550 

A molecular dynamics (MD) analysis of conservation of momentum through a shock front is presented. The MD model 
uses a non-traditional boundary condition that allows simulation in the reference frame of the shock front. Higher order 
terms proportional to gradients in the density are shown to be non-negligible at the shock front. The simulation is used to 
study the sequence of thermodynamic states during shock loading. Melting is observed in the simulations, though above 
the thermodynamic melt curve as is common in homogeneous simulations of melting. High strain-rate tensile loading is 
applied to the growth of nanoscale voids in copper. Void growth is found to occur by plasticity mechanisms with disloca- 
tions emerging from the void surface. 
[molecular dynamics, shock loading, conservation of momentum, shock melting, void growth] 

1. Introduction 
The molecular dynamics (MD) method has been applied to 

the study of shock problems with varying degrees of success and 
has now become a standard technique in the study of atomistic 
processes at a shock front [I]. In the early work [2-41, the shock 
was generated by either driving a fixed wall of atoms into a 
material (material reference frame) or driving a material at a 
constant velocity into a stationary wall (piston reference frame). 
More recently, Holian and coworkers [5,6] extended the model 
by imposing a time-dependent periodic boundary condition to 
generate the shock within the material frame. However, none of 
these simulations have been performed within the reference 
frame of the shock. This latter coordinate frame is especially 
useful because, in this frame only, the flux of mass (pu), 
momentum (puu+P) and energy (pu(E+uu/2)+uP + q) have 
constant values everywhere when the profile is steady[7]. Here, 
the macroscopic state variables are as follows: p is the mass den- 
sity, u is the flow velocity, E is the internal energy per unit mass, 
P is the pressure tensor (the negative of the stress tensor), and q 
is the heat current density. Only recently have algorithms been 
developed to perform the simulation within the reference frame 
of the shock [8,9], and thus examine in detail the sequence of 
states which the material experiences during shock loading. In 
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Fig. 1. A schematic illustration of the boundary conditions 
used to simulate shock propagation within the reference 
frame of the shock. The molecules flow from left to right in 
the figure and the shock front is stationary. 

this paper, we examine in detail the conservation of momentum 
through the shock front and the resulting sequence of states 
which the material experiences during shock loading. We close 
with recent results for the high strain-rate growth of microscopic 
voids as occurs during dynamic fracture (spallation). 

2. Methods 
During our MD studies of tribological problems [lo] we for- 

mulated a constant velocity boundary condition for MD simula- 
tions. All atoms within a boundary region (see Figure 1) are 
constrained to propagate at a constant velocity. Atoms are con- 
tinuously inserted from the left, while atoms that leave the box 
are discarded-the system is open. The system is initially equili- 
brated at the desired temperature and density using the standard 
periodic boundary conditions. The final configuration from this 
periodic simulation is used to generate the configuration of 
incoming material. In addition to sampling the incoming veloci- 
ties from a Maxwell-Boltzmann distribution, we pass this 
incoming material through a small thermostat region to assure 
that the initial temperature is as desired. The remaining interior 
atoms are purely Newtonian and we retain the periodic boundary 
condition within the plane of the shock. The shock wave simula- 
tion is performed by imposing a constant velocity (Us,,,) to the 
inCOming material and a SlOWer COnStant VdOCity (Ushock-Upis. 

tori) to the departing material. As we increase the piston velocity, 
material piles up at the departing boundary until, above a critical 
velocity, a sharp density discontinuity propagates into the simu- 
lation cell (to the left in Figure 1). We associate this density dis- 
continuity with a shock front. By “tuning” the piston velocity, 
we make the shock front stationary with respect to the simula- 
tion cell and, in doing so, we are able to study shock propagation 
for arbitrarily long periods of time. Computer animated movies 
of these simulations demonstrate that the shock front is steady 
for both solid and fluid simulations. In the simulations presented 
here we employ cell lengths ranging from 20 to 40 atomic diam- 
eters, much greater than the l-2 atomic diameter shock thick- 
nesses observed for the strong shocks considered [6]. This 
relatively small cell length allows us to employ large cell widths 
while simulating no more than a few thousand atoms, hence 
opening an entire new class of problems to molecular dynamics 
modeling. 
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Fig. 2. A “snapshot” (all positions projected onto the x-y 
plane) of a simulated shock wave propagating along the 
[loo] axis of solid argon at U,,,,k=3.45f.01 km/s and being 
driven by a piston at Uni,t,,=1.271.01 km/s. 

