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Model validation of flow and dispersion around a cube 

D. E. Stevens, S.T. Chan, andR.L. Lee. 
Lawrence Livermore National Laboratory, P.O. Box 808, L-103, Livermore, CA 94551 

Abstract 

This paper compares results for flow over a cube between laboratory experiments and two 
numerical simulations. One of the simulations is a Reynolds-averaged Navier-Stokes (RANS) 
calculation, the other a large eddy simulation (LES). Both the structure of the flow and dispersion 
of a source behind the cube are compared. It was found that both simulations performed well 
when mean flows are compared. For dispersion, the LES performed better than the RANS 
simulation in that it was able to capture the effect of vortex shedding and produce a wider 
dispersion pattern. The plume in the RANS simulation is very similar to instantaneous 
realizations of the plume in the LES. Near the cube, the results were very similar. This model 
validation study suggests that the high cost of LES computations may be warranted when 
detailed time-varying solutions are of high interest, However the high fidelity RANS approach is 
a cost-effective alternative to LES in obtaining time-average mean field results. 

1. Introduction 

The prediction of atmospheric flow and pollutant dispersion in an urban area is difficult due to 
the presence of buildings and numerous surface-mounted obstacles. Individual buildings exhibit 
significant geometrical variations with building wakes from adjacent buildings interfering and 
altering the trajectory of street level plumes. We have developed a numerical model for predicting 
airflow and pollutant dispersal on building-scales from a single building to multi-building 
complexes. Model validation is a fundamental component of establishing the credibility of this 
model for use in the assessment of flow and dispersion of hazardous agents around buildings. It is 
necessary to establish the credibility of a model on simpler flows, before using a model to assess 
dispersion involving very complicated flows. 

This paper describes a validation of flow and dispersion around a cubical building. There have 
been several laboratory experiments and many research papers published on this flow (see 
Lakehal and Rodi (1997), Shah (1998), and Zhang, Arya, and Snyder (1996) for references). This 
enables us to use this flow as a benchmark for testing model accuracy. The relative simplicity of 
this flow makes it possible to compare, via non-dimensional parameters, a collection of widely 
varying model simulations and experiments in a common format. 

The fidelity of the model with respect to the flow field is judged by comparison with results 
from a laboratory experiment by Martinuzzi and Tropea (1993). There the non-dimensional 
velocity, U/U,, where U is the stream-wise horizontal velocity field and U, is the mean inflow 



velocity, provides a useful metric for comparing the winds responsible for dispersion. The degree 
of variability in the flow can be judged via the normalized turbulent kinetic energy k/Uo2. 
Turbulent kinetic energy (TKE) provides an estimate for the turbulent variations that occur in 
this flow as it is computed as a variance of actual velocities from their time-averaged mean value. 

Dispersion of a tracer in the wake of the cube has been much less studied than the flow field 
itself. However, for release assessment purposes, dispersion is more important than the actual 
flow field. Here we use a study by Zhang, Arya, and Snyder (1996) who released a ground level 
tracer 0.25 H downstream from the cube where H is the height of the cube. The experiment 
showed that the tracer is entrained into the recirculating eddy behind the cube and dispersed 
downstream. An important feature of the dispersion pattern is that it quickly becomes much 
wider than the cube width within a few block heights downstream. An explanation of this 
behavior can be obtained by comparing the LES with RANS results. 

The model used in this report is FEM3MP. It is a massively parallel version of the earlier model 
FEM3CB which is described in: Chan, Lee, and Leone (1999), Chan (1994), and Gresho and 
Chan (1998). This model is a finite element model with an implicit time integration technique and 
has options for performing both RANS and LES simulations. This report will only address those 
aspects of the model which differentiate the RANS from the LES formulation. 

2. Governing Equations 

The equations modeled in this validation study are a subset of the generalized anelastic equations 
available to FEM3MP. The equations used here are for incompressible flow with an additional 
advected scalar. The equations, written in Cartesian tensor form, are: 
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In the above equations, U, is the i-th component of the mean velocity, c is the mean tracer 
concentration, andp is the dynamic pressure used to maintain mass consistency. The momentum 
and scalar equations have source terms that arise from the turbulence submodel used. The chief 
difference between the RANS and LES simulations presented are the manner in which the 
turbulent stress, z&and scalar flux z+’ are parameterized by their turbulence models. 

