
Preprint
UCRL-JC- 137704

U.S. Department of Energy

The Effective I/O
Bandwidth Benchmark
(b-eff-io)

Message Passing Interface and High-Performance
Clusters Developer’s and User’s Conference, Ithaca, NY,
March 21-23, 2000

February 17,200O

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 5768401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid /Library.html

The Effective I/O .Bandwidth Benchmark (b-eff-io)
Rolf Rabenseifner’ and Alice E. Koniges2

‘High-Performance Computing-Center (HLRS),
Rechenzentrum Universitat Stuttgart,

Allmandring 30, D-70550 Stuttgart, Germany
rabenseifnerQhlrs.de, www.hlrs.de/people/rabenseifner/

2Lawrence Livermore National Laboratory, Livermore, CA 94550
konigesQllnl.gov, www.ipp.mpg.de/mack

Abstract- The effective I/O bandwidth benchmark
(b-eff-io) covers two goals: (1) to achieve a characteristic av-
erage number for the I/O bandwidth achievable with parallel
MPI-I/O applications, and (2) to get detailed information
about several access patterns and buffer lengths. The bench-
mark examines “first write”, “rewrite” and “read” access,
strided (individual and shared pointers) and segmented col-
lective patterns on one Rle per application and non-collective
access to one file per process. The number of parallel access-
ing processes is also varied and wellformed I/O is compared
with non-wellformed. On systems, meeting the rule that
the total memory can be written to disk in 10 minutes, the
benchmark should not need more than 15 minutes for a first
pass of all patterns. The benchmark is designed analogously
to the effective bandwidth benchmark for message passing
(b-eff) that characterizes the message passing capabilities
of a system in a few minutes. First results of the b-elf-io
benchmark are given for IBM SP and Cray T3E systems
and compared with existing benchmarks based on parallel
Posix-I/O.

Keywords- MPI, File-I/O, Disk-I/O,
width.

I. INTRODUCTION

Benchmark, Band-

Most parallel I/O benchmarks and benchmarking studies
characterize the hardware and file system performance lim-
its [2], [5], 181, PI. Oft en, they focus on determining under
which conditions the maximal file system performance can
be reached on a specific platform. Such results can guide
the user in choosing an optimal access pattern for a given
machine and file system, but do not generally consider the
needs of the application over the needs of the file system.

Our approach begins with consideration of the possible
I/O requests of parallel applications. To formulate such
I/O requests, the MPI Forum has standardized the MPI-
I/O interface [lo]. Major goals of this standardization are
to express the user’s needs and to allow optimal imple-
mentations of the MPI-I/O interface on all platforms [3],
[Ill, [141, [I51. B ase on this background, the effective I/O d
bandwidth benchmark (b-effio) should measure different
access patterns, report these detailed results, and should
calculate an average I/O bandwidth value that character-
izes the whole system. This goal is analogue to the Lin-
pack value reported in TOP500 [19] that characterizes the
computational speed of a system, and also to the effective
bandwidth benchmark (b..eff), that characterizes the com-
munication network of a distributed system [12], [17], [18].

A major difference between b-eff and b-effio is the mag-

nitude of the bandwidth. On well-balanced systems in high
performance computing we expect a I/O bandwidth which
allows for writing or reading the total memory in approx-
imately 10 minutes. For the communication bandwidth,
the b-eff benchmark shows, that the total memory can be
communicated in 3.2 seconds on a Cray T3E with 512
processors and in 13.6 seconds on a 24 processor Hitachi
SR 8000. An I/O benchmark measures the bandwidth of
data transfers between memory and disk. Such measure-
ments are (1) highly influenced by buffering mechanisms
of the underlying I/O middleware and filesystem details,
and (2) high I/O bandwidth on disk requires, especially
on striped filesystems, that a large amount of data must
be transferred,between such buffers and disk. Therefore a
benchmark must ensure that a sufficient amount of data
is transfered between disk and the application’s memory.
The communication benchmark b-eff can give detailed an-
swers in about 2 minutes. Later we shall see that b-effio,
our I/O counterpart, needs at least 15 minutes to get a first
answer.

II. MULTIDIMENSIONAL BENCHMARKING SPACE

Often, benchmark calculations sample only a small sub-
space of a multidimensional parameter space. One extreme
example is to measure only one point, e.g., a communica-
tion bandwidth between two processors using a ping-pong
communication pattern with 8 IMbyte messages, repeated
100 times. For I/O benchmarking, a huge number of pa-
rameters exist. We divide the parameters into 6 general
categories. At the end of each category in the following
list, a first hint about handling the aspects in b-effio is
given. The detailed definition of b-effio is shown in sec-
tion IV.
1. Application parameters are (a) the size of contiguous
chunks in the memory, (b) the size of contiguous chunks on
disk, which may be different in the case of scatter/gather
access patterns, (c) the number of such contiguous chunks
that are accessed with each call to a read or write routine,
(d) the file size, (e) the distribution scheme, e.g., segmented
or long strides, short strides, random or regular, or sepa-
rate files for each node, and (f) whether or not the chunk
size and alignment are wellformed, e.g., a power of two or
a multiple of the striping unit. For b-eff-io, 36 different
patterns are used to cover most of these aspects.

