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Java Based Open Architecture Controller 

George Weinert 
Lawrence Livermore National Laboratory, Livermore, California, USA 

ABSTRACT 

At Lawrence Livermore National Laboratory (LLNL) we have been 
developing an open architecture machine tool controller. This work has 
been patterned after the General Motors (GM) led Open Modular 
Architecture Controller (OMAC) work, where we have been involved since 
its inception. The OMAC work has centered on creating sets of 
implementation neutral application programming interfaces (APIs) for 
machine control software components. 

In our work at LLNL, we were among the early adopters of the Java 
programming language. As an application programming language, it is 
particularly well suited for component software development. The language 
contains many features, which along with a well-defined implementation 
API (such as the OMAC APIs) allows third party binary files to be 
integrated into a working system. Because of its interpreted nature, Java 
allows rapid integration testing of components. 

However, for real-time systems development, the Java programming 
language presents many drawbacks. For instance, lack of well defined 
scheduling semantics and threading behavior can present many unwanted 
challenges. Also, the interpreted nature of the standard Java Virtual 
Machine (JVM) presents an immediate performance hit. Various real-time 
Java vendors are currently addressing some of these drawbacks. 

The various pluses and minuses of using the Java programming language 
and environment, with regard to a component-based controller, will be 
outlined. 
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INTRODUCTION 

Current machine tool controls (a.k.a., CNCs) are embedded, firmware based computer 
systems. Although many of these allow end users and system integrators to add sensors 
and actuator, it is very difficult for them to add algorithms that would allow them to 
integrate their process knowledge into machining and manufacturing processes. Further 



it is difficult to get the builders of these controllers to create “specials”, customized 
versions with their customer’s software added to them. 

Even if this software is added to one manufacturer’s current generation of controllers, 
there is no guarantee that this software will be portable to newer generations of controller 
hardware, or to another manufacturer’s controllers. Without a standard framework to 
implement these process-specific algorithms, the end user’s process knowledge is lost 
with each change in control system hardware. 

Open Modular Architecture Controls (OMAC) Initiative 

In 1994 General Motors, Ford Motor Company, and Chrysler Corporation released their 
requirements for an Open Modular Architecture Controller [ 11. This document outlined 
the need for standardized, modular, component based control system architecture. 

The approach outlined in the document involved breaking a controller into several 
modules (i.e., components) defined by their functionality and by the software interface 
that they provided. 

Work commenced in early 1995 to begin defining precisely how many modules there 
were, what their functionality and states they encompassed, and specifying well-defined 
application programming interfaces (APIs) for these modules. In addition this API 
working group, which I have been an active member in since its inception, was tasked 
with defining an architectural framework in which these modules would function. 

In defining this architecture, one of the overriding requirements was allowing one 
component to be swapped with another component. In other words allowing one 
implementation of a module to be replaced with another implementation. This required 
that the APIs specify how the results of a computation are accessed, but not how the 
calculation is carried out. 

Component Software Requirements and Definition 

The OMAC Requirements Document [l] specified that the controller be open, modular, 
and scaleable. The openness and modularity requirements were addressed by breaking 
the controller into several replaceable pieces, defining the state behavior for those pieces, 
and specifying their APIs. 

Scalability, which was defined as “enabling easy and efficient reconfiguration to meet 
specific application needs, from low to high end”, has several dimensions to it. One of 
these is the ability to extend the APIs of the modules (for more demanding, unanticipated 
needs), while still allowing backwards compatibility with existing components. This was 
addressed by treating the module APIs as Objected Oriented entities, which had no 
implementation. Inheritance may be used to extend any given API, and therefore any 
given module. 

A software component, for purposes of OMAC, is required to implement one, or more, 
well defined API sets, have a well-defined state behavior (which is reflected in the 
individual API sets), and be easily integrated into a controller or exchanged with another 
compatible component. Ideally these components could be shipped as binary code, rather 
than source code, allowing software producers to protect their proprietary knowledge. 