3. Shock Loading of Argon 
Figure 2 is a “snapshot” of the system near the shock front 

from our simulation of a strong shock propagating along the 
[ 1001 axis in solid argon. The initial conditions were chosen to 
closely match the experiments of Dick et. ~1.~~ A summary of 
the potential models employed and initial states simulated in 
this work is presented in Table I. In these solid-state simula- 
tions we find an elastic precursor wave [14] to propagate in 
front of the plastic shock wave. This elastic wave stagnates at 
the incoming boundary and the system quickly reaches steady- 
state. For stronger shocks, the plastic wave overtakes the elas- 
tic wave. This appears to be the only observable effect of the 
constant velocity boundary condition. From the observed dis- 
order and diffusion in the shocked region, we find the final 
state in Figure 2 to be a fluid at P-7 GPa. We notice an interest- 
ing effect. The solid shocks into a dense solid which later 
melts. We find this to be true for all of the solid shocks pre- 
sented here-the solid shocks into a solid, which later melts if 
meta-stable. There is a well defined solid/fluid boundary trav- 
eling a few nanometers behind the shock front in Figure 2. 
From the observed shock (3.45k.01 km/s) and piston (1.27k.01 
km/s) velocities for this simulation, we estimate the time to 
undergo the melting transition to be a few picoseconds. 

To facilitate comparison with experiment, we have intro- 
duced cross-sectional bins (1000 per simulation cell) into 
which to measure physical observables. For the simulation 

TABLE 1. Summary of potential models and initial states 
used to simulate shocked argon. 
Lennard-Jones potential [ 121: &=119 K, 0=3.405 8, 
Exponential-6 potential [13]: &=122 K, r,=3.85 A, a=13.2 
Initial states simulated (p) for exponential-6 potential model): 

solid: T=75 K, P=O, p=1.567+.001 gms/cm3 
liquid: T=90 K, P=O, p=1.399rt.O01 gms/cm3 

System parameters: 
system size (N) 2000- 10000 atoms 
time-step (reduced units) 0.0025-0.005 
simulation time 2600- 10400 time-steps 
cross-sectional area 8.25-75 nm2 
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Fig. 3. The observed shock velocity as a function of piston 
velocity for simulated solid argon with the shock propagat- 
ing along the [ 1001 axis. The smooth curve is drawn through 
the simulation data and serves as a guide to the eye. 

shown in Figure 2, the width of each bin is -0.018 nm. There is 
no ambiguity in using bin widths this small as they are fixed 
relative to the shock and the material flows through the bin. 
The averages presented here are relative (in position) to the 
shock front. One observable of primary interest is the average 
flow velocity. We find the velocity to maintain a well-defined 
plateau (U,,,k> in front of the shock, decreasing rapidly 
through the shock front, and maintaining a well-defined pla- 
teau (Ushock-Upiston) well behind the shock. A plot of Ushock 
versus U plston for shocks along the [ 1001 axis in solid argon is 
shown in Figure 3. Also shown are experimental results on 
solid [ 111 and liquid [ 15,161 argon and a selection of previous 
MD simulation data [3,4,5]. The new results are in quantitative 
agreement with the previous simulations and the exponential-6 
potential is shown to be a more faithful representation of the 
experimental data. 

Having shown that our simulations model the experiments 
reasonably well, we turn our attention to the transport of mass 
and momentum through the shock front. We find the convec- 
tive mass flux (pu) to be constant (independent of position) to 
within our statistical uncertainty, which arises primarily from 
the uncertainty in our measurement of the density. Shown in 
Figure 4 is the average longitudinal pressure (P,>, convective 
momentum flux (pu2), and the total momentum flux as a func- 
tion of position for the simulation described in Figure 2. The 
oscillatory features in P, and pu2 are characteristic of the 
crystalline structure of the solid and are steady down to the 
shortest subaverage considered (a few vibrational periods). We 
do not observe them in our liquid state simulations. 

A general expression for the pressure tensor 
(P(r) = PK(r) + Pv(r)), valid for arbitrary density inhomo- 
geneities, was derived by Irving and Kirkwood [ 171: 

Nbin 

pK, apW = ( C n”(vi-Ubin),(vi-“bin)pG(‘i-r)) 
i=l 



and 
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where Ubi12 is the average flow velocity, <> denotes an ensem- 
ble average and 

c3C+3(rij)Crij),,(‘ij)fi 

f,p(‘ij) = - arij r.. ’ 
LJ 

Massignon [ 181 has derived an integral expression that avoids 
the above expansion: 

NbNs I 

pv, fop = -(~~~f(r)Sdss(r-ri-s(rj-ri))), 
i j 0 

which has been discussed in the context of surface tension [ 191 
and shock physics [20]. Common practice is to include only 
the first term in the expansion for the virial, valid when the 
material is homogeneous. The resulting longitudinal pressure 
is shown as the dashed curve in Figure 4c. Adding the convec- 
tive momentum flux, we find the dashed curve in Figure 4a. 
The oscillatory features, though only a few percent of the total 
momentum flux, are well beyond the statistical uncertainty in 
the calculation. These features are due to neglect of higher 
order terms in the expansion-terms proportional to gradients 
in the density. 