RANS modeling parameter&s z.&and p by using gradient-type terms to represent the whole 

range of turbulent scales. As a result, the spatial and temporal resolution requirements are often 
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less stringent than those of an LES simulation. This makes this type of modeling very attractive 
for situations that require a large number of simulations and mean quantities are adequate. 
Its drawback is that it may require a very sophisticated turbulence model and that certain 
information such as the turbulent variation of the velocities and scalar are available only in a 
parameterized form. 

LES modeling is different in that it seeks to model most of the turbulent variation with the 
numerics of the resolved motions. A turbulence model is used only to parameterize the motions 
that are smaller than a cutoff length scale, 1, typically chosen as a small multiple of the mesh 
spacing. If most of the turbulence is organized on scales larger than I, then a very simple model 
for the effect of motions smaller than I can be used without compromising accuracy. 
The drawback of this procedure is that one must often use a large number of timesteps to achieve 
quasi-steady conditions after which stable means and variances can be computed. Furthermore, 
the choice of I is often arbitrary, with various researchers siding on the side of small or large 
values, depending on their optimism and computer resources. The consensus view indicates that 
in order to capture the bulk of the turbulent variations, overall computational costs are much 
higher than typically required in a RANS simulation. 

The mechanics of simulating dispersion in an LES model are different from a RANS model. 
A computational advantage of RANS simulation is that given a sufficiently accurate steady-state 
velocity field, the dispersion results are obtained as a separate calculation from the flow field. 
These calculations are decoupled as long as there are no physical interactions between the two 
fields. This is useful for assessment studies involving non-reacting agents, where one might want 
to run many dispersion calculations assuming different source scenarios for a given wind field. 
Since this is just a scalar calculation, execution time can be an order magnitude faster than that of 
the flow (vector) calculation. In an LES model, it is necessary to compute the dispersion 
calculation the same time as one generates the flow field, since the velocity field is time- 
dependent and it is infeasible to save the velocity field in sufficient detail. This practically limits 
the scenarios one can generate, since dispersion results cannot be generated from a pre-computed 
velocity field. 

Also, LES has theoretical difficulties if the source is of a short duration. One can try to embed an 
ensemble of dispersion calculations in an LES by releasing sources of multiple scalars at different 
times. Unfortunately, this requires the assessor to know all of the desired source parameters at 
the start of a long simulation. However, dispersion in an LES simulation captures much of the 
turbulent variation. For completeness, the ideal assessment scenario should include both types of 
simulation. 

The following subsections describe the RANS and LES turbulence models in more detail. 



2.1 RANS Turbulence Model 

The RANS model used in this report has a nonlinear eddy viscosity (NEV) turbulence submodel 
developed by Suga (1995). This 3-equation turbulence submodel has many desirable properties, 
including anisotropy, a cubic constitutive law, and no need for wall functions. It suffers from 
none of the maladies that normally afflict the commonly used k - E turbulence submodel. 
Additionally, since the model has been derived from the Reynolds stress closure models, it 
retains many of their attributes-but at a significantly reduced computational cost. 
This submodel was initially implemented and tested in another time-dependent Navier-Stokes 
solver, with encouraging results in a simulation of the flow pass an automobile-like body (Gresho 
and Chan, 1998). 

The crux of the submodel involves the following three fairly complex, coupled equations, with 
details available in Suga (1995), Gresho and Chan (1998): 

(4) 

(5) 

(6) 

In the above equations, k is the turbulent kinetic energy (TKE), E is the isotropic dissipation 
rate, and A* is the second invariant of the dimensionless anisotropic Reynolds stress tensor. 

The Reynolds stresses are defined by a cubic constitutive relationship 

(7) 

in where Sq is the mean strain rate tensor and 0, is the mean rotation tensor. The isotropic 
turbulent eddy viscosity is defined as 

v,= c,f,k2/E, (f-9 

where cP is a turbulent viscosity parameter andfP is a wall damping function. 
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2.2 LES sub-grid turbulence model 

The LES turbulence model is simpler than the RANS three-equation model. The sole role of the 
turbulence model in an LES simulation is to parameterize the effect of motions that cannot be 
resolved by the computational mesh. The simplest such parameterization and the one used here 
was developed by Smagorinsky (1963) and Lilly (1962). It assumes that the subgrid TKE, e, is 
locally in equilibrium between the locally generated shear production and dissipation. There are 
more complicated subgrid models such as the one by Deardorff (1974), where this assumption is 
relaxed and a subgrid kinetic energy is advected in a manner similar to the TKE in the above three- 
equation model. In the Smagorinsky turbulence model, the subgrid TKE is found directly from 
the equilibrium assumption, which can be manipulated to yield 

which yields the eddy viscosity, 

(9) 

