
U.S. Department of Energy

1i-l
Lawrence
Livermore
National
Laboratory

II I\ -

UCRL-ID-137002

Final Report: Programming
Models for Shared Memory
Clusters

J. May, B. de Supinski, B. P&liner, S. Taylor, S. Baden

January 4,200O

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U. S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Final Report
Programming Models for
Shared Memory Clusters

99-ERD-009*

John May, Principal investigator
Bronis de Supinski, Coinvestigator

Brian Pudliner, Coinvestigator
Scott Taylor, Coinvestigator

Scott Baden, UCSD, External Collaborator

January 4, 2000

1 Introduction

Most large parallel computers now built use a hybrid architecture called a shared
memory cluster. In this design, a computer consists of several nodes connected
by an interconnection network. Each node contains a pool of memory and mul-
tiple processors that share direct access to it. Because shared memory clusters
combine architectural features of shared memory computers and distributed
memory computers, they support several different styles of parallel program-
ming or programming models. (Further information on the design of these sys-
tems and their programming models appears in Section 2.) The purpose of this
project was to investigate the programming models available on these systems
and to answer three questions:

l How easy to use are the different programming models in real applications?

l How do the hardware and system software on different computers affect
the performance of these programming models?

l What are the performance characteristics of different programming models
for typical LLNL applications on various shared memory clusters?

“This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract number W-7405-Eng-48.

1

The project was originally pla.nned to run for two years, but it ended after
its first year. Nevertheless, we were able to make significant progress toward
answering all three questions. Many details of this work are described in two
attached papers. Section 4 contains full citations and synopses of these papers.

The remainder of this report describes the background to our work, the
results we obtained after the two papers were published, and the continuing
influence of the project on other work after it ended on September 30, 1999.

2 Background

Developments in parallel computer architecture have brought about the need
for research into shared memory clusters. We begin by describing these devel-
opments, and then we discuss techniques for programming these machines.

2.1 Parallel computer architectures

Until recently, parallel computer architectures fell into two categories: shared
memory and message-passing.

Shared memory computers allow all the processors in the machine to read or
store data directly at any location in memory. These machines are sometimes
called symmetric multiprocessors or SMPs because every processor can access
any memory location in an equal amount of time; no memory location is “farther
away” from a given processor than any other location, so access to all data is
symmetric.

In message-passing computers, the memory is distributed among the pro-
cessing nodes, and each processor can directly access only its local portion of
the memory. To access data in another node, a process must send or receive the
data in a message over the computer’s internal network. While this network may
be very fast, sending a message takes longer and requires more programming
effort than accessing local memory.

Building very large SMPs is difficult because the memory system must effi-
ciently handle simultaneous accesses from many processors. With current tech-
nology, SMPs can be built with up to 32 or 64 processors. In larger SMPs,
contention among the processors for access to the common pool of memory
would cause an unacceptable delay or latency between the time a request is is-
sued and the time it completes. It is also difficult to build in sufficient memory
bandwidth to handle the quantity of data being moved. Memory bandwidth is
less of a problem in pure message-passing machines because they have only one
processor per node, so there is essentially no contention.

A message-passing computer includes an interconnection network to transfer
data between nodes. Such a network has fewer demands on it than the connec-
tion between processors and memory in an SMP because it carries less data and
because the data can travel over independent paths. Also, programs can be de-
signed to tolerate the latency on this network. As a result, message-passing ma-
chines are built with hundreds or thousands of processors. The ability to build

2

large machines using a given technology is known as scalability, and message-
passing machines have long been considered more scalable than SMPs. For this
reason, the term massively parallel processor or MPP has become synonymous
with message-passing.

However, extremely large message-passing systems face two important prob-
lems. First, large interconnection networks are expensive. A second and more
subtle problem is memory fragmentation: increasing the number of nodes in an
MPP also increases the number of separate memory regions. The total amount
of memory may grow in proportion to the number of processors, but the fraction
of the total memory that each processor can access directly will diminish. The
result of this surface-to-volume ratio problem is that as applications are scaled
up to use more processors and memory, their performance may not increase
proportionately because a larger share of their data accesses require message
passing.