1 PEO PE t PE2 PE3 II PEO PE 1 PE2 PE3

L I

pattern type 0 pattern type 1

PEO PE 1 PE2 PE3 PEO PE 1 PE2 PE3

pattern type 2 pattern type 3/4

Fig. 1. Data transfer of one (collective) call to MPI-Write-...

2. Usage aspects are (a) how many processes are used and
(b) how many parallel processors and threads are used for
each process. To keep these aspects outside of the bench-
mark, b-effio will be defined as a maximum over these
aspects and one must report the usage parameters used to
achieve the maximum.
3. The major programming interface parameter is specifi-
cation of which I/O interface is used: Posix I/O buffered
or raw, special filesystem I/O of the vendors filesytem, or
MPI-I/O. In this benchmark, we use only MPI-I/O, be-
cause it should be a portable interface of an optimal im-
plementation on top of Posix I/O or the special filesystem
I/O.
4. MPI-I/O defines the following orthogonal aspects: (a)
access methods, i.e., first writing of a file, rewriting or read-
ing, (b) positioning method, i.e. explicit offsets, individual
or shared file pointers, (c) coordination, i.e., accessing the
file collectively by (all) processes or noncollectively, (d) syn-
chronism, i.e., blocking or nonblocking. Additional aspects
are: (e) whether or not the files are open unique, i.e., that
the file will not be concurrently opened elsewhere, and (f)
which consistency is chosen for conflicting accesses, i.e.,
whether or not atomic mode is set. For b-effio there is no
overlap of I/O and computation, therefore only blocking
calls are used. Because there should not be a significant
difference between the efficiency of using explicit offsets or
individual file pointers, only the individual and shared file
pointers are benchmarked. With regard to the additional
aspects, unique and nonatomic should be used.
5. Filesystem parameters are (a) how many nodes or pro-
cessors are used as I/O servers, (b) how much memory is
used as bufferspace on each application node, (c) the disk
block size, (d) the striping unit size, and (e) the number of
parallel striping devices that are used. These aspects are
also outside the scope of b-effio. Any usage of non-default
parameters must be reported.
6. Additional benchmarking aspects are (a) repetition fac-
tors, (b) how to calculate b-effio, based on a subspace of

* the parameter space defined above using maximum, aver-
age, weighted average or logarithmic averages.

To reduce benchmarking time to an acceptable amount,
one can normally only measure I/O performance at a few
grid points of a l-5 dimensional subspace. To analyze more
than 5 aspects, usually more than one subspace is exam-
ined. Often, the common area of these subspaces is chosen
as the intersection of the area of best results of the other

subspaces. For example in [S], the subspace varying the
number of servers is obtained with segmented access pat-
terns, and with well-chosen block sizes and client:server
ratios. Defining such optimal subspaces can be highly
system-dependent and may therefore not be as appropri-
ate for a b-effio designed for a variety of systems. For the
design of b-effio, it is important to choose the grid points
based more on general application needs than on optimal
system behavior.

III. CRITERIA

The benchmark b-effio should characterize the I/O ca-
pabilities of the system. Should we use, therefore, only
access patterns, that promise a maximum bandwidth? No,
but there should be a good chance that an optimized im-
plementation of MPI-I/O should be able to achieve a high
bandwidth. This means that we should measure patterns
that can be recommended to application developers.

An important criterion is that the b-effio benchmark
should only need about 10 to 15 minutes. For first mea-
surements, it need not run on an empty system as long as
concurrently running other applications do not use a sig-
nificant part of the I/O bandwidth of the system. Nor-
mally, the full I/O bandwidth can be reached by using
less than the total number of available processors or SMP
nodes. In contrast, the communication benchmark b-eff
should nof require more than 2 minutes, but it must run
on the whole system to compute the aggregate communi-
cation bandwidth.

Based on the rule mentioned in the introduction and
expecting that MPI-I/O will offer at least 50 percent of the
hardware I/O bandwidth, we can expect that a 10 minute
b...effio run will transfer about half of the total memory
of the benchmarked system. A first test on a T3E900-512
shows that based on the pattern-mix, only about the third
of this theoretical value is transferred.

As third important criterion, we want to be able to com-
pare different common access patterns.