Here cs and c, are empirical constants with values of 0.1 and 0.3 in this study. The subgrid scale 
fluxes are then found from a simple down-gradient mixing-length relationship between velocity 
and scalar gradients and the subgrid stress and fluxes 

(11) 

(12) 

Although simpler conceptually, the properties of the flow are more difficult to diagnose for a 
LES than a RANS simulation. It often requires running the simulation for a very long time and 
using temporal averaging to generate mean statistics. This is illustrated by the following 
comparison of how TKE is generated in RANS versus LES. For the RANS calculation, TKE is 
computed explicitly and can be used as a scalar diagnostic. For the LES, one must first generate a 
mean velocity field, and the deviations from this field, square and average again to generate the 
resolved TKE. Since this is a statistical quantity, a sufficiently long averaging period must be 
used to generate stable statistics. Averaging is also needed for the sub-grid TKE, since the sum of 
these two quantities has to be used for comparison with RANS and the experimental results. 

LES subgrid models have similar computational problems as RANS turbulence models. One 
problem associated with these turbulence models is their ability to model near wall behavior. For 
this study, we used a simulation with no-slip boundary conditions on the bottom boundary for 
the RANS, and free slip for the LES. This maximized turbulent dispersion in the LES. Another 
factor which maximized turbulent dispersion was using a Smagorinsky coefficient, c, = 0.1 which 



is a value typically used in engineering studies. This contrasts with the value of c, = 0.23, a value 
typically used in atmospheric LES, that yielded less crosswind dispersion. 

3. Results 

Both the RANS and LES used the same computational domain. The height of the cube, H, is 1 .O, 
the channel height is 2H, the width is 7H and the length of the channel is 1OH. The origin is 
situated at the center of the cube, with the inflow at x = -3.5H. The flow domain is illustrated in 
Figure 1. This figure displays the cube and several vertical and horizontal lines where profiles 
from both the dispersion experiments of Zhang and Snyder (1996) and flow experiments of 
Martinuzzi and Tropea (1993) are to be presented, Also, shown on this diagram are three planes 
that are used to compare the RANS simulation versus the LES. These are the symmetry plane 
along the middle of the domain, the floor plane at the bottom, and the outflow plane where the 
tracer leaves the domain. 

Since the PANS assumes a steady state solution and the geometry was symmetric, only one half 
the domain was simulated. This enabled the RANS to use a small mesh of 96x37~30 nodal points. 
Overall, the simulation took 25 hours on 2-3 processors of a shared multi-processor DEC 
ALPHA to generate 1200 timesteps. This simulation used as inflow, the mean velocity of a 
channel flow, with a bulk average velocity of 0.6 m/s. 

The LES used a computational mesh of 129x65~65 nodal points over 1920 timesteps. 
This generated a time series of data 57.6 nondimensional time units long, t* = U&H, where t* the 
non-dimensional time. A uniform inflow velocity of 0.6 m was used which matches the inflow 
characteristics of Zhang, Arya, and Snyder (1996). The LES calculation requires roughly an order 
of magnitude more effort than the PANS simulation. However, due to the use of parallel 
computing on 64 processors, this simulation took only 18 hours to generate. Without the use of 
parallel computing, this simulation would have been much more demanding to perform. It should 
be noted that the processors on the IBM parallel machine are PowerPC chips with a performance 
of around 40% of the DEC ALPHA. Taking this into account yields similar performance in 
integrated gridpoints per cpu-second. 

The time averaging in this report was done by averaging snapshots of data along, the symmetry, 
floor, and outflow planes. The model was integrated 40 non-dimensional time units before 
averaging to avoid incorporating any of the transient from the model initialization. At this point, 
the mean concentration in the domain had stabilized and the flow has settled down alternately 
shedding pairs of vortices behind the cube. The averaging period in all the mean LES fields 
presented here used the last third of the simulation. 

Time histories from the LES complement the assessment capabilities of a combined LES and 
RANS approach. Figure 2 shows a time history of concentration at the surface at x = 3.5H. The 
fundamental period of the simulation is that of the alternately shedding vortices. From Shah 
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(1998), a pair of alternating vortices is shed every 8.5 non-dimensional time units. This is 
equivalent to a Strouhal Number of St = H/(7&t) = 0,ll. For our simulation, the Strouhal number 
is 0.13 which is equivalent to a pair of vortices every 7.5 time units. The estimated period is 
twice that in this figure as each vortex of the pair advects part of its peak concentration over the 
centerline. Note there is a strong peak where a concentrated puff of tracer hit this station. 
While this is not indicative of the mean concentration, a long enough time series can be used to 
measure the transient phenomena that are responsible for peak exposures. 