In many newer computers, vendors have combined message-passing with
shared memory architectures to build shared memory clusters. The idea is to
combine the scalability of message-passing with the good surface-to-volume ra-
tio of SMPs. For a given amount of memory and number of processors, reducing
the number of nodes allows each processor to access more data without passing
messages. The development of shared memory clusters has coincided with the
growing use of shared memory parallelism in mainstream computers. As a re-
sult, small SMPs have become an inexpensive building block for larger systems.
Vendors developing or selling shared memory clusters include Compaq (formerly
DEC), HP/Convex, IBM, SGI, and Sun.

In the IBM ASCI SST system at LLNL, each node has four processors
that share access to local memory. Communication between nodes uses explicit
message-passing calls. (The message-passing network is itself a multilevel sys-
tem, but that doesn’t directly affect the programming models we are studying
here.) The SGI ASCI system at LANL uses a collection of Origin 2000 ma-
chines connected over a message passing network. A single Origin 2000 “box”
can be programmed like a shared memory computer, and the LANL system
uses message passing to communicate between the boxes. Each box has 128
processors organized as 64 two-processor nodes. Processors in the same node
share memory in the usual way. Between nodes in the same box, processors
communicate over an internal network that allows the 64 nodes to access each
other’s memory. While this avoids the need for message-passing calls within
a box, the system requires additional hardware and software to translate local
memory requests on a node into remote accesses on other nodes. The hardware
must also ensure that data residing in each processor’s cache memory remains
consistent with main memory on remote nodes. Furthermore, unlike an SMP,
this type of machine incurs different latencies for accesses to different memory
locations. Because of this nonuniformity, the SGI Origin architecture is known
as CC-NUMA [3] (h - h cat e co erent nonuniform memory access.) A variant of
CC-NUMA called S-COMA [5] (sam . pl e cache-only memory architecture) auto-
matically moves data to the node where it is accessed most frequently. This
technique can improve performance by reducing the frequency of off-node mem-

3

ory accesses, but it requires additional hardware and software, and it works
poorly in some circumstances.

2.2 Programming models

Message-passing and shared memory architectures lend themselves to different
parallel programming models. In message-passing machines, the tasks on each
node do not share memory with each other, so they must exchange data by send-
ing and receiving messages. Although various libraries exist for this purpose,
most parallel programs at LLNL and elsewhere now use a library called MPI [6]
(message-passing interface), which is widely available on parallel computers.

Shared memory systems typically use threads running on different proces-
sors to implement parallelism. Each thread executes an independent sequence
of instructions within a program, but all the threads can access the same data.
Conceptually, this model is simpler than message-passing, because threads can
exchange data by reading and writing the same memory locations, rather than
calling subroutines to pass messages. Furthermore, since all the data is equally
accessible to all threads, a program can easily reallocate work among the pro-
cessors to balance the computational load. In a message-passing system, on
the other hand, reallocating work among the processors requires moving data
between nodes.

Managing threads does require more skill than writing an ordinary sequential
program, and the programmer must be careful to avoid synchronization prob-
lems, such as having one thread update series of a values that another thread
is using. Some application developers have avoided explicit multithreading be-
cause it is tedious to program and because subroutines for manipulating threads
are not entirely standard. Another option in shared memory systems is to use
parallelizing compilers, which automatically distribute work (such as indepen-
dent iterations of a loop) to different processors. Parallel language extensions
such as HPF [2] and OpenMP [4] allow programmers to direct the compiler’s
attempts to parallelize the code. At LLNL, OpenMP has become increasingly
popular as good compiler implementations have become available.