In the appendix to their paper, Irving and Kirkwood showed 
that by considering the force acting across a fixed surface in 
the material, they obtain an integral expression over the pair 
density equivalent to the integral expression of Massignon. 
Upon Taylor expansion, they showed that their integral expres- 
sion is equivalent to their previous expansion. Following Irving 

Fig. 4. (a) The total momentum flux, (b) the convective 
momentum flux (pu2), and (c) longitudinal component of 
the pressure tensor (P,,) as a function of position through 
the shock front for the simulation described in Figure 2. 

Volume (cm3/mole) 

Fig. 5. The sequence of states in P-V space that the system 
follows as it goes through the shock front. (a) The shock 
described in Figure 2.(b) A solid-state shock at Ushock = 
5.060f.005 km/s being driven at Uni,to,=2.27&.02 km/s. The 
smooth curve is the calculated solid Hugoniot (locus of final 
PV states). (c) A liquid-state shock at U,h,,k=3.651f.003 
km/s being driven at Upi,t,,=1.526*.005 km/s. In each case, 
the inset shows the sequence of P-V states as the system 
approaches the final state. 

and Kirkwood, we introduce fixed surfaces (the plane at the 
center of each bin) and explicitly evaluate the ensemble aver- 
age of all interatomic forces across this fixed plane. The result- 
ing longitudinal pressure is shown as the solid curve in Figure 
4c. Adding the convective momentum flux, we obtain the solid 
curve in Figure 4a-momentum is conserved to within our sta- 
tistical uncertainty, as expected. 

Having demonstrated that our calculation of the pressure 
tensor correctly conserves momentum, we now examine the 
sequence of thermodynamic states through which the material 
transforms during shock loading. In Figure 5, we show the path 
in P-V space for three simulations. The open triangles repre- 
sent the longitudinal component of the pressure tensor (P,) 
which varies linearly with volume through the shock front. 
This straight line is known as the Rayleigh line and the area 
beneath this line is equal to the change in internal energy 
between the initial and final states [7]. The pressure, however, 
includes both the longitudinal and transverse components of 
the pressure tensor (P = (P, + Pyu + Pzz) 13) and the sequence 
of pressure states (open circles) does not vary linearly with 
volume. 

The sequence of pressure states for the simulation described 
in Figure 2 is shown in Figure 5a. At the shock front, the pres- 
sure over-shoots the final state, then oscillates with diminish- 
ing amplitude, finally rising slightly at nearly constant volume 
as the system melts. In Figure 5b, we show the sequence of 
states for a stronger shock (18 GPa) in the solid. The pressure, 
while increasing in the solid, does not over-shoot the final state 
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Fig. 6 Simulated Hugoniot of argon in Temperature-Pres- 
sure. The initial condition is a solid at the experimental con- 
ditions [l l] and the shock is propagating along the [loo] 
direction is the fee crystal. The melting curve is taken from 
reference 13. 

and the melting does not occur at constant volume. We also 
show in this figure, for comparison, our calculated Hugoniot 
curve (locus of final PV states) for shocks along the [ 1001 axis 
in solid argon. Finally, we show in Figure 5c, the sequence of 
states for a liquid-state shock of similar strength to the solid- 
state shock shown in Figure 5a. The pressure rises smoothly 
with decreasing volume, though we note a slight kink in the 
curve near the final state, possibly due to the fluid responding 
in a solid-like manner during the short time scale involved in 
loading and later relaxing out of the non-equilibrium state. 

The calculated Hugoniot for argon in temperature and pres- 
sure is shown in Figure 6 using the exponential-6 interatomic 
force model. The temperature is calculated from the expecta- 
tion value of the kinetic energy far behind the shock front after 
equilibrium has been attained. The pressure is calculated two 
ways: (1) from the Hugoniot relations and (2) from the expec- 

,J/----I-,? 
Fig. 7. Isotropic tension is simulated by expanding the simu- 
lation cell in all directions at a constant rate. A nanoscale 
void of size R = 2nm = Z,,tt/lO is cut from the center of the 
cell. 

tation value of the stress tensor. The agreement between the 
two calculations is quite good. In contrast to recent MD simu- 
lations [21], melting along the Hugoniot in this work occurs 
above the thermodynamic transition for this potential [133, as 
is common in MD simulations of homogeneous melting. 