IV. DEFINITION OF THE EFFECTIVE I/O BANDWIDTH

The effective I/O bandwidth benchmark measures the
following aspects:
. a set of partitions,
. the access methods initial write, rewrite, and read,
. the pattern types (see Fig. 1)

TABLE1
THE PATTERN DETAILS USED IN BEFF-IO

Pattern
Type) No.
1 I

1 L u

continued

(0) strided collective access, scattering large chunks in
memory to/from disk,

(1) strided collective access, but one read or write call
per disk chunk,

(2) noncollective access to one file per MPI process,
(3) same as (2), but the individual files are assembled to

one segmented file, and
(4) same as (3), but the access to the segmented file is

done with collective routines;
for each pattern type, an individual file is used.

. the contiguous chunk size is chosen wellformed, i.e., as a
power of 2, and non-wellformed by adding 8 bytes to the
wellformed size,

. different chunk sizes, mainly 1 kB, 32 kB, 1 MB, and the
maximum of 2 MB and l/l28 of the memory size of a
node executing one MPI process.

The total list of patterns is shown in Table I. A pattern
is a pattern type combined with a fixed chunk size and
alignment of the first byte’. The column “1” defines the
contiguous chunks that are written from memory to disk
and vice versa. The value MPART is defined as max(2 MB,
memory of one node / 128). The column “L” defines the
contiguous chunk in the memory. In case of pattern type
(0), scattering is done by repeating to write 1 bytes by
each process to disk. In all other cases, the contiguous
chunk handled by each call to MPI-Write or MPI-Read
is equivalent in memory and on disk. This is denoted by
“:=l” in the L column. U is a time unit.

Each pattern is benchmarked by repeating the pattern
for a given amount of time. For write access, this loop is
hnished with a call to MPIFilesync. This time is given
by the allowed time for a whole partition (e.g., T = 10 min-
utes) multiplied by U/CU/3, as given in the table. This
time-driven approach allows one to limit the total execu-
tion time. For the pattern types (3) and (4) a fixed segment
size must be computed before starting the pattern of these
types. Therefore, the time-driven approach is substituted

‘The aligment is implicitly defined by the data written by all pre-
vious patterns in the same pattern type

by a size-driven approach, and the repeating. factors are
initialized based on the measurements for types (0) to (2).

The b-effio value of one partition is defined as sum of
all transferred bytes divided by the total transfer time. If
patterns do not need exactly the ideal allowed time, then
the average is weighted by the unit U. At minimum, 10
minutes must be used for benchmarking one partition.

The b-effio of a system is defined as the maximum
over any b-effio of a single partition of the system. This
definition permits the user of the benchmark to freely
choose the usage aspects and enlarge the total filesize as
desired. The minimum filesize is given by the bandwidth
for an initial write multiplied by 200 set (= 10 minutes /
3 access methods).

V. COMPARING SYSTEMS USING B-EFF-IO

In this section, we present a detailed analysis of each
run of b-effio on a partition. We test b-effio on two sys-
tems, the Cray T3E900-512 at HLRS/RUS in Stuttgart
and an RS SOOO/SP system at LLNL called “blue.” On
the T3E, we use the tmp-filesystem with 10 striped Raid-
disks connected via a GigaRing for the benchmark. The
peak-performance of the aggregated parallel bandwidth of
this hardware configuration is about 300 MB/s. The LLNL
results presented here are for an SP system with 336 SMP
nodes each with four 332 MHz processors. Since the I/O
performance on this system does not increase significantly
with the number of processors on a given node performing
I/O, all test results assume a single thread on a given node
is doing the I/O. Thus, a 64 processor run means 64 nodes
assigned to I/O, and no requested computation by the ad-
ditional 64*3 processors. On the SP system, the data is
written to the IBM General Parallel File System (GPFS)
called blue.llnl.gov:/g/gl which has 20 VSD I/O servers.
Recent results for this system show a maximum read per-
formance of approximately 950MB/sec for a 128 node job,
and a maximum write performance of 690MB/sec for 64

loo00 r
type0 - blue RS 6OOO/SP
g : -y-y;

type3 *-
type4 -A-- ,,.. O-..,i) ---c

L. - 4 ,?-4~’

1000

5

s--J ,/’ ,/’ ,,i

1oo _ ../”

,o-w

, ,/A,~, ’ ,+ ~~~~4,,,,,: /’

,.;
,.:

z
a 100
3
0
E 10

1 ,+--,”
/

0.11’ 3 .!’ ’ ’
/ ;s’

* 4’

tg ; --o

L 0.1
type4T=T

lk +8 32k +8 lM+8 8b
0.1

Ik +8 32k +8 1M +8
contiguous chunks on disk [bytes]

ik +0 32k +8
contiguous chunks on disk [byte:?

lM+8 8M
contiguous chunks on disk [bytes]

(a) 128 PEs on the “blue” RS SOOO/SP at LLNL, T = lOmin, b-effio = 311 MB/s
10000.~ I 10000,. > 1OOOOt. I

.typeO - hww T3E900-512 - hwwT3E900-512
type 1 -+---- 2: y .*____ .typeO - hww T3E900-512

type2 q ----
type 1 .+.---

1000 rtype2 R
type2 --0.---

type4 ----
1000 -type2 *..

type 2 -0. ..

type4 ----
1000 7 type 2 *--

type 4 ----

f ‘::y+: .f l;::+T f l;; ~~-

g ,7

~,~,~~~$...-.--..-,“’

f;,..’

