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1 Introduction 

This report describes calculations concernin g the interaction of intense electron beam pulses 

with a solid target. In Section 2, we treat the propagation of a beam pulse through a dense 
plasma plume in front of the target, resulting from material blown off from the target by prior 
pulses. Because of the short magnetic decay-time, the primary effect of the plasma is to shift the 
focal spot of the beam longitudinally by an amount which is constant over most of the beam 
pulse. It may be possible to compensate for this effect by changing the upstream focusing 
elements from one beam pulse to the next. Section 3 describes a mechanism by which lighter 
ion species can diffuse to the surface of a plasma plume, thereby potentially increasing the 
concentration of bulk contaminant species such as hydrogen at the leading edge of the plume. 
These ions could then become a light-ion source for subsequent beam pulses. Based on the 
calculations, we tentatively recommend bulk contaminant fractions be limited to 10-5-10-4. In 
Section 4, we estimate the number of adsorbed monolayers needed to provide a space-charge- 
limited (SCL) ion source at the target for the initial beam pulse. We find that FZ 10 monolayers 
are required for SCL emission of Hl ions. This may explain why there was little evidence of 
focus disruption in ETA-II target experiments. 
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2 Intense E-Beam Propagation in Over-Dense Plasma 
B. Oliver 

2.1 Introduction 

A detailed study of the beam dynamics in the presence of an over-dense plasma column is 
given. The proposed use of intense electron beams as a source for x-ray driven Advanced 
Hydrodynamic Radiography requires beam spot sizes using Linear Induction Accelerator (LIA) 
technology of less than a millimeter and currents of 3 kA at energies of 40 MeV. The e-beam 
is focused onto a high atomic number (2) target producing bremsstrahlung x-ray radiation. 
Typical pulse-lengths T of order 50 ns with up to six pulses separated by - 350 ns (for a total 
duration of - 2 ps) are anticipated for an Advanced Hydro Facility (AHF). At these intensities 
and pulse durations the e-beam can readily melt the target material and cause a plasma plume 
to propagate outward into the path of subsequent pulses. The interaction of the beam with the 
cool, expanding plasma can result in increased beam spot and emittance on target. 

For a LIA driven beam, normal transport to the target occurs in vacuum. The beam is 
neither charge nor current neutralized and confinement and final focusing is achieved with 
magnetic lenses. If the beam encounters an over-dense plasma such that the plasma density 
satisfies Zn, >> nb, where nb is the e-beam density and Z is the plasma charge state, then 
the plasma will effectively neutralize the beam space-charge and current on a timescale of 
order the inverse electron plasma frequency l/w,, = (47rZ2e2n,/m,)-1/2 < r. For emittance 
dominated beams (as is the case after final focus to the target) this poses little effect to the 
beam propagation characteristics, since for such beams the propagation is nearly ballistic (i.e., 
no net forces act on the beam). 

On the other hand, near the target the e-beam radius is typically sub-millimeter, thus for 
even high conductivity plasmas with conductivities D > lOI s: the magnetic diffusion time 

td = (h&)/C2 is of the order td - 10 ns for rb - 1 mm. Indeed: at the focal/target plane, 

rb - 0.4 mm such that td is even shorter and the diffusion time satisfies td < 7-. For times 
intermediate to td and r the beam will be fully current un-neut.ralized but will remain charge 
neutralized (plasma ions will remain confined by the e-beam space-charge potential). As such, 
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the beam will propagate in a self-pinched mode. In this configuration the beams’ self-field acts 
as an additional focusing lens which can lead to adverse focal properties at the target. 

A review of the characteristics and analytic theory of beam propagation in plasma is given 
in Section 2.2. This is followed in Section 2.3 by results from simulation of an AHF parameter 
beam propagating to the target in l-3 cm length plasma columns. Simulations are conducted 
with the hybrid PIG/fluid code TEPID (target electron plasma interaction dynamics). Discus- 
sion of the simulation results and mitigation methods are presented in Section 2.4. 

2.2 Beam/Plasma dynamics 

An illustration of the beam propagation geometry is given in Figure 1. We are concerned 
with the propagation characteristics of the beam within the plasma plume. Hydrodynamic 
calculations with the LASNEX code indicate that a typical environment near the target will 
consist of a plume approximately 3 cm in length with density Zn, - 1O1” cmw3 and electron 
temperature T, 2 6 eV [I]. Prior to entering the plume the beam dynamics are well described by 
the paraxial envelope equation for propagation in vacuum. We therefore only consider changes 
to the dynamics in the region occupied by the plasma. For a uniform beam with emittance 
E = 0.15 rad-cm, impinging the target with a 1 mm focal spot, the beam parameters 3 cm from 
the target are rb = 0.11 cm with a macro-angle 0 = 28 mrad. Model equations describing the 
anticipated plasma dynamics as well as the corresponding beam dynamics are given below. 

2.2.1 Plasma model 

The plasma is modeled in the electron magnetohydrodynamic limit (EMHD) where plasma ion 
motion is neglected and all current is carried by the electrons. Plasma electrons are included as 
a cold, inertialess, resistive, fluid. The plasma current is therefore described by the generalized 
Ohm’s law (derived from the electron equation of motion with m + 0): 

1 EL----- 
en ccJ e 

se x B) + $L, 

where j, = -en,v, is the electron current density, n, the plasma electron density, and 0 the 
plasma conductivity. All other symbols have their usual meaning and Gaussian units are used 
throughout. Although the plasma ions are considered immobile on the timescales of interest, 

3 



beyn envelope 

r t 
Z 

target 

t 

simulation region 

Figure 1: The beam propagation geometry. 

qausi-neutrality is assumed such that n, = Zn, - nb. The assumption of quasi-neutrality is 
reasonable for plasma densities satisfying Zn,/nb > 5. 

