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Abstract- The effective I/O bandwidth benchmark 
(b-eff-io) covers two goals: (1) to achieve a characteristic av- 
erage number for the I/O bandwidth achievable with parallel 
MPI-I/O applications, and (2) to get detailed information 
about several access patterns and buffer lengths. The bench- 
mark examines “first write”, “rewrite” and “read” access, 
strided (individual and shared pointers) and segmented col- 
lective patterns on one Rle per application and non-collective 
access to one file per process. The number of parallel access- 
ing processes is also varied and wellformed I/O is compared 
with non-wellformed. On systems, meeting the rule that 
the total memory can be written to disk in 10 minutes, the 
benchmark should not need more than 15 minutes for a first 
pass of all patterns. The benchmark is designed analogously 
to the effective bandwidth benchmark for message passing 
(b-eff) that characterizes the message passing capabilities 
of a system in a few minutes. First results of the b-elf-io 
benchmark are given for IBM SP and Cray T3E systems 
and compared with existing benchmarks based on parallel 
Posix-I/O. 

Keywords- MPI, File-I/O, Disk-I/O, 
width. 

I. INTRODUCTION 

Benchmark, Band- 

Most parallel I/O benchmarks and benchmarking studies 
characterize the hardware and file system performance lim- 
its [2], [5], 181, PI. Oft en, they focus on determining under 
which conditions the maximal file system performance can 
be reached on a specific platform. Such results can guide 
the user in choosing an optimal access pattern for a given 
machine and file system, but do not generally consider the 
needs of the application over the needs of the file system. 

Our approach begins with consideration of the possible 
I/O requests of parallel applications. To formulate such 
I/O requests, the MPI Forum has standardized the MPI- 
I/O interface [lo]. Major goals of this standardization are 
to express the user’s needs and to allow optimal imple- 
mentations of the MPI-I/O interface on all platforms [3], 
[Ill, [141, [I51. B ase on this background, the effective I/O d 
bandwidth benchmark (b-effio) should measure different 
access patterns, report these detailed results, and should 
calculate an average I/O bandwidth value that character- 
izes the whole system. This goal is analogue to the Lin- 
pack value reported in TOP500 [19] that characterizes the 
computational speed of a system, and also to the effective 
bandwidth benchmark (b..eff), that characterizes the com- 
munication network of a distributed system [12], [17], [18]. 

A major difference between b-eff and b-effio is the mag- 

nitude of the bandwidth. On well-balanced systems in high 
performance computing we expect a I/O bandwidth which 
allows for writing or reading the total memory in approx- 
imately 10 minutes. For the communication bandwidth, 
the b-eff benchmark shows, that the total memory can be 
communicated in 3.2 seconds on a Cray T3E with 512 
processors and in 13.6 seconds on a 24 processor Hitachi 
SR 8000. An I/O benchmark measures the bandwidth of 
data transfers between memory and disk. Such measure- 
ments are (1) highly influenced by buffering mechanisms 
of the underlying I/O middleware and filesystem details, 
and (2) high I/O bandwidth on disk requires, especially 
on striped filesystems, that a large amount of data must 
be transferred,between such buffers and disk. Therefore a 
benchmark must ensure that a sufficient amount of data 
is transfered between disk and the application’s memory. 
The communication benchmark b-eff can give detailed an- 
swers in about 2 minutes. Later we shall see that b-effio, 
our I/O counterpart, needs at least 15 minutes to get a first 
answer. 

II. MULTIDIMENSIONAL BENCHMARKING SPACE 

Often, benchmark calculations sample only a small sub- 
space of a multidimensional parameter space. One extreme 
example is to measure only one point, e.g., a communica- 
tion bandwidth between two processors using a ping-pong 
communication pattern with 8 IMbyte messages, repeated 
100 times. For I/O benchmarking, a huge number of pa- 
rameters exist. We divide the parameters into 6 general 
categories. At the end of each category in the following 
list, a first hint about handling the aspects in b-effio is 
given. The detailed definition of b-effio is shown in sec- 
tion IV. 
1. Application parameters are (a) the size of contiguous 
chunks in the memory, (b) the size of contiguous chunks on 
disk, which may be different in the case of scatter/gather 
access patterns, (c) the number of such contiguous chunks 
that are accessed with each call to a read or write routine, 
(d) the file size, (e) the distribution scheme, e.g., segmented 
or long strides, short strides, random or regular, or sepa- 
rate files for each node, and (f) whether or not the chunk 
size and alignment are wellformed, e.g., a power of two or 
a multiple of the striping unit. For b-eff-io, 36 different 
patterns are used to cover most of these aspects. 
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Fig. 1. Data transfer of one (collective) call to MPI-Write-... 