&$4
*....o f+’ ,’ /’ _c-. d
r-.-. 9
+...-V’

,,/

1 T 9.
:,A+/;,!~ It

1 1 -

/

I ~~~;:ti~,..-”
I’

,,’
o,l ‘.. , j , , 0.1

-..... ,I
a * 0.1 ’ b

lk +0 32k +8 lM+8 2M lk +8 32k +0 lM+8 2M lk +8
contiguous chunks on disk [bytes]

32k +8 lM+8 2M
contiguous chunks on disk [bytes] contiguous chunks on disk [bytes]

(b) 32 PEs on the T3E900-512 at HLRS, T = 10 min, b-effio = 71 MB/s

‘“““‘“;I ‘z 10000
type.0 -+-’ hww T3E900-512’
type , -+--..
$YZ g q --’

*

type4 ----

W-0 - hww T3E900-512 type 1 -+----
type 2 m- ..
type2 *
type4 ----.

1000

1

0.1 0.1
lk +8 32k +8 lM+8 2M Ik +8 32k +a 1M +0

[byte::
lk +8 32k +8 1M+8 2M

contiguous chunks on disk [bytes] contiguous chunks on disk contiguous chunks on disk [bytes]
(c) 32 PEs on the T3E900-512 at HLRS, T=30min, b-effio = 62 MB/s

10000 I 8 10000r~ I 10000.. I
type0 - hww T3E900512 type , .*.... .tywO - hww T3E900-512 type 1 .t.... .typeO - hww T3E9OG512

type 2 o---
vpe , .f....

1000 -type2 *-~ type 2 a----

type 4 -b--.
1000 rtype2 +

type 2 se---
type4 -*--

1000 rtype2 ”

type 4 ----

100
;“’

,~~~: f ‘~~~~~ f ‘::II-‘ir:

b;;‘,’ ,, . .
.‘:l ,,I 4 /;,’ /’ ‘..j .~ ,i’

*--2:’ .’ l,,,’

,I ;,’

0.1 ’ ’ .I ’ ’ o,l , /” , 0.1.’ ’
lk +8 32k +8 IM +8
contiguous chunks on disk [byte:?

lk +8 32k +8 lM+8 2M lk +8 32k +8 lM+8 2M
contiguous chunks on disk [bytes] contiguous chunks on disk [bytes]

(d) 64 PEs on the T3E900-512 at HLRS, T = 30 min, b-effio = 58 MB/s

Fig. 2. Comparison of the results for optimal numbers of processes on T3E and SP, and for T = 10 and 30 min.

nodes [8].2 Note that these are the maximum values ob-
served, and performance degrades when the access pattern
and/or the node number is changed.

On both platforms, MPI-I/O is implemented with
ROM10 but with different device drivers. On the T3E,
we have modified the MPI Release mpt.1.3.0.2, by substi-
tuting the ROMIO/ADIO Unix filesystem driver routines
for opening, writing and reading files. The Posix routines
were substituted by the asynchronous counter part, directly
followed by the the wait routine. This trick enables par-
allel disk access [16]. On the RS SOOO/SP blue machine,
GPFS is used underneath the MPICH version of MPI with
ROMIO.

Each row in fig. 2 shows the result of one benchmark on
a system. Rows (a) and (b) compare the RS SOOO/SP at
LLNL with the T3E900-512 at HLRS, both benchmarked
with an optimal number of processors and with T = 10 min-
utes. Rows (b) and (c) compare different values for the
scheduled time T on the T3E, and rows (c) and (d) com-
pare different numbers of processors used on the T3E. All
benchmarks were captured while other applications were
running on the other processors of the systems.

First, we look at rows (a) and (b). They demonstrate
the main differences between both MPI and filesystem im-
plementations on SP at LLNL and T3E at HLRS. Based
on the results in Fig. 3, which we discuss later on, we de-
cided to run the benchmark on the T3E on 32 processors
and on the RS SOOO/SP on 128 processors. The three dia-
grams in each row of Fig. 2 show the bandwidth achieved
for the three different access methods: writing the file the
first time, rewriting the same file, and reading it. On each
diagram, the bandwidth is plotted on a logarithmic scale,
separately for each pattern type and as a function of the
chunk size. The chunk size on disk is shown on a pseudo-
logarithmic scale. The points labeled “~8” are the non-
wellformed counterparts of the power of two values.