Unlike MPPs and SMPs, shared memory clusters do not have a single natural
programming model. Programmers can use multithreading, message-passing, or
a combination of both. Each approach has pros and cons. Pure shared memory
techniques can be used on systems that implement CC-NUMA or S-COMA.
Other shared memory clusters can simulate pure shared memory by using Dis-
tributed Shared Memory (DSM) software. With any of these methods, however,
accesses to different memory locations can take different amounts of time. The
variations are especially large in systems that use DSM because it is a software-
only solution and because the interconnection networks on machines that use
DSM software typically have longer latency than CC-NUMA or S-COMA net-
works. The problem with using pure shared memory programming on a shared
memory cluster is that the programmer may not know which data accesses
are local and which require communication with a remote node. Ignoring the
distinction will not produce incorrect results, but it can reduce performance,

4

much as ignoring cache behavior can. Therefore, the simplicity of a pure shared
memory programming model can hide performance pitfalls from the user.

A major advantage of message-passing is that it is highly portable. The
broad availability of MPI lets developers write parallel programs that run almost
unchanged on many different systems. Since it is relatively easy to implement
message-passing on SMP architectures, programmers often use MPI on these
systems to avoid making extensive changes to their message-passing codes, even
though multithreaded code may be more efficient. The “MPI-everywhere” op-
tion is also viable on shared memory clusters, and it retains the advantage of
offering maximum portability. Of course, this option foregoes some of the bene-
fits of shared memory: efficient access to shared data and easier load balancing.

Finally, programmers can use a hybrid model, in which programs use shared
memory techniques within a node and message-passing between nodes. The
use of shared memory within a node exploits the system’s efficient access to
shared data and allows a portion of the load balancing benefits available from a
pure shared memory model. Passing messages makes it obvious to programmers
when they are performing expensive remote data accesses. Using two kinds of
parallelism within the same program therefore offers some of the benefits of both
approaches, but it increases the program’s complexity.

Some researchers are trying to address the unique features of shared memory
clusters by developing new programming models. These models allow applica-
tions to manage parallelism using a single set of subroutines, but they internally
account for the differences in the time needed to access memory within and be-
tween nodes. One example of such a model is KeLP [l], developed by Baden
and his students at the University of California, San Diego. This system allows
an application to describe complex data structures and how they will be shared
among tasks, and then it arranges to move data as necessary using the most
efficient means available.

3 Project goals and activities

We initiated this project to determine more specifically the pros and cons of the
different programming models on a variety of shared memory clusters. As noted
in the introduction, we wanted to answer three main questions concerning the
ease of use of the programming models, the performance effects of hardware and
system software, and the high-level performance of applications using different
models.

Our purpose in investigating these questions was the give users specific in-
formation to help them choose a programming model for their applications and
to give computer center staff comparative data to help them evaluate current
and proposed new architectures. Although several groups at LLNL had already
begun experimenting with mixed programming models by the time we began
this work in October 1998, there had been little systematic investigation of the
different models.

This section describes the goals of our work and our activities during Fiscal

5

Year 1999. The next section and the papers that accompany this report describe
the specific results of the project.

Five people (in addition to the many developers we spoke with) contributed
to the project, although only three received direct funding from it: May, de
Supinski, and Taylor. Each worked 50% time on the project, for a total of 1.5
FTE. Pudliner and Baden served as advisors and received no funding from the
project.

We began our work by investigating the first main question of our project,
concerning the programming models’ ease of use. Since several LLNL code
groups had already experimented with hybrid programming models, we con-
ducted interviews with developers from these groups to learn what issues they
faced as they migrated their codes to shared memory clusters. In particular,
we wanted to know what programming models they used, how easy they were
to program, and what performance they observed. This survey gave us some
important insights into the ease of use of different models. We had planned to
supplement this information with our own observations on the ease of use of
different models in a later part of the project, when we adapted some sample
codes to use different models.