The EMHD plasma limit is generally valid for timescales short compared to the ion gyro- 
frequency sli = ZeB/Mc and lengthscales short compared to the ion inertial length C/L+ [2]. 
For the problems of interest here, the maximum magnetic field Bg = 2Ib/crb z 5 kG for a 
beam current Ib = 3 kA and radius rb = 1 mm. Hence, for pulse-lengths r = 50 ns, the ratio 
(S242n) - 10-1-10-2 fo r plasma ions H+-Taf6. And for typical length-scales of order the 
beam radius (T@+i/c) - 10e2 for plasma densities Zn, - 1Ol6 cm-3. 

The electron current is related to the magnetic field and the beam current jr, = -enbvb via 
Ampere’s law with the displacement current neglected: 

j, = &V x B -j,. (2) I 

.4n induction equation for the magnetic field is obtained from the curl of Eq. (1). Substitution 
of Eq. (2) into the resulting induction equation yields an evolution equation for B which is 
strictly a function of the beam current density and the plasma parameters 0 and n, 

dB C 
-tVx--- 
at 

xB=Vx 
c2 

47rene 
vxB--?jb 

C 
G vXB--%jb 

/ C 
(3) 
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For a known beam particle and current density, Eq. (3) represents a self-consistent calculation 
of the magnetic field (and hence the net current) in the plasma. The second term on the lhs 
of Eq. (3) describes advection of the magnetic field with the plasma electron fluid and is a 
consequence of the Hall term in Eq. (1). The term on the rhs describes diffusion of the return 
current. The beam particle evolutions are solved consistently via the Lorentz force equation 

(4) 
by the Particle in Cell (PIC) method outlined in Section 2.3. The beam density and current 
density are obtained from the appropriate moments of the particle distribution. 

For axisymmetric plasmas and beam distributions (i.e.; 8, = 0), and for beam particles with 
zero angular momentum, the only component of B = B&. 

2.2.2 Beam envelope dynamics 

Although we numerically solve the beam evolution consistently with the plasma dynamics via 
Eq. (4), a simple picture of the evolution from consideration of the beam envelope equation is 
pertinent. For relativistic electron beams, the envelope radius rb is described by the paraxial 
ray equation [3] 

d2rb 2V 

- = fi[l - fe - (l - .fb)821$ + ,-&$ dz2 (5) 

where the independent variable .z is the propagation axis, E (rad-cm) is the beam emittance, Y is 
Budker’s parameter which is related to the normalized beam current v G [lb/17(kA)B], j3 is the 
normalized beam velocity p = ‘ub/c, and y is the relativistic factor. In Eq. (5) the coefficients 
fe and fb are the fraction of beam charge and current neutralization, respectively. In vacuum, 
fe = fb = 0. For propagation in a resistive, over-dense plasma: and for times t > l/upe, the 
charge neutralization fraction fe = 1 and the current neutralization fraction 1 > jb(t) 2 0. 
In particular, for times t >> td, the beam current is fully unneutralized, fb -+ 0, and Eq. (5) 
becomes 

d2rb -2v 1 E2 1 -=-- -- 
dz2 

+ 
7 “-b y2,D2 r: ’ (6) 

If the beam emittance is conserved, it proves useful to normalize rb to the equilibrium (matched) 
beam radius a = (t/d-) and z to the betatron wavelength X = (~/2~,8). In the normalized 
variables, Eq. (6) becomes 

d”r -A+’ 
@= r r3’ (7) 
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where the subscript b has been dropped for convenience. From the first integral of Eq. (7), the 
dynamics of the beam envelope are completely determined by the Hamiltonian 

H = i 2 ‘+ln(r) + $. 
( 1 

v4 
Equation (8) describes the periodic oscillations of a particle in a potential 

4(r) = In(r) + $. 

The potential 4(r) is plotted in Figure 2 (a). 

For perturbations about the equilibrium energy H = l/2, corresponding to the matched 
beam condition rb = a, the beam envelope oscillates harmonically with wavenumber k0 = a/X. 
For larger energies, the envelope oscillations are strongly anharmonic with normalized inverse 
wavenumber (oscillation period) 

1 1 -- -- 
k s 

T%XX dr 

x T,i, J2H - 21n(r) - l/r2’ (9) 

where r,in and T,,, are the minimum and maximum envelope radii, respectively. The values 

rmin and rrnax are given by the roots of the transcendental equation 4(r) = H. For normal 
injection into the plasma region [i.e., (dr/dz) = 0] the value F = ~/k represents the distance 
to the first minimum of the beam envelope and is equivalent to the focal plane for a beam 
focused by a magnetic lens comprised entirely of its own self-field. A plot of F vs. H is given 
in Figure 2 (b). Note the limiting value of F + 7r/fi as H -+ l/2. 

2.3 Simulation results 

TEPID is a cylindrically symmetric hybrid code which has been adapted from the Solenz code 
[2] for the study of relativistic electron beams in plasma. The Eqs. (1) and (3) for the plasma 
response are solved via finite difference on a fixed Eulerian grid in the (r, z) plane. The electron 
beam particle orbits (positions and velocities) are calculated self-consistently from Eq. (4) in 
the PIC limit after obtaining the fields E and B from (1) and (3), respectively. The beam 
density nb and current density j, are solved from the appropriate moments of the beam particle 
distribution. 

For the simulations reported here the beam parameters are between 2.7-3 kil current, 
40 MeV energy: with emittance E = 0.15 rad-cm. The beam pulselength 7 = 50 ns. This 



a> 

w-1 

2.00 4100 
r 

b) 

F 

Figure 2: (a) The beam envelope potential $( ) r and (b) the distance of the first envelope 
minimum as a function of the beam injection energy H for normal (dr/dz = 0) injection. 

7 



corresponds to y N 79 and u N 0.17, and a matched beam radius a = 0.03 cm and betatron 
wavelength X = 0.45 cm. The initial injection root-mean squared radius (rms) ri = 0.08 cm and 
initial macro-angle of injection 0 = 28 mrad. For vacuum transport, these initial conditions 
yield an rms beam radius at focus rf = 0.045 cm at a focal plane 3 cm downstream of the 
injection plane. For a uniform density profile, the beam envelope radius is rb = fir,,,. A 
plot of the beam configuration (r, z) space and phase space (r, uT/c) at the target is given in 
Figure 3 for the case of vacuum transport (i.e., no plasma field interaction) and a Gaussian 
beam profile. The injection plane is at z = 0 and the target is located at z = 3 cm. In Figure 4 
the beams’ root-mean-squared radius r,,$ and emittance E at a) the injection plane and b) the 
target are plotted. Note that in this case without plasma interaction the emittance is conserved 
during propagation. 