OMAC Component Defined 

An OMAC Component is an implementation of a given OMAC module API, which may 
be integrated into an OMAC controller. Any given component must implement at least 
one of the Module APIs, but may actually implement more. In general, there may be 
more than one instance of any given component in an OMAC controller. An OMAC 
controller is an integrated collection of OMAC components. 

Since building a controller means integrating many individual components, it is 
desirable to have some automated assistance in performing this task. In addition to the 
module APIs, each component must also implement Component APIs. These 
Component APIs can provide an integration tool with a wealth of information about a 
component. This information includes the Module APIs implemented, and other the 
other Module API implementations required. For example a component may implement 
the Axis Module API, and require a connection to another component implementing the 
Control Law Module API. A Unified Modeling Language (UML) model of an OMAC 
Component is shown in Figure 1. 

The Component APIs allow a system 
integrator to pull in the implementations 
required for his application, and then specify 

Services Provided 

OmacComponent 

connections between components. These 
connections may be checked for type and 
completeness using the information provided 
by the component, thereby reducing time 
spent by the integrator and increasing safety. 

Services Required 1 / I 
I 

Code may then be generated to produce the 
system specified by the integrator. 

4 $ $ In future we anticipate additional 
information to be provided by components, 

Figure 1. Omac Component which will increase system correctness and 
reliability. This information could include 
component characteristics such as timing and 

memory constraints. 

THE JAVA LANGUAGE AND OMAC REQUIREMENTS 

The OMAC API specifications were designed to be language independent, and were 
specified using the Interface Definition Language (IDL). This allowed the APIs to 
implementation language agnostic. 

As stated previously, OMAC goals required that the software components be capable 
of being distributed as binaries and integrated using automated tools. 

In addition to its component features, Java has several other important features as 
related to control systems. Unlike C or C++, Java includes a threading model and the 
concept of mutual exclusion at the language level. This allows a software author to 
safely specify concurrent activities. Java also specifies a rich, standardized class library 
of utility objects such as hash tables and object vectors. 



Java Component Features 

The Java language has many features which enable the use of component based software. 
These include late binding and the ability to distribute objects as compiled class files. 
Java also defines an “interface”, which corresponds to the module APIs. In addition, 
features added in Java 1.1 to support the Java Beans specification provide ways for tools 
to “look inside” an object and see what it implements. These features are referred to 
generically as “introspection”. 

All code written for our system that requires the use of an OMAC module API is 
written using Java interfaces. Instead of specifying a particular implementation of an 
API, code is written referencing the interfaces only. Later, a system integrator will 
specify which implementation of that interface is to be used. 

Late binding allows the Java run-time environment to incrementally load classes and 
components, and only linking as the need arises. This allows a system to be built and 
tested piece-wise by an integrator. 

The introspection capabilities of Java allow an integration tool to find the interfaces 
(APIs) that a component implements, the data attributes that may be queried or set, as 
well as events that may be generated or caught by an object. These abilities are already 
in widespread use in readily available Java development tools. 

All of the above abilities come at no cost to the programmer, and are supported by the 
Java compiler. 

OMAC extensions to Java Component Features 

Even though Java provides a rich set of component features, it is not rich enough to 
support all of the functionality needed by an OMAC component. Specifically, a standard 
Java component cannot advertise which other modules it needs to operate. 

We have extended the objects that we are using with additional interfaces that may be 
queried to find which other modules are required (see Figure 1). Other interfaces have 
been added that allow a component to be connected to another component’s services. 
These connections are made using ordinary Java references. 

Any additional future information that an integration tool requires would be made 
available through new extended interfaces. 

Java and Real-Time 

While Java provides good component facilities, it does not provide the best real-time 
characteristics. Good real-time characteristics would be defined as predictable response 
times and execution times. There are three primary areas which affect real-time 
performance in a Java based system: garbage collection, thread management, and 
interpreted execution. 

Garbage Collection. The primary failing of Java in a real-time environment is Java’s 
extensive use of garbage collection as a means of memory management. Garbage 
collection can be both a blessing and a curse. 

In a component-based system built out of pieces supplied by many third parties, it is 
difficult (if not impossible) to assign responsibility, in an enforceable way, for the 
lifetime and memory management of any particular object. In other programming 



languages (notably C++), this can lead to memory leaks (un-reclaimed memory) and the 
reclamation of memory still in use. Java has solved this problem by using garbage 
collection to automatically manage storage. 