Once we understood the current state of work on mixed programming mod-
els at LLNL, we turned to the second main question, how hardware and system
software affect the low-level performance of different programming models. To
answer this question, we measured a series of basic operations on different com-
puters using a software benchmark program. This program is an extensively
modified version of an existing performance analysis tool called SKaMPI, de-
veloped at the University of Karlsruhe in Germany. SKaMPI was written to
measure the performance of MPI libraries. Our version of this code, called
Sphinx, measures operations in Pthreads libraries as well as MPI. It is the first
tool we know of that measures Pthreads performance. In response to requests
from colleagues outside LLNL, we have released a version of this software to the
public.

We completed measurements of Pthreads libraries on four different hardware
platforms. We did not carry out similar measurements for OpenMP constructs
before the project ended, but similar work is underway as part of a different
project, and we expect to use Sphinx in that work.

To answer the final question, we planned to collect a small number of rep-
resentative LLNL applications and investigate their performance using different
programming models. This work was underway when the project ended.

4 Results

As noted earlier, we published two papers describing our work on this project.
The first, “Experience with mixed MPI/threaded programming models,”

by John May and Bronis de Supinski (UCRL-JC-133213), was presented as
an invited paper at the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), which was held June 28-July

6

1, 1999. It presents the results of our survey of nine LLNL code projects that use
mixed programming models. We found three combinations of techniques in use:
Pthreads with MPI, OpenMP with MPI, and a threaded vendor library with
MPI. Several groups had initially written code to use Pthreads with MPI but
later changed to OpenMP with MPI, which they found easier to use. We found
that some codes are well-suited to parallelization with OpenMP, while others
are not. Those that work well with OpenMP have loops with fixed iteration
bounds that are visible to the compiler. For these programs, versions compiled
with OpenMP directives were about as efficient as versions using Pthreads calls.
Some applications use a model in which small packets of work are created, placed
on a queue, and then completed in an unpredictable order. For these codes,
Pthreads offers a more natural programming model. The one code that used
a threaded library with MPI achieved good threaded performance, but only
portions of the code were able to use this library, so the code was not able to
exploit the full parallelism of the machine for all of its run time.

A peripheral result of our survey was the creation of a Threads Working
Group at LLNL. Many of the people we spoke with during our survey wanted
better channels of communication with other developers, so we established a
series of occasional informal talks and discussions on multithreaded program-
ming.

The second paper, “Benchmarking Pthreads performance,” by Bronis de
Supinski and John May (UCRL-JC-133263), was a refereed paper also pre-
sented at PDPTA. It describes our techniques for measuring the performance
of Pthreads basic operations and the design of the Sphinx tool. We found no-
ticeable variations in the performance of certain operations across the tested
platforms (DEC, IBM, SGI, and Sun) and for similar operations under different
conditions. For example, synchronizing two threads through a “mutual exclu-
sion lock” (mutex) took three times as long on the IBM as it did on the DEC
when the two threads were forced to run on the same CPU. When we removed
this constraint, the performance difference reversed and the IBM completed the
synchronization in less than l/15 the time that the DEC required. These results
suggest that hardware and software differences on the two platforms strongly
affect the performance of basic operations, and application developers need to
consider these differences when they evaluate the performance of their codes.

After these papers were published, we focused on two areas: extending the
capabilities of Sphinx and investigating the performance of representative LLNL
codes using different programming models.

Our plan for Sphinx was to develop it into a general purpose tool for measur-
ing and reporting a variety of performance data on MPI, Pthreads, and OpenMP
primitives. We also planned to measure operation that used multiple program-
ming models, such as barriers involving all threads on all processes in a job.
SKaMPI, the code on which Sphinx is based, was developed to measure MPI
performance only. It included a number of useful features for specifying and
automatically performing a series of tests on basic MPI operations. The tool
was designed to conduct its measurements in a structured way and to collect
data in a form that is easy to manage. These features made SKaMPI a good

7

choice to be the foundation of our own work, but the range of measurements
that SKaMPI could perform and the combinations of tests that could be spec-
ified were too limited for our purposes. In particular, we wanted to be able to
carry out tests that varied more than one parameter and to have more flexibil-
ity in the kinds of parameters we could vary. We made some of the necessary
modifications for our Pthreads tests, but we needed to make further changes
before we could begin the OpenMP tests. These changes were nearly complete
when the project ended.