The plasma parameters are held constant with Zn, = 1016 cmW3 and CJ = 1.3 x 1Or4 s-r. 
For a Spitzer conductivity 0 = (&/4nv,i), where v,i = 2.9 x 10-6AZn,T,-3/2 is the Coulomb 
collision frequency, the value of CJ corresponds to a plasma with electron temperature T, N 6 eV. 
Importantly, for Spitzer like values, the plasma conductivity is only weakly dependent on density 
through the Coulomb logarithm A and, therefore, spatially dependent densities have little effect 
on the diffusive properties of the plasma. For these parameters, the characteristic magnetic 
diffusion time td = (27rar2/c2) E ( r2w&/2c2y,i) is approximately 6 ns at r = ri and 1.2 ns at 
r = rf. Both times are much shorter than the beam time r. 

Results from propagation within the target plasma column are presented in Figures 5-7 for 
beams with a Gaussian and a uniform current density profile at injection. In Figures 5 and 6 
the configuration and phase space are plotted at time t = 40 ns for the Gaussian and uniform 
distribution beams, respectively. Compared to the results plotted in Figure 3! it is clear that 
the beam has been pinched and pre-focuses, resulting in a large spot at the target. The r,,, 
radius and 6 are plotted in Figure 7 as a function of time at the target plane (2 = 3 cm) for 
both distributions. The radius at first decreases, pinchin, 0 to less than 0.025 cm, but then 
rapidly increases as the focal point of the beam sweeps backwards away from the target plane. 
The beam is now over-focused and hence, obtains a small spot at a distance in front of the 
target and then spreads out to large radius at the target [this is evidenced in Figures 5 (a) 
and 6 (a)]. By the time t = 10 ns, both beams are near equilibrium, with a time independent 
r,,, E 0.065 cm. Note that this time is in close agreement with the diffusion time td = 6 ns at 
r = ri: demonstrating that the plasma return current has nearly decayed to zero and the full 
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Figure 3: The beam (a) configuration space and (b) phase-space at the target position z  = 3 cm: 
for the case of vacuum transport. 
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Figure 4: The beam emittance (dashed line) and r,,, (solid line) radius at (a) injection z = 0  
and (b) at the target position z = 3  cm: for the case of vacuum transport. 
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Figure 5: The beam (a) configuration space and (b) phase-space at the target position z  = 3 cm: 
for the case of propagation in a 3 cm long plasma. The initial beam distribution is Gaussian. 
Beam parameters are 3 k-4, 40 MeV, E = 0.15 rad-cm. 
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Figure 6: The beam (a) configuration space and (b) phase-space at the target position z = 3 cm! 
for the case of propagation in a 3 cm long plasma. The initial beam distribution is uniform. 
Beam parameters are 3 k-A> 40 MeV, E = 0.15 rad-cm. 
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4 Radius for different injection distributions 

/ I I ’ I 40 MeV, 3 kA beam 
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b) Emittance for different injection distributions 
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Figure 7: The beam (a) root-mean-squared radius (b) emittance at the target as functions 
of time. Results for both the initial Gaussian distribution (dashed) and uniform distribution 
(solid) are plotted. 
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beam current is exposed. Thus in Eq. (5) fb -+ 0, while fe = 1 is maintained by the assumption 
of quasi-neutrality. 

According to the discussion of Section 2.2.2, the new focal plane should be a function of the 
injection energy H and of order A. For the uniform beam profile given in Figure 6 the beam 
envelope at injection rb = &ri = 0.11 cm, which is equivalent to a normalized envelope radius 

T = rb/a = 3.7. The normalized injection macro angle (dr/dz) = @(x/a) = 0.42. Hence, from 
Eq. (8) the Hamiltonian H E 1.4. This results in a calculated minimum radius T,in = 0.5, or 
equivalently in unnormalized units Tblmin = 0.5~~ = 0.015 cm. The distance to first focal plane 
is given by Eq. (9) except that the integral is terminated at the injection radius ri not T,, 
since dr/dz # 0: 

dr J 1.4 - In(r) - 1/2r2 
= 3.8, (10) 

In unnormalized units, this corresponds to a new focal plane f = X.zf = 1.7 cm., in excellent 
agreement with the results presented in Figure 6. 

Returning to Figure 7, it is observed that for both distributions the asymptotic value of r,,, 
is nearly the same, however the beam with initial Gaussian distribution has a greatly incrkased 
emittance at the target, relative to the beam with uniform distribution. The increase in E is 
due to a change in the distribution after the beam has passed through the new focal plane f. 
The initial and final radial distribution of the current density are plotted in Figure 8 for (a) the 
Gaussian and (b) the uniform distributions. It is observed that the uniform distribution remains 
nearly uniform at the target, whereas the Gaussian distribution at the target is distorted from 
Gaussian and has developed a wing at T = 0.1 cm. If in a real experiment the injected beam is 
more uniform than Gaussian only marginal emittance growth (- 15%) is to be expected. 

The emittance as a function of distance is plotted in Figure 9. The success of Eq. (10) in 
predicting the new focal plane is due in part on the assumption that E remain constant during 
propagation. Indeed, for propagation prior to the focal plane f the beam compresses almost 
laminarly, and not until orbits have crossed near the focal plane does the emittance increase 
(although for the uniform distribution it is still only a marginal increase). This indicates that 
if the target is placed slightly upstream of the new focal plane: the emittance growth can be 
substantially limited. 