Figures 3A and 3B compare the total turbulent kinetic energy at the symmetry plane, Figure 3A 
compares our LES and RANS results with those of Shah’s LES. Figure 3B shows the streamlines 
from Martinuzzi and Tropea, Shah’s LES, FEM3MP LES, and RANS. The TKE in the LES 
tends to be larger and extend closer to the surface than in the RANS. The features of the two LES 
results are very similar. Our LES tends to predict more TKE behind the cube, while Shah’s has a 
bigger region of large TKE values in front of the cube. The main differences between the two LES 
models is probably the different boundary conditions used at the top and bottom of the domain. 
Shah uses no-slip boundary conditions at top and bottom, while we use free-slip boundary 
conditions to better match the experimental results of Zhang, Arya, and Snyder (1996). The main 
features of all flow fields are similar. They include the separation zones in front of the cube, on 
the roof and the two sides, a primary recirculation zone in the wake, and a pair of counter- 
rotating vortices on the horizontal plane (not shown). The reattachment length predicted by the 
3-equation NEV turbulence submodel is 1.85, which agrees well with the value of 1.68 measured 
by Martinuzzi and Tropea (1993), and with the value of 1.64 predicted by Shah’s (1999) LES. 
The recirculation length of this LES simuation was 1.55. These lengths compare more favorably 
than that predicted by the simpler, but widely used standard k --E turbulence model results that 
tend to be around 2.85 (Chart 1999), which is much larger than all above values. 

In Figures 4 and 5, we compare the predicted turbulent kinetic energy and velocity fields with the 
data of Martinuzzi and Tropea (1993). The features of the LES agree better with the 
experimental data. The small discrepancies at the top of the domain are generated by the free slip 
boundary conditions used in the LES model to approximate the higher top boundary location of 
the Zhang, Arya, and Snyder (1996) experiment. The RANS velocities and the LES velocities 
agree with the observational data in that they predict all of the bulk flow features observed in the 
experiment. However, the LES predicts the magnitudes of TKE better than the RANS as the 
RANS under-predicts the TKE near the peaks. Both model results predict peaks of TKE at 
approximately the correct locations. 

The results of Zhang, Arya, and Snyder (1996) are used to evaluate the accuracy of concentration 
patterns from the model. These results where created with a tow tank in which a cube mounted 
to a plate was moved at 0.6 m/s through a water tank 18 meters long. The cube was 0.1 m high 
and the tank was 1 m wide by 1 m. All of the turbulence in the experiment was generated by the 
passage of the cube. The dispersion in their experiments is generated by a small ground-level 
continuous source 0.25 H centered behind the rear of the cube. The green lines of Figure 1 are the 
locations where the concentrations downstream from the cube have been measured. 
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4. Summary 

We have presented a validation for our model involving flow and dispersion over a cube. It was 
found that the LES yields better results but with roughly an order of magnitude increase in cost. 
The RANS is attractive, if one takes into account the finer grid and smaller timesteps needed for 
LES as well as the ability of the RANS to decouple dispersion simulations from those of the 
mean flow. A summary of our comparison with experiment follows: 

1. The RANS and LES have similar mean velocity fields near the cube. If mean velocity fields 
are sufficient and decoupled from the advected scalar species, one can run the dispersion off- 
line using mean data and the RANS solution is the more economical method. 

2. The LES captures turbulent variations that the RANS does not model. Hence if LES 
dispersion is calculated in a coupled manner along with the flow, the results incorporate the 
effects of transitory eddies. For situations in which the source lasts sufficiently long, LES 
simulates more accurately the width of the dispersion, whereas RANS slightly under-predicts 
it. This is useful in situations where the knowledge of trace amounts of advected species is 
important. 

3. Comparisons of instantaneous snapshots of the LES have similar vertical depth and width as 
the RANS. This indicates the RANS is producing a reasonable plume, but without the spatial 
fluctuation associated with vortex shedding in the experimentally observed wake. 

Finally, this report demonstrates the utility of having both a tested RANS and LES capability in 
the same modeling framework. We are further validating the accuracy of this framework with 
both wind tunnel and field experiments. 
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Figure 1: Computational domain, experimental results for the tracer are plotted along green lines, velocity 
along blue lines, TKE along red lines, and along the magenta line both TKE and momentum. 
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Figure 2: Time history of concentration at x = 3.5 H, y = 0.0, z = 0.05 H. 
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