Garbage collection can be implemented in many ways [2]. The most common 
approach is “mark and sweep”. While this approach is simple, it has one major 
drawback: it must freeze all threads in the system and run until it has recovered all 
inactive memory. This can take anywhere from a few milliseconds to a few seconds. In 
a system that has many control loops running at millisecond repetition rates, this can be 
disastrous. 

Fortunately, several vendors are starting to produce Java run-time with “real-time” 
garbage collection characteristics. Although these algorithms are not yet standardized, 
they allow for incremental, prioritizable, interruptible garbage collection to be performed. 
This allows a system to retain its real-time characteristics. We anticipate that as Java 
makes more inroads into the embedded/real-time market that the availability of these 
product offerings will increase. Additionally, industry lead groups such as the Real-Time 
Java Experts Group (the J Consortium) are addressing these problems. [3] 

Thread Management. Java provides standardized thread semantics, which include 
creation, prioritization, and mutual-exclusion. However, the actual behavior of different 
priority threads is not defined (e.g., are threads cooperative or preemptable?). Java also 
does not provide any definition of the order that threads waiting at the same 
synchronization block will be freed (e.g., FIFO or priority?). 

Once again, various real-time java vendors and the J Consortium are addressing these 
concerns. 

Interpreted Execution. Finally, Java by its nature is made to run on a virtual machine, 
whose instruction set is defined by a set of byte-codes. Normally, these byte-codes are 
interpreted by software running on the target machine. This process is anywhere from 10 
to 20 times slower than native code execution. While slower execution speeds do not 
necessarily translate into the violation of real-time constraints, in general an open system 
will be more useful if it has more free resources available for user code. 

To solve this speed limitation, the Java Virtual Machines (JVMs) on most popular 
platforms use a just-in-time (JIT) compiler, which transforms the byte codes to native 
code the first time the code is executed. While this speeds up subsequent executions of 
the code, it does lead to long, unpredictable delays the first time the code is executed. 

JIT compilation is not an acceptable solution for real-time systems. Once again, 
several solutions now exist from various vendors. These include ahead-of-time (AOT) 
compilers, and compile-on-load solutions. The AOT compilers essentially take Java byte 
codes and compile them into an executable image in native code. All class loading is 
pre-resolved before run time. Compile-on-load solutions work similarly to JIT 
compilers, but instead of waiting for the code to be executed, it is compiled to native as 
soon as it is loaded. Classes used by a loaded class are immediately loaded and compiled 
as well. In essence, an entire system will be loaded and compiled before any execution 
takes place with either AOT or compile-on-load. When compiled to native, Java code 
runs approximately 10 to 20 times faster, at the expense of either longer preparation or 
loading times. 



SUMMARY 

We have implemented an extensible machine tool controller using Java. This controller 
is based on well-defined OMAC module APIs and component APIs. In addition, we 
have implemented rudimentary integration tools that take advantage of the component 
APIs, generating application code and checking for system consistency. 

We are currently fielding different test configurations of this controller, and working 
on various extensions to the original work. 

The pros and cons of Java for this work are summarized in Table I. 

Table I. Java Pros and Cons for Component-Based Control Systems 

Feature Pros Cons 
Garbage Collection Avoids memory leaks and Improper GC algorithm may 

use of reclaimed memory cause unpredictable system 
pauses 

Component APIs Many APIs for components Insufficient for OMAC use - 
already exist and are must be extended 
transparently supported by 
the compiler and 
development tools 

Interfaces Semantics well defined for None 
module interfaces 

Thread Management Semantics for multi-threaded Not all threading behaviors 
applications are well defined, with regard to priorities and 
and standardized across all synchronization are fully 
Java platforms, easing defined, leading to 
implementation potentially incompatible 

implementations 
Byte-Code Interpreted Faster debugging and 10 to 20 times slower 
Execution prototyping. Easer to execution speed compared to 

distribute components as native binaries 
compiled binary code 

This work was performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
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