The plasma plume will expand from the target at a rate such that for the duration of each 
pulse (e.g., 50 ns) the plasma will essentially be stationary. However, each subsequent pulse 
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Figure 8: The beam current density at the injection plane and the target plane as a function 
of T for (a) the Gaussian beam, (b) the uniform beam. 
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Figure 9: The beam emittance as a function of axial position. 

will see a plasma of larger length. The simulations reported above considered a 3 cm plasma 
which is relevant for the 6th pulse in the train. Earlier pulses will pass through shorter plasma 
columns. In all cases, though, the beam will still focus before the target (provided the target 
is fixed at the focal plane position relevant for vacuum transport). However, since the “new” 
focal plane will be closer to the target for shorter plasma columns, we expect the spot-size on 
target to be smaller for shorter plasmas. On the other hand, since the emittance grows in the 
region around the focal plane and is essentially constant upstream and downstream of the focal 
plane, the emittance at the target should be invariant to the plasma length. In Figure 10, T,,~ 
and E are plotted as functions of time at the target for the beam with uniform distribution and 
varying plasma length. 

2.4 Discussion 

The presence of an over-dense, resistive, plasma in the propagation channel of an intense e-beam 
causes the beams’ electrostatic electric field to be cancelled. In addition, because of the rela- 
tively short magnetic diffusion times id << T for these very small submillimeter radius beams; 

16 



a> 
0.10 

F 

Radius vs plasma length 

/ / 
- 3 cm plas 
--- 2cm 
- 1 cm 

40 MeV, 3 kA beam 
10(16), 6 eV plasma 

1 I I I I 

10.0 20.0 30.0 40.0 50.0 
time.(ns) 

4 Emittance vs plasma length 

- 3 cm plas a 
--- 2cm 
- 1 cm 

z 0.20 3 

0.10 
0.0 10.0 20.0 30.0 40.0 50.0 

time (ns) 
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time for propagation in plasmas of different length. Results are presented for the beam with 
an initially uniform distribution. 
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the self-magnetic field is not shielded for times t > td. In this case the normal electrostatic 

repulsive force does not override the magnetic pinch force, and the beam pre-focuses. This 
increases the emittance on the downstream target and changes the beam profile and spot-size. 

Fortunately, because the decay time is so short, the beam settles into a new equilibrium 
within a time t < r. In addition, under the influence of the pinch force, the beam compression 
is nearly laminar until reaching the first beam envelope minimum (the “new” focal plane). The 
emittance therefore remains nearly constant until the beam is within a few mm of the new focal 
plane. Hence, the axial position of the focal plane is predictable to a high degree of accuracy, 
and is a function of the incoming beam current, energy, radius, macro-angle, and emittance 
(all quantities which will be set and known upstream of the target-plasma interaction region). 
Because of this ability to predict the focal plane, it is therefore likely that corrective magnetic 
lenses can be employed to change the beams incoming focal properties such that the “new” focal 
plane remains at the target position. One can predict the necessary incoming beam conditions 
(dri/dz,ri) from Eqs. (8) and (9), g iven the focal distance F = R//C and minimum required 
radius T,in (note that, as with the sample calculation Eq. (lo), if dri/dz # 0 then T,,, = ri). 
If, in addition, the corrective lenses are applied such that the target is always slightly upstream 
of the new focal plane, the emittance growth at the target should be minimal. 
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3 Species Separation in Target Plasma 
D. Welch 

3.1 Introduction 

Ions emitted from the focal spot of an electron beam can lead to charge neutralization of the 
beam and radius blowup [l]. Lighter ions such as protons have the ability to drift back and 
degrade the beam within 10 ns of emission. Singly charged heavy ions such as Ta’ require a 
much longer time and will probably not impact a beam with a 50-ns pulse. In this section, we 
examine the physics of target plasmas. In particular, we look at ion selection and long time 
expansion of plasmas with multiple ion species. 

The IPROP simulation code [2] can be used to model a pre-existing dense plasma or follow 
the desorption and breakdown of a neutral layer at the target. The new IPROP algorithm models 
collisions between charge particles and neutrals. Fields (either electrostatic or electromagnetic) 
and particle motion are solved implicitly. The collisions between charged particles occur at 
the Spitzer collision frequency. Interactions modeled for charged particle-neutral collisions 
include elastic and inelastic scattering (ionization and slowing down). Thus, IPROP is capable 
of simulating dense collisional plasmas and gases expected at the focal spot of an intense electron 
beam and long-time expansion between pulses. 

In this section, we first present a quick summary of the IPROP algorithms used here to 
model target plasmas. We then describe the physics of multi-component ambipolar diffusion 
and present simulation results of beam-plasma interaction and inter-pulse plasma expansion. 

3.2 Summary of IPROP algorithms 

A 3-D implementation of the direct implicit particle-in-cell algorithm has been added to the 
IPROP code for static and electromagnetic field solvers [3]. The method is similar to that 
discussed by Hewett and Langdon for their 2-D AVANTI code [5]. The benefits of this treat- 
ment are that the usual limitations on time step, namely the need to resolve the cyclotron 
and plasma frequencies, are greatly relaxed. Also, the Debye length instability, responsible 
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for numerically heating a plasma until the Debye length is roughly the cell size, is nearly 
eliminated in useful regimes. 

With the addition of the implicit capability, the higher densities and lower temperatures 
that we can simulate kinetically imply a larger collision rate. Therefore, we have developed 
an algorithm to model electron-electron, ion-ion and electron-ion collisions and collisions with 
neutrals. These models involve first constructing drifting Maxwellian distributions at each grid 
cell in each direction for plasma electrons, ions and neutrals. Each kinetic particle is first 
scattered isotropically in the center-of-mass frame off its own distribution. The probability of 
scatter is given by P = At min(v,, c,/Az). Here, v, is the momentum exchange collision 
frequency, c, is the sound speed of the particle species, and Ax is the grid cell length. If P were 
not limited by c,At/Ax, we would experience a fluid Courant instability where information 
is transmitted faster than the speed of sound. To statistically conserve both momentum and 
energy, the probability of collision within and between species must be locally constant. This 
initial step preserves a Maxwellian distribution for a collisional plasma. It also pushes thermal 
conduction and includes pressure gradient forces and shock physics. 