2. Usage aspects are (a) how many processes are used and 
(b) how many parallel processors and threads are used for 
each process. To keep these aspects outside of the bench- 
mark, b-effio will be defined as a maximum over these 
aspects and one must report the usage parameters used to 
achieve the maximum. 
3. The major programming interface parameter is specifi- 
cation of which I/O interface is used: Posix I/O buffered 
or raw, special filesystem I/O of the vendors filesytem, or 
MPI-I/O. In this benchmark, we use only MPI-I/O, be- 
cause it should be a portable interface of an optimal im- 
plementation on top of Posix I/O or the special filesystem 
I/O. 
4. MPI-I/O defines the following orthogonal aspects: (a) 
access methods, i.e., first writing of a file, rewriting or read- 
ing, (b) positioning method, i.e. explicit offsets, individual 
or shared file pointers, (c) coordination, i.e., accessing the 
file collectively by (all) processes or noncollectively, (d) syn- 
chronism, i.e., blocking or nonblocking. Additional aspects 
are: (e) whether or not the files are open unique, i.e., that 
the file will not be concurrently opened elsewhere, and (f) 
which consistency is chosen for conflicting accesses, i.e., 
whether or not atomic mode is set. For b-effio there is no 
overlap of I/O and computation, therefore only blocking 
calls are used. Because there should not be a significant 
difference between the efficiency of using explicit offsets or 
individual file pointers, only the individual and shared file 
pointers are benchmarked. With regard to the additional 
aspects, unique and nonatomic should be used. 
5. Filesystem parameters are (a) how many nodes or pro- 
cessors are used as I/O servers, (b) how much memory is 
used as bufferspace on each application node, (c) the disk 
block size, (d) the striping unit size, and (e) the number of 
parallel striping devices that are used. These aspects are 
also outside the scope of b-effio. Any usage of non-default 
parameters must be reported. 
6. Additional benchmarking aspects are (a) repetition fac- 
tors, (b) how to calculate b-effio, based on a subspace of 

* the parameter space defined above using maximum, aver- 
age, weighted average or logarithmic averages. 

To reduce benchmarking time to an acceptable amount, 
one can normally only measure I/O performance at a few 
grid points of a l-5 dimensional subspace. To analyze more 
than 5 aspects, usually more than one subspace is exam- 
ined. Often, the common area of these subspaces is chosen 
as the intersection of the area of best results of the other 

subspaces. For example in [S], the subspace varying the 
number of servers is obtained with segmented access pat- 
terns, and with well-chosen block sizes and client:server 
ratios. Defining such optimal subspaces can be highly 
system-dependent and may therefore not be as appropri- 
ate for a b-effio designed for a variety of systems. For the 
design of b-effio, it is important to choose the grid points 
based more on general application needs than on optimal 
system behavior. 

III. CRITERIA 

The benchmark b-effio should characterize the I/O ca- 
pabilities of the system. Should we use, therefore, only 
access patterns, that promise a maximum bandwidth? No, 
but there should be a good chance that an optimized im- 
plementation of MPI-I/O should be able to achieve a high 
bandwidth. This means that we should measure patterns 
that can be recommended to application developers. 

An important criterion is that the b-effio benchmark 
should only need about 10 to 15 minutes. For first mea- 
surements, it need not run on an empty system as long as 
concurrently running other applications do not use a sig- 
nificant part of the I/O bandwidth of the system. Nor- 
mally, the full I/O bandwidth can be reached by using 
less than the total number of available processors or SMP 
nodes. In contrast, the communication benchmark b-eff 
should nof require more than 2 minutes, but it must run 
on the whole system to compute the aggregate communi- 
cation bandwidth. 