Type 0 is a strided access, but the buffer used in each
I/O-call is at least 1 MB. In the case of a chunk length
less than 1 MB, the buffer contents must be scattered to
different places in the file. On the T3E, this pattern type is
optimal, except for chunks larger than 1 MB, where the ini-
tial write of segmented files is faster. When non-wellformed
chunk sizes are used, there is a substantial drop in perfor-
mance. Additional measurements show that this problem
increases with the total amount of data written to disk.
On the RS 6OOO/SP, other pattern types show higher band-
width.

Type 1 writes the same data to disk., i.e., each process
has the same logical fileview, but MPI-IO is called for each
chunk separately. In the current benchmark, this test is
done with individual filepointers, because the MPI-I/O
ROM10 implementation on both systems does not have
shared filepointers. As default, b-effio measures this pat-
tern type with shared pointers. On both platforms, this
pattern type results in essentially the worst bandwidth for

“Upgrades to the AIX operating system and underlying GPFS soft-
ware may have altered these performance numbers slightly between
measurements in [8] and in the current work.

most access method and chunk size.
Type 2 is the writing winner on RS SOOOJSP. Each pro-

cess writes a separate file at the same time, i.e., parallel
and independently. Type 3 writes the same, but the files
of all processes are concatenated. To guarantee wellformed
starting points for each process, the filesize of each process
is rounded up to the next MByte. Type 4 writes the same
as type 3, but the access is done collectively. On the T3E,
we see that these three pattern types are consistently slow
for small buffer sizes and consistently fast for large buffer
sizes. In contrast on the RS 6OOO/SP, type 3 and 4 are
about a factor3 of lo-20 slower than type 2 for writing
files. For reading files, the diagram cannot show the real
speed for type 3 and 4 due to three effects: The repetition
factor is only one for chunk sizes of 1 MB and more, the
reading of the 8 MB chunk fills internal buffers, and cur-
rently, the b-effio does not perform a file sync operation
before reading a pattern. Looking at the (non-weighted)
average, one can see, that on the RS 6OOO/SP, reading the
segmented files is a factor of 2.5 slower than reading indi-
vidual files.

Finally, one can say that on both systems, the read access
is clearly faster than the write access. On the T3E, the
read access is 5 times faster than “first write” and 2.7 faster
than “rewrite”. On the RS SOOO/SP blue machine, the read
access is 10 times faster than both types of write access.
The measurements were done with b-eff-io Release 0.5 [13].
By default, it measures 10 minutes the partition on which
it was started, and 5 minutes the half partition.

Rows (b) and (c) in Fig. 2 compare T3E results for
T = 10 and 30 minutes, respectively. With T = 10 min,
4.5 GB are written or read for each access method. With
T =30 min, the accumulated length of all files was 12.4
GB*. There are no significant differences between the two
measurements, except for one curve: rewriting one file with
pattern type 0 and T = 30 min shows a reduced bandwidth.

Comparing rows (c) and (d), one can see that writ-
ing and rewriting non-wellformed chunk sizes result in a
significantly worse bandwidth for 64 PEs on the T3E.

Figure 3 shows the b-effio values for different partition
sizes and different values of T. All measurements were
taken in a non-dedicated mode. For the T3E, one can see,
that the maximum is reached at 32 application processes,
but from 8 to 128 processors, there is only little varia-
tion. In general, an application only makes I/O requests
for a small fraction of the compute time. On large systems,
such as those at the High-Performance Computing Center
at Stuttgart and the Computing Center at Lawrence Liv-
ermore National Laboratory, several applications are shar-
ing the nodes, especially during prime time usage. In this
situation, I/O capabilities would not be requested by a sig-

3All factors in this section are computed, based on weighted aver-
ages using the time units U, if not stated else.

4The total amount of bytes written is less than b_effio+T/3 because
the measurements for some patterns with smaller bandwidth have
consumed more time than allowed according to the scheduled time
T/3 * U/ClJ. This may be caused by additional execution time in
MPLFilesync, by the termination algorithm described in Chap. VI,
and by the size driven approach for pattern types 3 and 4.

lot

60

40

20

0

l-

/ -

hww T3E9CG512

- 4

: T=lEOOs 11
T=6oos x

;::g; + .
T=12Os A

-I
2 4 6 16 32 64 126 256 512

number of MPI processes

blue RS 6ooO/SP

T=6oos x
T=3OOs +

01
2 4 6 16 32 64 126 256 512

number of MPI processes

Fig. 3. Comparison of b-effio for different numbers of processes at HLRS and LLNL, measured partially without type 3.
Here T is in seconds.

nificant proportion of the CPU’s at the same time. “Hero”
runs, where one application ties up the entire machine for
a single calculation are rarer and generally run during non-
prime time. Such hero runs can need the full I/O per-
formance by all processors at the same time. The right
diagram shows that the RS SOOO/SP fits more to the latter
usage model. Note that GPFS on the SP’s is configurable,
i.e., number of I/O servers and other tunables, and the per-
formance on any given SP/GPFS system depends on the
configuration of that system.