Collisions between different species are separated into an energy push and a frictional mo- 
mentum push. The energy transfer from one species to another is accomplished by summing 
the temperature changes from each thermalization process. We assume the energy is trans- 
ferred isotropically, but this step could be done for each direction separately. Finally, we rotate 
the particle velocity to account for elastic scatter. The particle velocity is first translated into 
the weighted scattering center-of-mass (COM) frame. After applying this rotation, the veloci- 
ties are then placed back into the laboratory frame. The particle Lorentz force is modified to 
account for large momentum transfer frequency v,. 

-4 known problem with the kinetic implementation is that if time steps are large, t > l/wP 
(wP is the plasma frequency) and if electron particles cross more than half a cell in At, numerical 
cooling occurs. This is a noticeable problem in static field simulations where very large time 
steps are used with dense plasma problems. To circumvent this problem and achieve the desired 
speed up, we have included an implicit fluid model for the electrons. 

The equation of motion for the fluid electrons is identical to that of a kinetic particle, except 
for scattering terms. A pressure gradient force term, to model electron-electron collisions, and 
a frictional force between the electron and other species replace elastic scattering events for 
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kinetic particles. The fluid modeling avoids much of the numerical cooling by including a 
separate equation for energy that includes PdV, energy exchange between species, flux-limited 
thermal conduction, ohmic heating and inelastic losses, Mean motion of the fluid particle can 
be converted into internal energy via collisions with neutrals and ions. 

The internal energy for each particle is advanced and saved for the next time step. The 
energy conservation is quite good with this fluid algorithm at the large time steps desired for 
dense plasma modeling. However, in some circumstances, kinetic effects becomes important 
such as in runaway where a hot electron population coexists with a thermal one, and for less 
dense electrons accelerated from a cathode plasma. Thus, we need a hybrid, both kinetic and 
fluid, description for electrons. 

In the hybrid mode, IPROP permits electron particles to be either fluid or kinetic. The 
criteria for changing from one component to the other is still being studied. At present, the 
criterion for a fluid electron to become a kinetic one is that the directed energy is much greater 
than the internal energy. A kinetic electron is converted into a fluid electron if its kinetic energy 
is less than the thermal energy of the ambient dense fluid. These criteria are best suited to 
having electrons, created in ionization, begin their life as fluid particles. Boundary emitted 
electrons begin as kinetic electrons. 

IPROP also includes surface physics modeling. An initial quantity of contaminants (usually 
H2) is loaded on a surface. Following particle heating and impact, these neutrals can then be 
liberated due to thermal and stimulated desorption. The neutrals can subsequently be ionized 
from charged particle collisions. This capability is used in Section 4.5. 

These algorithms have been benchmarked against a known analytic two-dimensional am- 
bipolar diffusion problem. We have also achieved good agreement with several experiments 
involving gas breakdown and dense plasma behavior. 

3.3 Ambipolar diffusion 

A high-p plasma espands due to the thermal pressure of all its constituents. If the plasma is 
much larger than a Debye length, it must remain nearly neutral. However: lighter particles! 
such as electrons: will attempt to move faster than the heavier particles. This motion causes 
a slight charge separation creating an electric field that attempts to drag the heavier particles 

22 



along. The potential associated with the separation is roughly 4 = kT,. The effective diffusion 
coefficient D = kT/mv, of the ions is enhanced by the factor l+T,/Ti. Thus, a non-equilibrium 
plasma with hot electrons will expand rapidly. 

If two different weight ions exist in this expanding plasma, the lighter ions will accelerate 
more quickly under the influence of the field E z kT,/r, where T is the radius of the plasma. If 
the collisionality (vm) of the plasma is weak, the lighter ions will expand faster than the heavier 
ones. The expansion time for an ion of mass rni is given by, 

Hotter electron temperatures and smaller plasma radii will enhance the expansion. 

Ions of different mass can separate if, 

$ > 1, (12) 
m 

where uth is the thermal velocity of the lighter ion. For singly charged ions, this inequality is 
satisfied for plasma with temperatures > 1 eV and densities < lOi cmv3. 

Now we consider a beam impacting a target plasma of l-mm radius. Given a beam space 
charge potential e&, = 100 keV and 5 x lOi cm-3 impacting a plasma of density 5 x lOi cmm3. 
We can reasonably expect the electrons to heat to T, = e&,nb/nP or roughly 1 keV. The proton 
espansion time for this case would be short, roughly 4 ns. This expansion time would permit a 
stratification of the lighter ions at larger radii and heavier ions at smaller radii near the beam. 
Simulations show this effect has important implications for beam neutralization. 

3.4 Pre-existing plasma at target 

We have speculated that a beam impinging on a heterogeneous target plasma would tend to 
select heavier ions over lighter ions, similar to the process discussed by Mendel [4] for ion 
diodes. If this were the case, the most dangerous ions for producing a “flying focus” would not 
be emitted from the plasma. Heavier ions such as C’ or even metal ions would require 10’s 
of nanoseconds to disrupt the beam. To study this hypothesis, we initialize a 3 x 1015 cmw3 
maximum density plasma with 50% protons and 50% carbon ions. We simulated a uniform 
density plasma which extended 2-mm from the target and a plasma with density that falls 
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linearly to zero at 2-mm from the target surface. The results were similar for the two cases. 
A stiff (500 MeV) 2-kA (2-ns rise time), electron beam with 0.5-mm radius of uniform density 
is injected normally 3 cm from a tantalum target. The resolution at the plasma surface was 
50 microns. The results were similar with cell sizes twice this size. 

The simulations suggest that indeed the heavier ion dominates the neutralization process. 
The carbon ions exit the dense plasma at a smaller radius and thus neutralize the beam charge 
more efficiently even though the protons are emitted from the plasma with roughly the same 
density as C?. The reason for this behavior is that the electrons heat and the plasma undergoes 
ambipolar diffusion radially as discussed above. The light electrons move outwards first, then 
the protons accelerate radially due to the excess positive charge. The heavier Cs ions cannot 
react as fast as the protons and remain at a smaller radius. 