Based on the rule mentioned in the introduction and 
expecting that MPI-I/O will offer at least 50 percent of the 
hardware I/O bandwidth, we can expect that a 10 minute 
b...effio run will transfer about half of the total memory 
of the benchmarked system. A first test on a T3E900-512 
shows that based on the pattern-mix, only about the third 
of this theoretical value is transferred. 

As third important criterion, we want to be able to com- 
pare different common access patterns. 

IV. DEFINITION OF THE EFFECTIVE I/O BANDWIDTH 

The effective I/O bandwidth benchmark measures the 
following aspects: 
. a set of partitions, 
. the access methods initial write, rewrite, and read, 
. the pattern types (see Fig. 1) 



TABLE1 
THE PATTERN DETAILS USED IN BEFF-IO 

Pattern 
Type ) No. 
1 I 

1 L u 

continued 

(0) strided collective access, scattering large chunks in 
memory to/from disk, 

(1) strided collective access, but one read or write call 
per disk chunk, 

(2) noncollective access to one file per MPI process, 
(3) same as (2), but the individual files are assembled to 

one segmented file, and 
(4) same as (3), but the access to the segmented file is 

done with collective routines; 
for each pattern type, an individual file is used. 

. the contiguous chunk size is chosen wellformed, i.e., as a 
power of 2, and non-wellformed by adding 8 bytes to the 
wellformed size, 

. different chunk sizes, mainly 1 kB, 32 kB, 1 MB, and the 
maximum of 2 MB and l/l28 of the memory size of a 
node executing one MPI process. 

The total list of patterns is shown in Table I. A pattern 
is a pattern type combined with a fixed chunk size and 
alignment of the first byte’. The column “1” defines the 
contiguous chunks that are written from memory to disk 
and vice versa. The value MPART is defined as max(2 MB, 
memory of one node / 128). The column “L” defines the 
contiguous chunk in the memory. In case of pattern type 
(0), scattering is done by repeating to write 1 bytes by 
each process to disk. In all other cases, the contiguous 
chunk handled by each call to MPI-Write or MPI-Read 
is equivalent in memory and on disk. This is denoted by 
“:=l” in the L column. U is a time unit. 

Each pattern is benchmarked by repeating the pattern 
for a given amount of time. For write access, this loop is 
hnished with a call to MPIFilesync. This time is given 
by the allowed time for a whole partition (e.g., T = 10 min- 
utes) multiplied by U/CU/3, as given in the table. This 
time-driven approach allows one to limit the total execu- 
tion time. For the pattern types (3) and (4) a fixed segment 
size must be computed before starting the pattern of these 
types. Therefore, the time-driven approach is substituted 

‘The aligment is implicitly defined by the data written by all pre- 
vious patterns in the same pattern type 

by a size-driven approach, and the repeating. factors are 
initialized based on the measurements for types (0) to (2). 

The b-effio value of one partition is defined as sum of 
all transferred bytes divided by the total transfer time. If 
patterns do not need exactly the ideal allowed time, then 
the average is weighted by the unit U. At minimum, 10 
minutes must be used for benchmarking one partition. 

The b-effio of a system is defined as the maximum 
over any b-effio of a single partition of the system. This 
definition permits the user of the benchmark to freely 
choose the usage aspects and enlarge the total filesize as 
desired. The minimum filesize is given by the bandwidth 
for an initial write multiplied by 200 set (= 10 minutes / 
3 access methods). 

V. COMPARING SYSTEMS USING B-EFF-IO 

In this section, we present a detailed analysis of each 
run of b-effio on a partition. We test b-effio on two sys- 
tems, the Cray T3E900-512 at HLRS/RUS in Stuttgart 
and an RS SOOO/SP system at LLNL called “blue.” On 
the T3E, we use the tmp-filesystem with 10 striped Raid- 
disks connected via a GigaRing for the benchmark. The 
peak-performance of the aggregated parallel bandwidth of 
this hardware configuration is about 300 MB/s. The LLNL 
results presented here are for an SP system with 336 SMP 
nodes each with four 332 MHz processors. Since the I/O 
performance on this system does not increase significantly 
with the number of processors on a given node performing 
I/O, all test results assume a single thread on a given node 
is doing the I/O. Thus, a 64 processor run means 64 nodes 
assigned to I/O, and no requested computation by the ad- 
ditional 64*3 processors. On the SP system, the data is 
written to the IBM General Parallel File System (GPFS) 
called blue.llnl.gov:/g/gl which has 20 VSD I/O servers. 
Recent results for this system show a maximum read per- 
formance of approximately 950MB/sec for a 128 node job, 
and a maximum write performance of 690MB/sec for 64 
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Fig. 2. Comparison of the results for optimal numbers of processes on T3E and SP, and for T = 10 and 30 min. 



