
Preprint
UCRL-JC- 137092

U.S. Department of Energy

Java Based Open
Architecture Controller

G. Weinet?

This article was submitted to
World Automation Conference, Maui, HI,
June 1 I- 16,200O

January 13,200O

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Java Based Open Architecture Controller

George Weinert
Lawrence Livermore National Laboratory, Livermore, California, USA

ABSTRACT

At Lawrence Livermore National Laboratory (LLNL) we have been
developing an open architecture machine tool controller. This work has
been patterned after the General Motors (GM) led Open Modular
Architecture Controller (OMAC) work, where we have been involved since
its inception. The OMAC work has centered on creating sets of
implementation neutral application programming interfaces (APIs) for
machine control software components.

In our work at LLNL, we were among the early adopters of the Java
programming language. As an application programming language, it is
particularly well suited for component software development. The language
contains many features, which along with a well-defined implementation
API (such as the OMAC APIs) allows third party binary files to be
integrated into a working system. Because of its interpreted nature, Java
allows rapid integration testing of components.

However, for real-time systems development, the Java programming
language presents many drawbacks. For instance, lack of well defined
scheduling semantics and threading behavior can present many unwanted
challenges. Also, the interpreted nature of the standard Java Virtual
Machine (JVM) presents an immediate performance hit. Various real-time
Java vendors are currently addressing some of these drawbacks.

The various pluses and minuses of using the Java programming language
and environment, with regard to a component-based controller, will be
outlined.

KEYWORDS: Java, Component Software, Control Systems.

INTRODUCTION

Current machine tool controls (a.k.a., CNCs) are embedded, firmware based computer
systems. Although many of these allow end users and system integrators to add sensors
and actuator, it is very difficult for them to add algorithms that would allow them to
integrate their process knowledge into machining and manufacturing processes. Further

it is difficult to get the builders of these controllers to create “specials”, customized
versions with their customer’s software added to them.

Even if this software is added to one manufacturer’s current generation of controllers,
there is no guarantee that this software will be portable to newer generations of controller
hardware, or to another manufacturer’s controllers. Without a standard framework to
implement these process-specific algorithms, the end user’s process knowledge is lost
with each change in control system hardware.

Open Modular Architecture Controls (OMAC) Initiative

In 1994 General Motors, Ford Motor Company, and Chrysler Corporation released their
requirements for an Open Modular Architecture Controller [11. This document outlined
the need for standardized, modular, component based control system architecture.

The approach outlined in the document involved breaking a controller into several
modules (i.e., components) defined by their functionality and by the software interface
that they provided.

Work commenced in early 1995 to begin defining precisely how many modules there
were, what their functionality and states they encompassed, and specifying well-defined
application programming interfaces (APIs) for these modules. In addition this API
working group, which I have been an active member in since its inception, was tasked
with defining an architectural framework in which these modules would function.

In defining this architecture, one of the overriding requirements was allowing one
component to be swapped with another component. In other words allowing one
implementation of a module to be replaced with another implementation. This required
that the APIs specify how the results of a computation are accessed, but not how the
calculation is carried out.

Component Software Requirements and Definition

The OMAC Requirements Document [l] specified that the controller be open, modular,
and scaleable. The openness and modularity requirements were addressed by breaking
the controller into several replaceable pieces, defining the state behavior for those pieces,
and specifying their APIs.

Scalability, which was defined as “enabling easy and efficient reconfiguration to meet
specific application needs, from low to high end”, has several dimensions to it. One of
these is the ability to extend the APIs of the modules (for more demanding, unanticipated
needs), while still allowing backwards compatibility with existing components. This was
addressed by treating the module APIs as Objected Oriented entities, which had no
implementation. Inheritance may be used to extend any given API, and therefore any
given module.

A software component, for purposes of OMAC, is required to implement one, or more,
well defined API sets, have a well-defined state behavior (which is reflected in the
individual API sets), and be easily integrated into a controller or exchanged with another
compatible component. Ideally these components could be shipped as binary code, rather
than source code, allowing software producers to protect their proprietary knowledge.

