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1 Introduction 

Most large parallel computers now built use a hybrid architecture called a shared 
memory cluster. In this design, a computer consists of several nodes connected 
by an interconnection network. Each node contains a pool of memory and mul- 
tiple processors that share direct access to it. Because shared memory clusters 
combine architectural features of shared memory computers and distributed 
memory computers, they support several different styles of parallel program- 
ming or programming models. (Further information on the design of these sys- 
tems and their programming models appears in Section 2.) The purpose of this 
project was to investigate the programming models available on these systems 
and to answer three questions: 

l How easy to use are the different programming models in real applications? 

l How do the hardware and system software on different computers affect 
the performance of these programming models? 

l What are the performance characteristics of different programming models 
for typical LLNL applications on various shared memory clusters? 

“This work was performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under contract number W-7405-Eng-48. 
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The project was originally pla.nned to run for two years, but it ended after 
its first year. Nevertheless, we were able to make significant progress toward 
answering all three questions. Many details of this work are described in two 
attached papers. Section 4 contains full citations and synopses of these papers. 

The remainder of this report describes the background to our work, the 
results we obtained after the two papers were published, and the continuing 
influence of the project on other work after it ended on September 30, 1999. 

2 Background 

Developments in parallel computer architecture have brought about the need 
for research into shared memory clusters. We begin by describing these devel- 
opments, and then we discuss techniques for programming these machines. 

2.1 Parallel computer architectures 

Until recently, parallel computer architectures fell into two categories: shared 
memory and message-passing. 

Shared memory computers allow all the processors in the machine to read or 
store data directly at any location in memory. These machines are sometimes 
called symmetric multiprocessors or SMPs because every processor can access 
any memory location in an equal amount of time; no memory location is “farther 
away” from a given processor than any other location, so access to all data is 
symmetric. 

In message-passing computers, the memory is distributed among the pro- 
cessing nodes, and each processor can directly access only its local portion of 
the memory. To access data in another node, a process must send or receive the 
data in a message over the computer’s internal network. While this network may 
be very fast, sending a message takes longer and requires more programming 
effort than accessing local memory. 

Building very large SMPs is difficult because the memory system must effi- 
ciently handle simultaneous accesses from many processors. With current tech- 
nology, SMPs can be built with up to 32 or 64 processors. In larger SMPs, 
contention among the processors for access to the common pool of memory 
would cause an unacceptable delay or latency between the time a request is is- 
sued and the time it completes. It is also difficult to build in sufficient memory 
bandwidth to handle the quantity of data being moved. Memory bandwidth is 
less of a problem in pure message-passing machines because they have only one 
processor per node, so there is essentially no contention. 

A message-passing computer includes an interconnection network to transfer 
data between nodes. Such a network has fewer demands on it than the connec- 
tion between processors and memory in an SMP because it carries less data and 
because the data can travel over independent paths. Also, programs can be de- 
signed to tolerate the latency on this network. As a result, message-passing ma- 
chines are built with hundreds or thousands of processors. The ability to build 
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large machines using a given technology is known as scalability, and message- 
passing machines have long been considered more scalable than SMPs. For this 
reason, the term massively parallel processor or MPP has become synonymous 
with message-passing. 

However, extremely large message-passing systems face two important prob- 
lems. First, large interconnection networks are expensive. A second and more 
subtle problem is memory fragmentation: increasing the number of nodes in an 
MPP also increases the number of separate memory regions. The total amount 
of memory may grow in proportion to the number of processors, but the fraction 
of the total memory that each processor can access directly will diminish. The 
result of this surface-to-volume ratio problem is that as applications are scaled 
up to use more processors and memory, their performance may not increase 
proportionately because a larger share of their data accesses require message 
passing. 

In many newer computers, vendors have combined message-passing with 
shared memory architectures to build shared memory clusters. The idea is to 
combine the scalability of message-passing with the good surface-to-volume ra- 
tio of SMPs. For a given amount of memory and number of processors, reducing 
the number of nodes allows each processor to access more data without passing 
messages. The development of shared memory clusters has coincided with the 
growing use of shared memory parallelism in mainstream computers. As a re- 
sult, small SMPs have become an inexpensive building block for larger systems. 
Vendors developing or selling shared memory clusters include Compaq (formerly 
DEC), HP/Convex, IBM, SGI, and Sun. 