nodes [8].2 Note that these are the maximum values ob- 
served, and performance degrades when the access pattern 
and/or the node number is changed. 

On both platforms, MPI-I/O is implemented with 
ROM10 but with different device drivers. On the T3E, 
we have modified the MPI Release mpt.1.3.0.2, by substi- 
tuting the ROMIO/ADIO Unix filesystem driver routines 
for opening, writing and reading files. The Posix routines 
were substituted by the asynchronous counter part, directly 
followed by the the wait routine. This trick enables par- 
allel disk access [16]. On the RS SOOO/SP blue machine, 
GPFS is used underneath the MPICH version of MPI with 
ROMIO. 

Each row in fig. 2 shows the result of one benchmark on 
a system. Rows (a) and (b) compare the RS SOOO/SP at 
LLNL with the T3E900-512 at HLRS, both benchmarked 
with an optimal number of processors and with T = 10 min- 
utes. Rows (b) and (c) compare different values for the 
scheduled time T on the T3E, and rows (c) and (d) com- 
pare different numbers of processors used on the T3E. All 
benchmarks were captured while other applications were 
running on the other processors of the systems. 

First, we look at rows (a) and (b). They demonstrate 
the main differences between both MPI and filesystem im- 
plementations on SP at LLNL and T3E at HLRS. Based 
on the results in Fig. 3, which we discuss later on, we de- 
cided to run the benchmark on the T3E on 32 processors 
and on the RS SOOO/SP on 128 processors. The three dia- 
grams in each row of Fig. 2 show the bandwidth achieved 
for the three different access methods: writing the file the 
first time, rewriting the same file, and reading it. On each 
diagram, the bandwidth is plotted on a logarithmic scale, 
separately for each pattern type and as a function of the 
chunk size. The chunk size on disk is shown on a pseudo- 
logarithmic scale. The points labeled “~8” are the non- 
wellformed counterparts of the power of two values. 

Type 0 is a strided access, but the buffer used in each 
I/O-call is at least 1 MB. In the case of a chunk length 
less than 1 MB, the buffer contents must be scattered to 
different places in the file. On the T3E, this pattern type is 
optimal, except for chunks larger than 1 MB, where the ini- 
tial write of segmented files is faster. When non-wellformed 
chunk sizes are used, there is a substantial drop in perfor- 
mance. Additional measurements show that this problem 
increases with the total amount of data written to disk. 
On the RS 6OOO/SP, other pattern types show higher band- 
width. 

Type 1 writes the same data to disk., i.e., each process 
has the same logical fileview, but MPI-IO is called for each 
chunk separately. In the current benchmark, this test is 
done with individual filepointers, because the MPI-I/O 
ROM10 implementation on both systems does not have 
shared filepointers. As default, b-effio measures this pat- 
tern type with shared pointers. On both platforms, this 
pattern type results in essentially the worst bandwidth for 

“Upgrades to the AIX operating system and underlying GPFS soft- 
ware may have altered these performance numbers slightly between 
measurements in [8] and in the current work. 

most access method and chunk size. 
Type 2 is the writing winner on RS SOOOJSP. Each pro- 

cess writes a separate file at the same time, i.e., parallel 
and independently. Type 3 writes the same, but the files 
of all processes are concatenated. To guarantee wellformed 
starting points for each process, the filesize of each process 
is rounded up to the next MByte. Type 4 writes the same 
as type 3, but the access is done collectively. On the T3E, 
we see that these three pattern types are consistently slow 
for small buffer sizes and consistently fast for large buffer 
sizes. In contrast on the RS 6OOO/SP, type 3 and 4 are 
about a factor3 of lo-20 slower than type 2 for writing 
files. For reading files, the diagram cannot show the real 
speed for type 3 and 4 due to three effects: The repetition 
factor is only one for chunk sizes of 1 MB and more, the 
reading of the 8 MB chunk fills internal buffers, and cur- 
rently, the b-effio does not perform a file sync operation 
before reading a pattern. Looking at the (non-weighted) 
average, one can see, that on the RS 6OOO/SP, reading the 
segmented files is a factor of 2.5 slower than reading indi- 
vidual files. 