To measure the performance differences between programming models in
the same application, we planned to gather a small group of LLNL codes that
used mixed models and test them using MPI only, MPI with Pthreads, and
MPI with OpenMP. If time permitted, we planned to test versions of the
codes using only OpenMP or Pthreads under DSM implementations and on CC-
NUMA or S-COMA machines. We began by measuring a hydrodynamics code
designed to work on block-structured meshes. The code had been parallelized
using OpenMP, and we compared an MPI-only version to a version that used
OpenMP with MPI on the unclassified ASCI Blue Pacific machine. Initial results
showed that MPI-only version performed far worse than versions using OpenMP.
Although we expected better performance from the versions using OpenMP, the
magnitude of the result was puzzling, since it appeared that the OpenMP version
was more than four times as fast as the MPI-only version for the same number of
CPUs. We eventually determined that the OpenMP compiler we were using was
generating inefficient code when we disabled (but did not remove) the OpenMP
directives. When we repeated the tests using a different compiler, we found
that the MPI-only version of this particular code was up to 15% faster than the
version that also used OpenMP. These results apply only to the IBM compiler
(and MPI library) running on the IBM system. Faster still was an MPI-only
code that ran on just one CPU per node instead of all four. The additional
improvement of about 5% compared to the other MPI-only version was due, we
believe, to the lack of contention for memory bandwidth in the runs that used
only one CPU per node. Of course, running a program using only one CPU per
node wastes the other three CPUs in the node, but it also suggests that on this
architecture, memory bandwidth limits performance when all four CPUs are in
use (for this code). Unfortunately, we were not able to repeat these tests for
different codes or different machines.

5 Ongoing benefits

After this project ended, several of its members began working on a related set
of problems under the auspices of the ASCI program. This new work is focused
on developing tools for understanding the performance of massively parallel
applications. We have been able to continue (though at a slower pace) develop-
ment of Sphinx, and we plan to carry out some low-level OpenMP performance
measurements in the coming year.

We have also applied our experience measuring the performance of mixed-

8

model codes to the design of new performance analysis tools. Our work on
the LDRD project has given us valuable insight into the questions that devel-
opers typically need answered when they investigate the performance of their
applications.

Finally, we have been able to use our knowledge of various approaches to
mixed model programming to advise other LLNL developers as they optimize
their codes to run on hybrid architectures.

References

[l] S. J. FINK AND S. B. BADEN, Runtime support for multi-tier programming
of block-structured applications on SMP clusters, in Proc. 1997 International
Scientific Computing in Object-Oriented Parallel Environments Conference
(ISCOPE ‘97), D ecember 1997, pp. 1-8.

[2] C. H. KOELBEL, D. B. LOVEMAN, R. S. SCHREIBER, G. L. STEELE, JR.,
AND M. E. ZOSEL, The High Performance Fortran Handbook, The MIT
Press, 1994.

[3] J. KUSKIN, D. OFELT, M. MEINRICH, J. HEINLEIN, R. SI-
MONI, K. GHARACHORLOO, J. CHAPIN, D. NAKAHIRA, J. BAXTER,
M. HOROWITZ, A. GUPTA, M. ROSENBLUM, AND J. HENNESSY, The Stan-
ford FLASH multicomputer, in Proc. 21st International Symposium on High
Performance Computer Architecture, April 1994, pp. 302-313.

[4] OPENMP ARCHITECTURE REVIEW BOARD, OpenMP Fortran Application
Program Interface, October 1997.

[5] A. SAULSBURY, T. WILKINSON, J. CARTER, AND A. LANDIN, An argu-
ment for simple COMA, in First IEEE Symposium on High Performance
Computer Architecture, January 1995, pp. 276-285.

[6] M. SNIR, S. W. OTTO, S. HUSS-LEDERMAN, D. W. WALKER, AND
J. DONGARRA, MPI: The Complete Reference, The MIT Press, 1996.