Figure 3 also shows that on both systems, the results
depend more on the I/O usage of the other concurrently
running applications on the system than on the requested
time T for each benchmark. Comparison of measurements
with T = 10 and 30 minutes have shown that the analysis
reported in Fig. 2 may vary in details. The differences be-
tween wellformed and non-wellformed I/O is more notable
with T = 30 minuntes on the T3E.

Finally, we compare these results with other measure-
ments. On the same RS 6OOO/SP, Posix read and write
measurements ranging between 500 and 900 MB/s are mea-
sured [S].” The b-effio result is 311 MB/s in the pre-
sented measurement. This means that the MPI application
programmer has a real chance to get a significant part of
the I/O capabilities of that system. On the T3E studied,
the peak I/O-performance is about 300 MB/s. Thus the
b-effio value of 71 MB/s shows that on average, only a
quarter of the peak can be attained with normal MPI pro-
gramming. We also note that the ROM10 implementation
on the RS SOOO/SP has not been optimized for the GPFS
filesystem. Vendor implementations and future versions of
ROM10 should show performance closer to peak.

In general, our results show that the b-effio benchmark
is a very fast method to analyze the parallel I/O capabilities.
available for applications using the standardized MPI-I/O
programming interface. The resulting b-effio value sum-
marizes I/O capabilities of a system in one significant I/O

SAgain we note that upgrades to the AIX operating system and un-
derlying GPFS sqftware may have slightly altered these performance
numbers between measurements.

bandwidth value.

VI. DETAILS OF B-EFF-IO

Following this presentation of the major results of this
benchmark, we reflect on some details of its definition. The
design of the b-effio tries to follow the rules about MPI
benchmarking defined by Bill Gropp, Ewing Lusk [4] and
Rolf Hempel [S], but there are a few problematic topics.

Normally, the same experiment should be repeated a
few times to compute a maximal bandwidth. To achieve
a very fast I/O benchmark suite, this methodology is sub-
stituted by weighted averaging over a medium number
of experiments i.e., the patterns. This is done for each ex-
periment after calculating the average bandwidth over all
repetitions of the same pattern. Any maximum is calcu-
lated only after repeating the total b-effio benchmark it-
self. For this maximum, one may vary the number of client
processes, the schedule time T, and file system parameters.

The major problem with this definition is that one may
use any schedule time T with T > lOminutes. First exper-
iments on the T3E have shown that the b-effio value may
have its maximum for T = 10 minutes. This is likely since
for any larger time interval, the caching of the filessytem
in the memory is reduced.

Indeed, caching issues may be problematic for I/O
benchmarks in general. For example, Rolf Hempel [7] has
reported that on SX-5 systems other benchmark programs
have reported a bandwidth significantly higher than the
hardware peak performance of the disks. This is caused
by a huge 4 GB memory cache used by the filessytem. In.
other words, the measurement is not able to guarantee that
the data was actually written to disk. To help assure that
data is written, we can add MPIFilesync. The problem
is, however, that ~MPIEilesync influences only the consis-
tency semantics. Calling MPLFilesync after writing on a
file, guarantees that any other process can read this newly
written data, but it does not guarantee that the data is
stored on a permanent storage medium, i.e., that the data
is written to disk. There is only one way to guarantee, that
the MPI-I/O routines have stored 95 % of the written data

to disk: One must write a dataset 20 times larger than
the memory cache length of the filesystem. This can be
controlled by verifying that the datasize accessed by each
b-effio access method is larger than 20 times of the filesys-
terns’ cache length.

The next problem arises from the time driven ap-
proach of this benchmark: A pattern is repeating for a
given time interval, which is Tpattern = T/3 * U/CU for
each pattern. The termination condition must be com-
puted after each call to a write or read routine. In all pat-
terns defining a collective fileview or using collective write
or read routines, the termination condition must be com-
puted globally to guarantee that all processes are stopped
after the same iteration. In the current version this is done
by computing the criterion only at a root process. The lo-
cal clock is read after a barrier synchronization. Then, the
decision is broadcasted to all other nodes. This termina-
tion algorithm is based on the assumption that a barrier
followed by a broadcast is at least 10 times faster than a
single read or write access. For example, the fastest ac-
cess on the T3E for L = 1 kB chunks is about 4 MB/s, i.e.
250~s per call. In contrast, a barrier followed by a broad-
cast needs only about 60~s on 32 PEs, which is not 10
times faster than a single I/O call. Therefore, this ter-
mination algorithm should be modified in future versions
of this benchmark. Instead of computing the termination
criterion in each iteration, a geometric series of increasing
repeating factors should be used.