In the IBM ASCI SST system at LLNL, each node has four processors 
that share access to local memory. Communication between nodes uses explicit 
message-passing calls. (The message-passing network is itself a multilevel sys- 
tem, but that doesn’t directly affect the programming models we are studying 
here.) The SGI ASCI system at LANL uses a collection of Origin 2000 ma- 
chines connected over a message passing network. A single Origin 2000 “box” 
can be programmed like a shared memory computer, and the LANL system 
uses message passing to communicate between the boxes. Each box has 128 
processors organized as 64 two-processor nodes. Processors in the same node 
share memory in the usual way. Between nodes in the same box, processors 
communicate over an internal network that allows the 64 nodes to access each 
other’s memory. While this avoids the need for message-passing calls within 
a box, the system requires additional hardware and software to translate local 
memory requests on a node into remote accesses on other nodes. The hardware 
must also ensure that data residing in each processor’s cache memory remains 
consistent with main memory on remote nodes. Furthermore, unlike an SMP, 
this type of machine incurs different latencies for accesses to different memory 
locations. Because of this nonuniformity, the SGI Origin architecture is known 
as CC-NUMA [3] ( h - h cat e co erent nonuniform memory access.) A variant of 
CC-NUMA called S-COMA [5] ( sam . pl e cache-only memory architecture) auto- 
matically moves data to the node where it is accessed most frequently. This 
technique can improve performance by reducing the frequency of off-node mem- 
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ory accesses, but it requires additional hardware and software, and it works 
poorly in some circumstances. 

2.2 Programming models 

Message-passing and shared memory architectures lend themselves to different 
parallel programming models. In message-passing machines, the tasks on each 
node do not share memory with each other, so they must exchange data by send- 
ing and receiving messages. Although various libraries exist for this purpose, 
most parallel programs at LLNL and elsewhere now use a library called MPI [6] 
(message-passing interface), which is widely available on parallel computers. 

Shared memory systems typically use threads running on different proces- 
sors to implement parallelism. Each thread executes an independent sequence 
of instructions within a program, but all the threads can access the same data. 
Conceptually, this model is simpler than message-passing, because threads can 
exchange data by reading and writing the same memory locations, rather than 
calling subroutines to pass messages. Furthermore, since all the data is equally 
accessible to all threads, a program can easily reallocate work among the pro- 
cessors to balance the computational load. In a message-passing system, on 
the other hand, reallocating work among the processors requires moving data 
between nodes. 

Managing threads does require more skill than writing an ordinary sequential 
program, and the programmer must be careful to avoid synchronization prob- 
lems, such as having one thread update series of a values that another thread 
is using. Some application developers have avoided explicit multithreading be- 
cause it is tedious to program and because subroutines for manipulating threads 
are not entirely standard. Another option in shared memory systems is to use 
parallelizing compilers, which automatically distribute work (such as indepen- 
dent iterations of a loop) to different processors. Parallel language extensions 
such as HPF [2] and OpenMP [4] allow programmers to direct the compiler’s 
attempts to parallelize the code. At LLNL, OpenMP has become increasingly 
popular as good compiler implementations have become available. 

Unlike MPPs and SMPs, shared memory clusters do not have a single natural 
programming model. Programmers can use multithreading, message-passing, or 
a combination of both. Each approach has pros and cons. Pure shared memory 
techniques can be used on systems that implement CC-NUMA or S-COMA. 
Other shared memory clusters can simulate pure shared memory by using Dis- 
tributed Shared Memory (DSM) software. With any of these methods, however, 
accesses to different memory locations can take different amounts of time. The 
variations are especially large in systems that use DSM because it is a software- 
only solution and because the interconnection networks on machines that use 
DSM software typically have longer latency than CC-NUMA or S-COMA net- 
works. The problem with using pure shared memory programming on a shared 
memory cluster is that the programmer may not know which data accesses 
are local and which require communication with a remote node. Ignoring the 
distinction will not produce incorrect results, but it can reduce performance, 
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much as ignoring cache behavior can. Therefore, the simplicity of a pure shared 
memory programming model can hide performance pitfalls from the user. 

A major advantage of message-passing is that it is highly portable. The 
broad availability of MPI lets developers write parallel programs that run almost 
unchanged on many different systems. Since it is relatively easy to implement 
message-passing on SMP architectures, programmers often use MPI on these 
systems to avoid making extensive changes to their message-passing codes, even 
though multithreaded code may be more efficient. The “MPI-everywhere” op- 
tion is also viable on shared memory clusters, and it retains the advantage of 
offering maximum portability. Of course, this option foregoes some of the bene- 
fits of shared memory: efficient access to shared data and easier load balancing. 

Finally, programmers can use a hybrid model, in which programs use shared 
memory techniques within a node and message-passing between nodes. The 
use of shared memory within a node exploits the system’s efficient access to 
shared data and allows a portion of the load balancing benefits available from a 
pure shared memory model. Passing messages makes it obvious to programmers 
when they are performing expensive remote data accesses. Using two kinds of 
parallelism within the same program therefore offers some of the benefits of both 
approaches, but it increases the program’s complexity. 