OMAC Component Defined

An OMAC Component is an implementation of a given OMAC module API, which may
be integrated into an OMAC controller. Any given component must implement at least
one of the Module APIs, but may actually implement more. In general, there may be
more than one instance of any given component in an OMAC controller. An OMAC
controller is an integrated collection of OMAC components.

Since building a controller means integrating many individual components, it is
desirable to have some automated assistance in performing this task. In addition to the
module APIs, each component must also implement Component APIs. These
Component APIs can provide an integration tool with a wealth of information about a
component. This information includes the Module APIs implemented, and other the
other Module API implementations required. For example a component may implement
the Axis Module API, and require a connection to another component implementing the
Control Law Module API. A Unified Modeling Language (UML) model of an OMAC
Component is shown in Figure 1.

The Component APIs allow a system
integrator to pull in the implementations
required for his application, and then specify

Services Provided

OmacComponent

connections between components. These
connections may be checked for type and
completeness using the information provided
by the component, thereby reducing time
spent by the integrator and increasing safety.

Services Required 1 / I
I

Code may then be generated to produce the
system specified by the integrator.

4 $ $ In future we anticipate additional
information to be provided by components,

Figure 1. Omac Component which will increase system correctness and
reliability. This information could include
component characteristics such as timing and

memory constraints.

THE JAVA LANGUAGE AND OMAC REQUIREMENTS

The OMAC API specifications were designed to be language independent, and were
specified using the Interface Definition Language (IDL). This allowed the APIs to
implementation language agnostic.

As stated previously, OMAC goals required that the software components be capable
of being distributed as binaries and integrated using automated tools.

In addition to its component features, Java has several other important features as
related to control systems. Unlike C or C++, Java includes a threading model and the
concept of mutual exclusion at the language level. This allows a software author to
safely specify concurrent activities. Java also specifies a rich, standardized class library
of utility objects such as hash tables and object vectors.

Java Component Features

The Java language has many features which enable the use of component based software.
These include late binding and the ability to distribute objects as compiled class files.
Java also defines an “interface”, which corresponds to the module APIs. In addition,
features added in Java 1.1 to support the Java Beans specification provide ways for tools
to “look inside” an object and see what it implements. These features are referred to
generically as “introspection”.

All code written for our system that requires the use of an OMAC module API is
written using Java interfaces. Instead of specifying a particular implementation of an
API, code is written referencing the interfaces only. Later, a system integrator will
specify which implementation of that interface is to be used.

Late binding allows the Java run-time environment to incrementally load classes and
components, and only linking as the need arises. This allows a system to be built and
tested piece-wise by an integrator.

The introspection capabilities of Java allow an integration tool to find the interfaces
(APIs) that a component implements, the data attributes that may be queried or set, as
well as events that may be generated or caught by an object. These abilities are already
in widespread use in readily available Java development tools.

All of the above abilities come at no cost to the programmer, and are supported by the
Java compiler.

OMAC extensions to Java Component Features

Even though Java provides a rich set of component features, it is not rich enough to
support all of the functionality needed by an OMAC component. Specifically, a standard
Java component cannot advertise which other modules it needs to operate.

We have extended the objects that we are using with additional interfaces that may be
queried to find which other modules are required (see Figure 1). Other interfaces have
been added that allow a component to be connected to another component’s services.
These connections are made using ordinary Java references.

Any additional future information that an integration tool requires would be made
available through new extended interfaces.

Java and Real-Time

While Java provides good component facilities, it does not provide the best real-time
characteristics. Good real-time characteristics would be defined as predictable response
times and execution times. There are three primary areas which affect real-time
performance in a Java based system: garbage collection, thread management, and
interpreted execution.

Garbage Collection. The primary failing of Java in a real-time environment is Java’s
extensive use of garbage collection as a means of memory management. Garbage
collection can be both a blessing and a curse.

In a component-based system built out of pieces supplied by many third parties, it is
difficult (if not impossible) to assign responsibility, in an enforceable way, for the
lifetime and memory management of any particular object. In other programming

languages (notably C++), this can lead to memory leaks (un-reclaimed memory) and the
reclamation of memory still in use. Java has solved this problem by using garbage
collection to automatically manage storage.