The proton density as a fraction of the beam density away from the target is 0.2 with the C+ 
fraction roughly 0.15. The radius of H+ and C’ is quite different as is shown at various times 
in Figures 11 and 12. We see the proton radius increases to 1.6 mm near the target by 20-ns 
and the emitted ions are l-2 mm in radius (RMS). The C+ radius increases to only 0.7 mm 
by 20-ns and the emitted C+ remains roughly the beam radius. The effective neutralization of 
the beam charge is shown in Figure 13. The rate at which the neutralization moves out from 
the target more closely resembles the C+ velocity than that of the protons. It took these ions 
20 ns to reach the 3-cm position and only then did the neutralization fraction exceed 0.1 at 
that position. These results suggest that while some neutralization (5%) by the fast protons 
occurs, the nominal 25% neutralization moves back into the beam at the heavier ion velocity. 

3.5 Plasma expansion between beam pulses 

We now address the question of how much light-mass contamination of the target material is 
tolerable for the next pulse. We assume that the previous beam pulse has left an expanding 
plasma plume. A danger for the next pulse is that the light ions move towards the plasma 
surfaces and will provide a ready source for beam neutralization. In between pulses, the target 
plasma cools as it expands. The collisionality increases and the motion of the different ions 
becomes coupled at lower densities. This enhanced coupling inhibits the flow of light ions to 
the plasma edges. 
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Figure 1 1: The proton radius i’s plotted for the ETA-II simulation after 5, 
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Figure 12: The carbon ion radius is plotted for the ET-A-11 simulation after 5: 10 and 20 ns. 
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Figure 13: The total charge neutralization of the 2 kA beam is plotted for the ETA-II simulation 
after 5, 10 and 20 ns. 

We now simulate a 2-D expanding multi-component plasma using IPROP with electrostatic 
fields which allows several microsecond time scales. The plasma was initialized in the center of 
a 1 cm x 1 cm conducting box. The plasma density was peaked on axis (1016 cme3 density) 
with a cos(O.57r(z/l mm)) cos(O.57r(y/l mm)) distribution. The temperature of all components 
was initially uniform at 1 or 4 eV. The plasma ions were 99% 0’ and 1% p’. 

The two simulations demonstrate the importance of the plasma temperature in determining 
whether the fraction of protons builds up on the plasma edge or not. In Figures 14 and 15, we 
see a cut of the densities of O+ and p+ through the y = 0 plane at different times. In the 4-eV 
case, the ions at the plasma edge are mostly protons after 133 ns, a factor of 100 increase in 
concentration. The density profile is fairly flat in x. By 266 ns, the 0’ and p+ fractions are 
roughly equal at the edge with a 5 x 1011 density. Because the temperature was down a factor 
of four, we ran the 1-eV simulation out twice as far to see the same expansion. In this case, 
the momenta of the two ions are better coupled (roughly 10 times greater collision frequency) 
and the proton fraction does not increase significantly by 533 ns. The profiles are similar for 
the two ions. 

From these simulations, we can expect lighter ions in the target plasma, fairly hot just 
after the initial beam pulse, to diffuse more rapidly. This is particularly true in the lower 
density front. After the plume has expanded, the ion concentrations will freeze progressively 
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Figure 14: The p’ and O+ densities for the 1 eV IPROP simulation are plotted at 0, 266 and 
533 ns. 
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Figure 15: The p’ and O+ densities for the 4 eV IPROP simulation are plotted at 0, 133 and 
267 ns. 

27 



at low densities. This process demands an upper bound on the initial fraction of light ions 
to be sufficiently small that a factor of roughly 100 increase (based on the 4-eV simulations) 
at the edges is tolerable. An estimate of the upper bound based on this logic is 10-5-10-4 
initial fraction of protons. A proton fraction this low in the bulk of the target material is 

recommended. 

We should in the future consider what ion fraction a subsequent beam pulse would pull from 
a plume (both off and on axis) if the proton fraction is large on the edge. It is possible that the 
rapid diffusion of the protons would again occur which would quickly (in several nanoseconds) 
inhibit light ion neutralization and poor focusing. Such a result would relax the upper bound 
on the initial proton fraction. 
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4 Effect of Adsorbed Surface Density On Ion Current 
Density 

T. Hughes and D. Welch 

4.1 Summary 

In the ETA-II target experiments [l], a 2 kA. 5.5 MV electron beam is focused to a spot with 
a full-width-half-maximum of about 1 mm on a tantalum foil. The results do not show the 
type of “worst case” defocusing due to ion emission discussed in Ref. [a]. We have carried out 
some calculations which show that for an adsorbed area1 density of 1015 cme2 (one monolayer), 
which is roughly the measured value on the ETA-II target, direct-impact ionization by the 
beam is insufficient to produce space-charge-limited ion flow. Furthermore, electron secondaries 
resulting from direct-impact ionization are driven rapidly into the target by the axial electric 
field of the beam, and as a result do not contribute significantly to the ionization fraction of the 
desorbed monolayer. The ionization due to ion-neutral collisions is also estimated to be small. 
Experiments where a laser is focused onto the target prior to the electron beam show strong 
disruption of the focus. The laser is thought to create a highly ionized plasma at the surface, 
in which case one monolayer can provide space-charge-limited ion flux, leading to rapid growth 
in the spot-size. 

4.2 Estimate of beam-induced ionization 

The mechanism for generating light ions at the target is thought to be as follows [3]. Beam 
electrons heat the surface to the point where physisorbed and chemisorbed species evaporate 
from the surface as gas-phase molecules. They are then ionized by the beam electrons and 

provide a source of light ions. The rate at which molecules desorb from a surface is modeled by 

dNd dNa __ = -- = &~~e-~‘~, 
dt dt (13) 

where !Vd is the number desorbed per unit area, N, is the number adsorbed per unit area: Vd 
is a rate constant typically of order lOi s-l [4], and Q is the binding energy of the adsorbed 
species. Binding energies typically vary from a fraction of an eV for physisorbed species to 
several eV for chemisorbed species, and depend on both the adsorbed species and the nature 
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of the substrate. At room temperature, the desorption e-folding time transitions from short 
(minutes) to long (hours) at Q M 0.9eV. 