Some researchers are trying to address the unique features of shared memory 
clusters by developing new programming models. These models allow applica- 
tions to manage parallelism using a single set of subroutines, but they internally 
account for the differences in the time needed to access memory within and be- 
tween nodes. One example of such a model is KeLP [l], developed by Baden 
and his students at the University of California, San Diego. This system allows 
an application to describe complex data structures and how they will be shared 
among tasks, and then it arranges to move data as necessary using the most 
efficient means available. 

3 Project goals and activities 

We initiated this project to determine more specifically the pros and cons of the 
different programming models on a variety of shared memory clusters. As noted 
in the introduction, we wanted to answer three main questions concerning the 
ease of use of the programming models, the performance effects of hardware and 
system software, and the high-level performance of applications using different 
models. 

Our purpose in investigating these questions was the give users specific in- 
formation to help them choose a programming model for their applications and 
to give computer center staff comparative data to help them evaluate current 
and proposed new architectures. Although several groups at LLNL had already 
begun experimenting with mixed programming models by the time we began 
this work in October 1998, there had been little systematic investigation of the 
different models. 

This section describes the goals of our work and our activities during Fiscal 
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Year 1999. The next section and the papers that accompany this report describe 
the specific results of the project. 

Five people (in addition to the many developers we spoke with) contributed 
to the project, although only three received direct funding from it: May, de 
Supinski, and Taylor. Each worked 50% time on the project, for a total of 1.5 
FTE. Pudliner and Baden served as advisors and received no funding from the 
project. 

We began our work by investigating the first main question of our project, 
concerning the programming models’ ease of use. Since several LLNL code 
groups had already experimented with hybrid programming models, we con- 
ducted interviews with developers from these groups to learn what issues they 
faced as they migrated their codes to shared memory clusters. In particular, 
we wanted to know what programming models they used, how easy they were 
to program, and what performance they observed. This survey gave us some 
important insights into the ease of use of different models. We had planned to 
supplement this information with our own observations on the ease of use of 
different models in a later part of the project, when we adapted some sample 
codes to use different models. 

Once we understood the current state of work on mixed programming mod- 
els at LLNL, we turned to the second main question, how hardware and system 
software affect the low-level performance of different programming models. To 
answer this question, we measured a series of basic operations on different com- 
puters using a software benchmark program. This program is an extensively 
modified version of an existing performance analysis tool called SKaMPI, de- 
veloped at the University of Karlsruhe in Germany. SKaMPI was written to 
measure the performance of MPI libraries. Our version of this code, called 
Sphinx, measures operations in Pthreads libraries as well as MPI. It is the first 
tool we know of that measures Pthreads performance. In response to requests 
from colleagues outside LLNL, we have released a version of this software to the 
public. 

We completed measurements of Pthreads libraries on four different hardware 
platforms. We did not carry out similar measurements for OpenMP constructs 
before the project ended, but similar work is underway as part of a different 
project, and we expect to use Sphinx in that work. 

To answer the final question, we planned to collect a small number of rep- 
resentative LLNL applications and investigate their performance using different 
programming models. This work was underway when the project ended. 

4 Results 

As noted earlier, we published two papers describing our work on this project. 
The first, “Experience with mixed MPI/threaded programming models,” 

by John May and Bronis de Supinski (UCRL-JC-133213), was presented as 
an invited paper at the International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA), which was held June 28-July 
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1, 1999. It presents the results of our survey of nine LLNL code projects that use 
mixed programming models. We found three combinations of techniques in use: 
Pthreads with MPI, OpenMP with MPI, and a threaded vendor library with 
MPI. Several groups had initially written code to use Pthreads with MPI but 
later changed to OpenMP with MPI, which they found easier to use. We found 
that some codes are well-suited to parallelization with OpenMP, while others 
are not. Those that work well with OpenMP have loops with fixed iteration 
bounds that are visible to the compiler. For these programs, versions compiled 
with OpenMP directives were about as efficient as versions using Pthreads calls. 
Some applications use a model in which small packets of work are created, placed 
on a queue, and then completed in an unpredictable order. For these codes, 
Pthreads offers a more natural programming model. The one code that used 
a threaded library with MPI achieved good threaded performance, but only 
portions of the code were able to use this library, so the code was not able to 
exploit the full parallelism of the machine for all of its run time. 