Pattern types 3 and 4 require a predefined segment size
LSEG, see Fig. 1. In the current version, for each chunk
size “1”, a repeating factor is calculated from the measured
repeating factors of the pattern types O-2. The segment
size is calculated as the sum of the chunk sizes multiplied
by these repeating factors. The sum is rounded up to the
next multiple of 1 MB. This algorithm has two drawbacks:
1. The alignment of the segments are multiples of 1 MB.
If the striping unit is more than 1 MB, then the alignment
of the segments is not wellformed.
2. On systems with 32 bit integer/int datatype, the seg-
ment size multiplied by the number of processes (n) may
be more than 2 GB, which may cause internal errors inside
of the MPI library. Without such internal restrictions, the
maximum segment size would be 16/n GB, based on a 8
byte element type. If the segment size must be reduced due
to these restrictions, then the total amount of data written
by each processes does no longer fit into one segment.
On large RIPP systems, it may be also necessary to re-
duce the maximal chunk size (MPART) to 2/nGB or
16/n GB. This restriction is necessary for the pattern types
0, 1, 3 and 4.

Another aspect is the mode used to open the benchmark
files. Although we want to benchmark unique mode, i.e.,
ensure that a file is not accessed by other applications while
it is open by the benchmark program, we must not use
5lPI_MODE-UNIQUE-OPEN because it would allow an
i\llPI-I/O implementation to delay all MPI-Filesync oper-
ations until the closing of the file.

If a system complies with our rule that the total memory

can be written in 10 minutes for each access pattern’, then
one third of the total memory is written by this benchmark,
and in each single pattern with U=l, one l/192 of the
total memory is written. If all processors are used for this
benchmark, then the amount written by each node is not
very much, but a call to MPIFilesync in each pattern
should guarantee that the data is really written to disk. If
the benchmark is executed with n of N nodes and N is the
total number of nodes of the system, then each of these n
nodes has to write/read

M - MnodeLbreal!!?- accessed per node - 3CU brule n 1Omin

with Anode = the memory size of one node, breal = the
real aggregated bandwidth for that pattern and brule =
N*Mn,d,/lOmin, the already mentioned I/O rule for HPC
systems. The last two terms of the equation show that,
as long as breal is independent of n and T, the memory
accessed in each process is linear in T/n, i.e., if one uses
only half of the processors, then one can run the benchmark
in half of the time, provided that one wants to write the
same amount of data by each process. Based on these
observations, a default run of b-effio first measures the
I/O bandwidth with T = lominutes on the total partition
of processors on which b-effio was started, and follows with
T = 5 minutes on half of that partition.

Finally, with pattern types 3 and 4, it may be that all
disk allocation is done with the first initial write pattern,
which is not weighted in the average. This is shown in
Table I by a zero U value for the patterns 0, 9, 17, 25 and
34.

VII. OUTLOOK

It is planned, to use this benchmark to compare sev-
eral systems. More investigation is necessary in the prob-
lems arising from 32 bit integer limits and handling read
buffers in combination with file sync operations. Although
[l] stated, that “the majority of the request patterns are
sequential”, we should examine, whether random access
patterns can be included into the b-effio benchmark.

ACKNOWLEDGMENTS

The authors would like to acknowledge their colleagues
and all the people that supported this project with sugges-
tions and helpful discussions. .4t HLRS, they would espe-
cially like to thank Karl Solchenbach and Rolf Hempel for
productive discussions for the redesign of b-eff. At LLNL,
they thank Kim Yates and Dave Fox. Work at LLNL was
performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore Na-
tional Laboratory under contract No. W-7405-Eng-48.

[II

PI

REFERENCES

P. Crandall, R. Aydt, A. Chien, D. Reed, Input-Output Char-
acteristics of Scalable Parallel Applications, In Proceedings of
Supercomputing ‘9.5, ACM Press, Dec. 1995,
wvv.supercomp.org/sc95/proceedings/.
Ulrich Detert, High-Performance I/O on Gray T3E, 40th Cray
User Group Conference, June 1998.