The heating rate due to electron-beam impact is given by 

dT 1 dE Ib 
z-= 

--- 
c, dx en-r: ’ (14) 

where c, is the specific heat, dE/dz is the stopping power, lb is the beam current, and rb is 
the beam radius. For values typical of the ETA-II target experiments, for example, (Ib = 2 kA, 
rb = 0.6mm, Ta target) this gives a heating rate of O.l2eV/ns. From Eq. (13), the desorption 
e-folding time is _< 1 ns for T > Q/9. Thus, even for species with binding energies of several 
eV, there is substantial desorption after just a few ns. 

Once the species have desorbed, they can undergo gas-phase ionization by the beam elec- 
trons. The electron impact-ionization cross-section as a function of energy is shown in Figure 16. 
At the beam energy of 5.5 MV, the cross-section is ob M 2 x 10-r’ cm2. 

It is well-known that for gas pressures above a Torr or so, an ionization avalanche can be 
produced by secondary electrons because they are accelerated by the beam’s electric field to 
energies near the peak of the cross-section in Figure 16. To see if this effect might contribute 
to the ionization of desorbed molecules, we estimate the mean-free path, X, of a secondary 
electron, in units of the thickness of the desorbed layer ax as 

x 1 
22 = lv@max’ (15) 

where Nd is the desorbed area1 density and urnax is the peak ionization cross-section. For one 
desorbed monolayer (Nd z 1Or5 cm-‘) and grnax z lo-i6 cm2, X z lOax, so that the secondaries 
produce little extra ionization, unless they are somehow confined in the vicinity of the desorbed 
neutrals. 

Near the target, the dominant self-fields of the beam are the axial electric field and the 
azimuthal magnetic field. The trajectory of a secondary born in these crossed fields is cycloidal 
(see Fig. l’i), with the amplitude of the cycloid given by (MKS units) 

2m& Tb 
r, = -M- 

eBi v’ (16) 

where rb is the beam radius and v is Budker’s parameter (Z 0.1 for the ETA-II beam). Thus, 
on the axial length-scale of the desorbed monolayer, the trajectory is almost a straight line into 
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Figure 16: Electron impact ionization cross-section for Hz + e  + Hl+ 2e as a function of energy 
. (from Ref. [5]). 

Figure 17: Orbit of a  secondary electron near the target. The thickness of the desorbed layer 
is Ax. 
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the target, i.e., the secondaries escape and contribute little additional ionization. If there are 
sufficiently many monolayers (10 or more) so that the space-charge-limited ion emission reduces 
the electric field at the surface to zero, then the secondaries may be trapped in the self-magnetic 
field of the beam and create an avalanche. Thus, it appears that avalanche ionization of the 
desorbed neutrals can occur only when space-charge-limited ion emission is already taking place 
due to primary beam ionization. 

From Ref. [a], the space-charge-limited ion current drawn by the beam at the target is given 

where Z* is the charge-state and A is the atomic or molecular number of the desorbed species. 
The ion current due to direct-impact ionization is given by 

I$ii 
z % o(, 

Ib 
Nd. (18) 

In the absence of some additional ionization mechanism, the actual current drawn by the beam 
will be the smaller of If" and ltii. 2 Assuming that one monolayer has an area1 density of 
1Or5 cmW2 , and that ob ==: 2 x 10-lgcmz, where Z is the atomic or molecular number of the 
desorbed species, we can estimate the number of monolayers required to produce the space- 
charge-limited ion current: 

N ml (19) 
This is plotted in Figure 18, where we see that for the ETA-II beam current, over 10 monolayers 
of Hz are required. 

The variation with pressure of the number of monolayers on a surface in equilibrium with 
a gas is given by the adsorption isotherm f~(p). F ive types of adsorption isotherms, shown in 
Figure 19, have been observed experimentally [6]. S everal theories, all involving surface- and 

adsorbate-specific parameters, have been developed to explain these shapes. At sufficiently low 
pressures and surface coverage, all isotherms tend towards Henry’s Law, which states that the 
surface coverage is proportional to pressure. The pressure below lvhich this behavior applies can 
only be determined experimentally. Some low-temperature (77 K) measurements [7] indicate 
that it applies only at extremely low pressures ( < 10P1’ Torr): and that the pressure dependence 
is much weaker at higher pressures. The Temkin isotherm: which agrees with pump-down data 
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Figure 18: Number of monolayers required to yield space-charge-limited ion current. 

for adsorbed water-vapor [8], has a weaker, logarithmic dependence on pressure above pressures 
of about 10W7Torr. 

Even if the adsorption isotherm were known for a given experimental configuration, this 
information is of little use in computing the actual surface coverage at room temperature for 
binding energies Q larger than about 1 eV. For example, for Q = 1.2 eV, the timescale on 
which the surface coverage reaches equilibrium is over a year according to Eq. (13). In practice, 
the surface coverage needs to be measured directly, and near the time at which beam data are 
taken. 

4.3 Estimate of ion-induced ionization 

Another source of ionization is due to ion-neutral collisions. The cross-section for ionization of 
H2 by Hi peaks at about 1.‘1~10-~” cm-’ near 50 keV, as shown in Fig. 20. Ions can reach this 
energy in a distance of order 100 pm from the surface: and the desorbed neutrals drift several 
times this distance during a 50 ns pulse. However, for area1 densities of order 10” cmB2, an 

34 



a 
ads 

P PS P PS 

Figure 19: The five types of vapor adsorption isotherms, where p, is the “saturation pressure” 
(Ref. [6]). Types IV and V are for porous substrates. 
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Figure 20: Cross-section for the ionization process H’ + Hz -+ H’ + Hl + e (from Ref. [9]). 
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Figure 21: Longitudinal phase-space of (a) desorbed neutrals and (b) ions after 30ns. 

ion on average can produce only about 0.2 additional ions as it transits the neutral layer. Ion- 
neutral collisions may contribute significantly to ionization when many monolayers are present. 