4. High Strain-Rate Void Growth 
The growth of microscopic voids is fundamental to the duc- 

tile fracture of metals [22]. At high strain-rates, as occur dur- 
ing shock loading, there is insufficient time for diffusive 
processes and void growth occurs by plasticity mechanisms. 
The long history of experiment [23] and of continuum plastic- 
ity models of void growth [22,24-271 has resulted in a highly 
successful continuum computer code model of failure based on 
the nucleation and growth of voids [28-301. However, there 
remains many unanswered questions concerning the micro- 
scopic mechanisms of void nucleation and plastic growth. 

A cubic simulation cell containing N=864000 atoms was 
created by replicating 60 FCC unit cells along each of the 
cubic axes. The embedded-atom method [31,32] is used to 
model copper. The equations of motion are integrated using a 
Verlet leap-frog algorithm with a time step of 6fs and periodic 
boundary conditions [ 121. The system was simulated at 
T=300K and P=O to an equilibrium cell length of f&t = 
21.7nm. A void of radius 2nm was then cut from the center of 
the simulation cell as shown schematically in Figure 7, result- 
ing in a system containing N=860396 atoms. The positions of 
every atom in the simulation cell are resealed as is commonly 
done in constant pressure MD simulations [33]: where, 
x = Hz, s c [0, 11, and H = {a, b, c} is a matrix com- 
posed of the simulation cell vectors. An isotropic constant 
strain-rate is simulated by specifying a constant time derivative 
of H. After equilibrium, the thermostat is turned off and 
expansion is simulated under adiabatic conditions. 

In a seminal paper on dynamic fracture, Barbee eta1 
[28] measured the growth rate of microscale voids in copper. 
They observed a viscous growth law of the form: 

3(0 - QJ 

V = V,e 4q 
t 

= Voecrt 

where V is the void volume, (J is the applied stress, ogO = 0.005 
GPa is the growth threshold stress, and q = 0.2 Pas is a mate- 
rial viscosity. At an applied stress of 6 GPa (well outside the 
experimental data), this model predicts a growth exponent of a 
= 2.2x10’%‘. 

Comparison with the MD data requires a metric of the void 
volume within the MD simulation. A void is where the atoms 
are not. Thus, we define a background grid and compute the 
sum of unoccupied grid zones. A grid spacing smaller than an 
atom size leads to spurious results. We find I,, = 0.36nm 
gives reproducible results consistent with the known initial 
void radius (2nm). This void volume metric introduces an error 
which scales as l/R. We estimate the error to be no more than a 
few percent for R = 2nm. The resulting volume is shown in 
Figure 8 as a function of simulation time. Three distinct, nearly 
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Fig. 8. The natural log of the void volume as a function of 
time for growth of an R=2nm void. The lines are drawn as a 
guide to the eye. 

linear regions are observed on the log plot, suggesting expo- 
nential growth. Void growth at early time is elastic, displaying 
no change when normalized by the total system volume. At 
late time, the growth is fully plastic with a surrounding net- 
work of dislocations moving into the material. Dislocations, as 
shown in Figure 9, first emerge from the void surface at 
t=O.O25ns and the nature of the intermediate region is not clear. 
From the slope of the curve at late time we estimate the growth 
exponent in the simulation to be a = 6.2~10’~s-‘. The factor of 
three higher exponent than expected from experiment is likely 
due either to the vast difference in length scale between the 
simulation and experiment, the surrounding perfect crystal in 

Fig. 9. The defect structure at t=O.O30ns as revealed by the 
atoms with potential energy 1% above the bulk potential 
energy at T = 1K. 

the MD simulation, or the empirical nature of the interatomic 
potential model. Further details may be found in reference 34. 

5. Summary 
A molecular dynamics analysis of conservation of momen- 

tum through a shock front is presented. The MD model uses a 
non-traditional boundary condition that allows simulation in 
the reference frame of the shock front. Higher order terms pro- 
portional to gradients in the density are shown to be non-negli- 
gible at the shock front. The simulation is used to study the 
sequence of thermodynamic states during shock loading. Melt- 
ing is observed in the simulations, though above the thermody- 
namic melt curve as is common in homogeneous simulations 
of melting. High strain-rate tensile loading is applied to the 
growth of nanoscale voids in copper. Void growth is found to 
occur by plasticity mechanisms with dislocations emerging 
from the void surface. 
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