Finally, one can say that on both systems, the read access 
is clearly faster than the write access. On the T3E, the 
read access is 5 times faster than “first write” and 2.7 faster 
than “rewrite”. On the RS SOOO/SP blue machine, the read 
access is 10 times faster than both types of write access. 
The measurements were done with b-eff-io Release 0.5 [13]. 
By default, it measures 10 minutes the partition on which 
it was started, and 5 minutes the half partition. 

Rows (b) and (c) in Fig. 2 compare T3E results for 
T = 10 and 30 minutes, respectively. With T = 10 min, 
4.5 GB are written or read for each access method. With 
T =30 min, the accumulated length of all files was 12.4 
GB*. There are no significant differences between the two 
measurements, except for one curve: rewriting one file with 
pattern type 0 and T = 30 min shows a reduced bandwidth. 

Comparing rows (c) and (d), one can see that writ- 
ing and rewriting non-wellformed chunk sizes result in a 
significantly worse bandwidth for 64 PEs on the T3E. 

Figure 3 shows the b-effio values for different partition 
sizes and different values of T. All measurements were 
taken in a non-dedicated mode. For the T3E, one can see, 
that the maximum is reached at 32 application processes, 
but from 8 to 128 processors, there is only little varia- 
tion. In general, an application only makes I/O requests 
for a small fraction of the compute time. On large systems, 
such as those at the High-Performance Computing Center 
at Stuttgart and the Computing Center at Lawrence Liv- 
ermore National Laboratory, several applications are shar- 
ing the nodes, especially during prime time usage. In this 
situation, I/O capabilities would not be requested by a sig- 

3All factors in this section are computed, based on weighted aver- 
ages using the time units U, if not stated else. 

4The total amount of bytes written is less than b_effio+T/3 because 
the measurements for some patterns with smaller bandwidth have 
consumed more time than allowed according to the scheduled time 
T/3 * U/ClJ. This may be caused by additional execution time in 
MPLFilesync, by the termination algorithm described in Chap. VI, 
and by the size driven approach for pattern types 3 and 4. 
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nificant proportion of the CPU’s at the same time. “Hero” 
runs, where one application ties up the entire machine for 
a single calculation are rarer and generally run during non- 
prime time. Such hero runs can need the full I/O per- 
formance by all processors at the same time. The right 
diagram shows that the RS SOOO/SP fits more to the latter 
usage model. Note that GPFS on the SP’s is configurable, 
i.e., number of I/O servers and other tunables, and the per- 
formance on any given SP/GPFS system depends on the 
configuration of that system. 

Figure 3 also shows that on both systems, the results 
depend more on the I/O usage of the other concurrently 
running applications on the system than on the requested 
time T for each benchmark. Comparison of measurements 
with T = 10 and 30 minutes have shown that the analysis 
reported in Fig. 2 may vary in details. The differences be- 
tween wellformed and non-wellformed I/O is more notable 
with T = 30 minuntes on the T3E. 

Finally, we compare these results with other measure- 
ments. On the same RS 6OOO/SP, Posix read and write 
measurements ranging between 500 and 900 MB/s are mea- 
sured [S].” The b-effio result is 311 MB/s in the pre- 
sented measurement. This means that the MPI application 
programmer has a real chance to get a significant part of 
the I/O capabilities of that system. On the T3E studied, 
the peak I/O-performance is about 300 MB/s. Thus the 
b-effio value of 71 MB/s shows that on average, only a 
quarter of the peak can be attained with normal MPI pro- 
gramming. We also note that the ROM10 implementation 
on the RS SOOO/SP has not been optimized for the GPFS 
filesystem. Vendor implementations and future versions of 
ROM10 should show performance closer to peak. 