[31

141

Fl

PI

I71

PI
PO!
Pll

P21
1131

[I41

iI51

Ml

(171

1181

PI

Philip M. Dickens, A Performance Study of Two-Phase I/O, in
D. Pritchard. J. Reeve (eds.), Proceedings of the 4th Internatinal
Euro-Par Conference, l&r&Par’98, Parallel Processing, LNCS-
1470, pages 959-965, Southampton, UK, 1998.
William Gropp and Ewing Lusk, Reproducible Measurement of
MPI Performance Characteristics, in J. Dongarra et al. (eds.),
Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, proceedings of the 6th European PVM/MPj Users’
GrouD Meetinp. EuroPVM/MPI’SS. Barcelona, Spain, Sept.
26-29; 1999, LhCS 1697, pp 11-18. (Summary on thi web:
vww.mcs.anl.gov/mpi/mpptest/hotmot.html).
Peter W. Haas, Scalability and Performance of Distributed I/O
on Massively Parallel Processors, 40th Cray User Group Con-
ference, June 1998.
Rolf Hempel, Basic Message Passing Benchmarks, Methodology
and Pitfalls, SPEC Workshop on Benchmarking Parallel and
High-Performance Computing Systems, Wuppertal, Germany,
Sept. 13, 1999, wwv.hlrs.de/mpi/b~eff/hempel_vuppertal.ppt.
Rolf Hempel, Huber Ritzdorf, MPI/SX for Multi-Node SX-5,
SX-5 Programming Workshop, High-Performance Computing-
Center, Universitv of Stuttgart, Germany, Feb. 14-17, 2000,
vvv.hlrs.de/nevs/events/2000;sx5.html:’
Terry Jones, Alice Koniges, R. Kim Yates, Performance of the
IBM General Parallel File System, to be published in Proceed-
ings of the International Parallel and Distributed Processing
Symposium, May 2000. Also available as UCRL JC135828.
Kent Koeninger, Performance-Tips for GigaRing Disk I/O, 40th
Cray User Group Conference, June 1998.
Message Passing Interface Forum. MPI-2: Extensions to the
Message-Passing Interface, July 1997, uuw.mpi-forum.org.
J.P. Prost, R. Treumann, R. Blackmore, C. Harman, R. Hedges,
B. Jia, A. Koniges, A. White, Towards a High-Performance and
Robust Implementation of MPI-IO on top of GPFS, Internal
report.
Rolf Rabenseifner, Effective Bandwidth (b-eff) Benchmark,
vww.hlrs.de/mpi/b-eff/.
Rolf Rabenseifner, Effective Z/O Bandwidth (b-eff-io) Bench-
mark, vvv.hlrs.de/mpi/b-eff-io/.
Rajeev Thakur, William Gropp, and Ewing Lusk, On Imple-
menting MPI-IO Portably and with High Performance, in Proc.
of the Sixth Workshop on I/O in Parallel and Distributed Sys-
tems, pages 23-32, May 1999.
Rajeev Thakur, Rusty Lusk, Bill Gropp, ROMIO: A High-
Performance, Portable MPI-IO Implementation,
vvv:mcs.anl:gov/romio/.
Rolf Rabenseifner, Striped MPI-I/O with mpt.l.3.0.1,
wwv.hlrs.de/mpi/mpi~t3e.html#StripedI0.
Karl Solchenbach. Benchmarkino the Balance of Parallel Com-
puters, SPEC Workshop on Benchmarking Paiallel and High-
Performance Computing Systems, Wuppertal, Germany, Sept.
13, 1999.
Karl Solchenbach, Hans-Joachim Plum and Gero Ritzenhoefer,
Pallas Effective Bandwidth Benchmark - source code and sam-
ple results,
ftp://ftp.pallas.de/pub/PALLAS/PMB/EFF-BW.tar.gz.
Universities of Mannheim and Tennessee, TOP.500 Supercom-
puter Sites, vuv.top500.org.

Alice E. Koniges is a Physicist and Mem-
ber of the Parallel I/O research effort at
the Lawrence Livermore National Laboratory
(LLNL) in California. As leader of the Paral-
lel Applications Technology Program at LLNL,
she directed researchers in the largest set of
agreements between industries an; national
laboratories ever funded bv the U.S. Denart-
ment of Energy. She has served as a consul-
tant to the Max Planck Institutes of Germany
on parallelization and high performance com-

puting issues. She is editor of the book, “Industrial Strength Parallel
Computing,” recently published by Morgan Kaufmann Publishers of
San Francisco. She has a Ph.D. in Applied and Numerical Mathemat-
ics from Princeton University, an MA and an MSME from Princeton,
and a BA from the University of California, San Diego.

Rolf Rabenseifner studied mathematics and
physics at the University of Stuttgart. Since
1984, he has worked at the High-Performance
Computing-Center Stuttgart (HLRS). He led
the projects DFN-RPC, a remote procedure
call tool, and MPI-GLUE, the first metacom-
puting MPI combining different vendor’s MPIs
without loosing the full MPI interface. In his
dissertation, he developed a controlled logical
clock as global time for trace-based profiling
of parallel and distributed applications. Since

1996, he has been a member of the MPI-2 Forum. From January
to April 1999, he was an invited reseacher at the Center for High-
Performance Computing at Dresden University pf Technology. Cur-
rently, he is responsible for message passing programming models at
the HLRS and he is involved in MPI profiling, benchmarking and
teaching projects.