A peripheral result of our survey was the creation of a Threads Working 
Group at LLNL. Many of the people we spoke with during our survey wanted 
better channels of communication with other developers, so we established a 
series of occasional informal talks and discussions on multithreaded program- 
ming. 

The second paper, “Benchmarking Pthreads performance,” by Bronis de 
Supinski and John May (UCRL-JC-133263), was a refereed paper also pre- 
sented at PDPTA. It describes our techniques for measuring the performance 
of Pthreads basic operations and the design of the Sphinx tool. We found no- 
ticeable variations in the performance of certain operations across the tested 
platforms (DEC, IBM, SGI, and Sun) and for similar operations under different 
conditions. For example, synchronizing two threads through a “mutual exclu- 
sion lock” (mutex) took three times as long on the IBM as it did on the DEC 
when the two threads were forced to run on the same CPU. When we removed 
this constraint, the performance difference reversed and the IBM completed the 
synchronization in less than l/15 the time that the DEC required. These results 
suggest that hardware and software differences on the two platforms strongly 
affect the performance of basic operations, and application developers need to 
consider these differences when they evaluate the performance of their codes. 

After these papers were published, we focused on two areas: extending the 
capabilities of Sphinx and investigating the performance of representative LLNL 
codes using different programming models. 

Our plan for Sphinx was to develop it into a general purpose tool for measur- 
ing and reporting a variety of performance data on MPI, Pthreads, and OpenMP 
primitives. We also planned to measure operation that used multiple program- 
ming models, such as barriers involving all threads on all processes in a job. 
SKaMPI, the code on which Sphinx is based, was developed to measure MPI 
performance only. It included a number of useful features for specifying and 
automatically performing a series of tests on basic MPI operations. The tool 
was designed to conduct its measurements in a structured way and to collect 
data in a form that is easy to manage. These features made SKaMPI a good 
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choice to be the foundation of our own work, but the range of measurements 
that SKaMPI could perform and the combinations of tests that could be spec- 
ified were too limited for our purposes. In particular, we wanted to be able to 
carry out tests that varied more than one parameter and to have more flexibil- 
ity in the kinds of parameters we could vary. We made some of the necessary 
modifications for our Pthreads tests, but we needed to make further changes 
before we could begin the OpenMP tests. These changes were nearly complete 
when the project ended. 

To measure the performance differences between programming models in 
the same application, we planned to gather a small group of LLNL codes that 
used mixed models and test them using MPI only, MPI with Pthreads, and 
MPI with OpenMP. If time permitted, we planned to test versions of the 
codes using only OpenMP or Pthreads under DSM implementations and on CC- 
NUMA or S-COMA machines. We began by measuring a hydrodynamics code 
designed to work on block-structured meshes. The code had been parallelized 
using OpenMP, and we compared an MPI-only version to a version that used 
OpenMP with MPI on the unclassified ASCI Blue Pacific machine. Initial results 
showed that MPI-only version performed far worse than versions using OpenMP. 
Although we expected better performance from the versions using OpenMP, the 
magnitude of the result was puzzling, since it appeared that the OpenMP version 
was more than four times as fast as the MPI-only version for the same number of 
CPUs. We eventually determined that the OpenMP compiler we were using was 
generating inefficient code when we disabled (but did not remove) the OpenMP 
directives. When we repeated the tests using a different compiler, we found 
that the MPI-only version of this particular code was up to 15% faster than the 
version that also used OpenMP. These results apply only to the IBM compiler 
(and MPI library) running on the IBM system. Faster still was an MPI-only 
code that ran on just one CPU per node instead of all four. The additional 
improvement of about 5% compared to the other MPI-only version was due, we 
believe, to the lack of contention for memory bandwidth in the runs that used 
only one CPU per node. Of course, running a program using only one CPU per 
node wastes the other three CPUs in the node, but it also suggests that on this 
architecture, memory bandwidth limits performance when all four CPUs are in 
use (for this code). Unfortunately, we were not able to repeat these tests for 
different codes or different machines. 

5 Ongoing benefits 

After this project ended, several of its members began working on a related set 
of problems under the auspices of the ASCI program. This new work is focused 
on developing tools for understanding the performance of massively parallel 
applications. We have been able to continue (though at a slower pace) develop- 
ment of Sphinx, and we plan to carry out some low-level OpenMP performance 
measurements in the coming year. 

We have also applied our experience measuring the performance of mixed- 
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model codes to the design of new performance analysis tools. Our work on 
the LDRD project has given us valuable insight into the questions that devel- 
opers typically need answered when they investigate the performance of their 
applications. 

Finally, we have been able to use our knowledge of various approaches to 
mixed model programming to advise other LLNL developers as they optimize 
their codes to run on hybrid architectures. 
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