Garbage collection can be implemented in many ways [2]. The most common
approach is “mark and sweep”. While this approach is simple, it has one major
drawback: it must freeze all threads in the system and run until it has recovered all
inactive memory. This can take anywhere from a few milliseconds to a few seconds. In
a system that has many control loops running at millisecond repetition rates, this can be
disastrous.

Fortunately, several vendors are starting to produce Java run-time with “real-time”
garbage collection characteristics. Although these algorithms are not yet standardized,
they allow for incremental, prioritizable, interruptible garbage collection to be performed.
This allows a system to retain its real-time characteristics. We anticipate that as Java
makes more inroads into the embedded/real-time market that the availability of these
product offerings will increase. Additionally, industry lead groups such as the Real-Time
Java Experts Group (the J Consortium) are addressing these problems. [3]

Thread Management. Java provides standardized thread semantics, which include
creation, prioritization, and mutual-exclusion. However, the actual behavior of different
priority threads is not defined (e.g., are threads cooperative or preemptable?). Java also
does not provide any definition of the order that threads waiting at the same
synchronization block will be freed (e.g., FIFO or priority?).

Once again, various real-time java vendors and the J Consortium are addressing these
concerns.

Interpreted Execution. Finally, Java by its nature is made to run on a virtual machine,
whose instruction set is defined by a set of byte-codes. Normally, these byte-codes are
interpreted by software running on the target machine. This process is anywhere from 10
to 20 times slower than native code execution. While slower execution speeds do not
necessarily translate into the violation of real-time constraints, in general an open system
will be more useful if it has more free resources available for user code.

To solve this speed limitation, the Java Virtual Machines (JVMs) on most popular
platforms use a just-in-time (JIT) compiler, which transforms the byte codes to native
code the first time the code is executed. While this speeds up subsequent executions of
the code, it does lead to long, unpredictable delays the first time the code is executed.

JIT compilation is not an acceptable solution for real-time systems. Once again,
several solutions now exist from various vendors. These include ahead-of-time (AOT)
compilers, and compile-on-load solutions. The AOT compilers essentially take Java byte
codes and compile them into an executable image in native code. All class loading is
pre-resolved before run time. Compile-on-load solutions work similarly to JIT
compilers, but instead of waiting for the code to be executed, it is compiled to native as
soon as it is loaded. Classes used by a loaded class are immediately loaded and compiled
as well. In essence, an entire system will be loaded and compiled before any execution
takes place with either AOT or compile-on-load. When compiled to native, Java code
runs approximately 10 to 20 times faster, at the expense of either longer preparation or
loading times.

SUMMARY

We have implemented an extensible machine tool controller using Java. This controller
is based on well-defined OMAC module APIs and component APIs. In addition, we
have implemented rudimentary integration tools that take advantage of the component
APIs, generating application code and checking for system consistency.

We are currently fielding different test configurations of this controller, and working
on various extensions to the original work.

The pros and cons of Java for this work are summarized in Table I.

Table I. Java Pros and Cons for Component-Based Control Systems

Feature Pros Cons
Garbage Collection Avoids memory leaks and Improper GC algorithm may

use of reclaimed memory cause unpredictable system
pauses

Component APIs Many APIs for components Insufficient for OMAC use -
already exist and are must be extended
transparently supported by
the compiler and
development tools

Interfaces Semantics well defined for None
module interfaces

Thread Management Semantics for multi-threaded Not all threading behaviors
applications are well defined, with regard to priorities and
and standardized across all synchronization are fully
Java platforms, easing defined, leading to
implementation potentially incompatible

implementations
Byte-Code Interpreted Faster debugging and 10 to 20 times slower
Execution prototyping. Easer to execution speed compared to

distribute components as native binaries
compiled binary code

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

REFERENCES

1. “Requirements of Open, Modular Architecture Controllers for Applications in the Automotive Industry
Version 1. l”, December 13, 1994. l~ttn://www.arcweb.conl/on~ac/docs&nrs/on~acv 11 .htm

2. Richard Jones, Rafael D. Lins “Garbage Collection: Algorithms for Automatic Dynamic Memory
Management”, John Wiley & Son Ltd., 1996.

3. Real-Time Java Experts Group. Ilttr~://Www.rti.org/l~ublic/