4.4 1-D simulations of desorption 

To model the desorption and ionization processes discussed in the previous section, we conduct 
1-D IVORY simulations (the grid is in the direction of beam propagation). A monolayer of 
atomic hydrogen (Z 1Or5 cme2) is adsorbed onto the surface with a binding energy of 1.1 eV. 
The binding energy for Hz on metals lies in the range of lo-40 kcal/mol, or 0.4-1.7eV [lo]. A 
5.5 MeV beam with a current density of 125 kA/ cm2 (1.4 kA on a 0.06 cm radius spot) is incident 
on the target, and we simulate a 1 mm region out from the target using 10 pm cells. We model 
the following processes: heating of the target surface due to electron impact, thermal desorption 
of neutrals, and beam-neutral, secondary electron-neutral and ion-neutral ionization. We find 
that the entire monolayer desorbs from the surface in about 3 ns. A plot of the phase-space of 
the neutrals and ions after 30ns is shown in Figure 21. 
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ilt that time the peak neutral H2 velocity is v/c M 3 x 10P5, or about 1 cm/psec, and the 
peak Hz velocity is about 400cm/ps. 

Direct-impact ionization by the beam leads to an ion current-density equal to about 2 x 10e4 
of the beam current density. For H2$ ions, this implies an upstream charge-density fraction 
f = 0.011, assuming a 300 kV on-axis beam potential. For space-charge-limited emission, the 
fraction is f = 0.15, about 13 times larger. 

4.5 Multi-Monolayer simulations 

In a second set of simulations using IPROP, we initialized the target surface with 2.5, 5 or 10 
monolayers of Hz. After the target heats to a few hundred degrees the neutral gas is released 
from the surface with the surface temperature. The surface heats initially at the same rate 
in each of the simulations reaching 8 eV in 20 ns. Some enhanced heating occurs in the 
higher monolayer simulations due to the deposition of plasma electron energy. The 2.5 and 5 
monolayer runs reached a steady state by 15 ns where only beam-ionized hydrogen ions provided 
neutralization. The simulations did not show a neutral layer breakdown (simulations were run 
to 25 ns), except in the 10 monolayer case. Thus, the neutralization was well below the space- 
charge-limited 25% value in those simulations as is shown in Figure 22. Back from the target 
surface, the 2.5 and 5 monolayer simulations had 6% and 12% neutralization, respectively. 
(The fractional neutralization is higher than that in Section 4.4 because the upstream potential 
here is lower, so the ions move more slowly.) These simulations show that - 10 monolayers of 
hydrogen are required for the layer to break down into a dense plasma that would provide full 
Child-Langmuir emission. 

4.6 2-D simulations of beam spot 

To see the effect of source-limited emission on the beam spot, \ve carried out 2-D simulations 
using the LSP code. We assumed beam parameters of 2 kA, 5.5MV and normalized edge 
emittance of lOOOmm-mrad. The target is located 8 cm past the center of the final-focus 
magnet and the beam is injected 22 cm upstream of the center of the magnet. We ran a source- 
limited case assuming an ion-creation rate given by Eq. (18): i.e., each beam electron has a 
probability of 2 x 1O-4 of creating an ion. A particle plot after 40ns is shown in Figure 23. 
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Figure 22: The total charge neutralization of the 2 kA beam in the three desorptidn simulations 
is plotted 20 ns into the IPROP simulations. 
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Figure 23: Plot of (a) beam electrons and (b) emitted Hz ions after 40ns. Final-focus magnet 
is centered at z = 0. 
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Figure 24: Comparison of beam-spot radius growth for space-charge-limited ion emission (SCL) 
and source-limited ion emission. Ion species is Hz. 

Comparing this to the space-charge-limited case in Figure 24 we see that the disrupting effect 
of the backstreaming ions is much reduced when only 1 monolayer is available. The rms radius 
grows from 0.045 cm to 0.057 cm for the source-limited case, and to 0.5 cm for the space-charge- 
limited case. 

A similar comparison for Ct ions is shown in Figure 25. The difference is less dramatic, 
as expected from Figure 18, since fewer monolayers of C+ are required to provide the space- 
charge-limited current. The spot-size growth with 1 monolayer of C+ is actually larger than for 
1 monolayer of Hz: the rmLs radius grows from 0.045 cm to 0.083 cm. This agrees with a scaling 
argument based on the “disruption time” [2], which is the time it takes the backstreaming ions 
to overfocus the beam: 

(20) 

where T, is the spot-size, pi is the normalized ion velocity and f is the neutralization fraction 
due to the ions. For space-charge-limited emission: f is a constant [2]: so td cc l//$ N v$??. 
Thus, heavier ions take longer to disrupt, the focus. For source-limited emission! however: the 
neutralization fraction is 
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Figure 25: Comparison of beam-spot radius growth for space-charge-limited ion emission (SCL) 

and source-limited ion emission. Ion species is C+. 

so that td 0: ( A/Z2Z*)1/4. Since A “N 22, the disruption time decreases for heavier ions. 
Essentially, the scaling becomes dominated by the fact that it is easier to ionize atoms which 
have more electrons. 

These results may explain why minimal spot-size disruption was observed in ETA-II ex- 
periments [l]. In experiments where a low-energy laser was focused onto the target prior to 
the electron beam, strong disruption of the spot was observed. A crude calculation assuming 
deposition of 50 mJ in a depth of one wavelength (1.06 pm) at the critical density (102r cm-a), 
in a spot of radius 0.05 cm, gives a temperature rise for tantalum of about 100 cV. We therefore 
speculate that the laser produces a highly-ionized plasma at the target surface. Just one fully- 
ionized monolayer can easily supply the space-charge-limited current. From Eq. (17), the 11; 
current is about 6 A for a 2 kA electron beam, which requires 2 x 1Or2 ions over a 50 ns pulse. 
il spot of 0.05 cm radius covered in 1 monolayer contains about 8 x 1Or2 atoms. 
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In the laser experiments, an ion signal is detected on Faraday cups 25 cm from the target 
about 20ns after the end of the beam pulse. This is qualitatively consistent with calculations 
carried out for the 4 kA ITS experiment [ll], using C? as the ion species. The ions, which are 
electrostatically confined during the beam pulse: began arriving at the wall about 30ns after 
the end of the beam pulse. 
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