In general, our results show that the b-effio benchmark 
is a very fast method to analyze the parallel I/O capabilities. 
available for applications using the standardized MPI-I/O 
programming interface. The resulting b-effio value sum- 
marizes I/O capabilities of a system in one significant I/O 

SAgain we note that upgrades to the AIX operating system and un- 
derlying GPFS sqftware may have slightly altered these performance 
numbers between measurements. 

bandwidth value. 

VI. DETAILS OF B-EFF-IO 

Following this presentation of the major results of this 
benchmark, we reflect on some details of its definition. The 
design of the b-effio tries to follow the rules about MPI 
benchmarking defined by Bill Gropp, Ewing Lusk [4] and 
Rolf Hempel [S], but there are a few problematic topics. 

Normally, the same experiment should be repeated a 
few times to compute a maximal bandwidth. To achieve 
a very fast I/O benchmark suite, this methodology is sub- 
stituted by weighted averaging over a medium number 
of experiments i.e., the patterns. This is done for each ex- 
periment after calculating the average bandwidth over all 
repetitions of the same pattern. Any maximum is calcu- 
lated only after repeating the total b-effio benchmark it- 
self. For this maximum, one may vary the number of client 
processes, the schedule time T, and file system parameters. 

The major problem with this definition is that one may 
use any schedule time T with T > lOminutes. First exper- 
iments on the T3E have shown that the b-effio value may 
have its maximum for T = 10 minutes. This is likely since 
for any larger time interval, the caching of the filessytem 
in the memory is reduced. 

Indeed, caching issues may be problematic for I/O 
benchmarks in general. For example, Rolf Hempel [7] has 
reported that on SX-5 systems other benchmark programs 
have reported a bandwidth significantly higher than the 
hardware peak performance of the disks. This is caused 
by a huge 4 GB memory cache used by the filessytem. In. 
other words, the measurement is not able to guarantee that 
the data was actually written to disk. To help assure that 
data is written, we can add MPIFilesync. The problem 
is, however, that ~MPIEilesync influences only the consis- 
tency semantics. Calling MPLFilesync after writing on a 
file, guarantees that any other process can read this newly 
written data, but it does not guarantee that the data is 
stored on a permanent storage medium, i.e., that the data 
is written to disk. There is only one way to guarantee, that 
the MPI-I/O routines have stored 95 % of the written data 



to disk: One must write a dataset 20 times larger than 
the memory cache length of the filesystem. This can be 
controlled by verifying that the datasize accessed by each 
b-effio access method is larger than 20 times of the filesys- 
terns’ cache length. 

The next problem arises from the time driven ap- 
proach of this benchmark: A pattern is repeating for a 
given time interval, which is Tpattern = T/3 * U/CU for 
each pattern. The termination condition must be com- 
puted after each call to a write or read routine. In all pat- 
terns defining a collective fileview or using collective write 
or read routines, the termination condition must be com- 
puted globally to guarantee that all processes are stopped 
after the same iteration. In the current version this is done 
by computing the criterion only at a root process. The lo- 
cal clock is read after a barrier synchronization. Then, the 
decision is broadcasted to all other nodes. This termina- 
tion algorithm is based on the assumption that a barrier 
followed by a broadcast is at least 10 times faster than a 
single read or write access. For example, the fastest ac- 
cess on the T3E for L = 1 kB chunks is about 4 MB/s, i.e. 
250~s per call. In contrast, a barrier followed by a broad- 
cast needs only about 60~s on 32 PEs, which is not 10 
times faster than a single I/O call. Therefore, this ter- 
mination algorithm should be modified in future versions 
of this benchmark. Instead of computing the termination 
criterion in each iteration, a geometric series of increasing 
repeating factors should be used. 

Pattern types 3 and 4 require a predefined segment size 
LSEG, see Fig. 1. In the current version, for each chunk 
size “1”, a repeating factor is calculated from the measured 
repeating factors of the pattern types O-2. The segment 
size is calculated as the sum of the chunk sizes multiplied 
by these repeating factors. The sum is rounded up to the 
next multiple of 1 MB. This algorithm has two drawbacks: 
1. The alignment of the segments are multiples of 1 MB. 
If the striping unit is more than 1 MB, then the alignment 
of the segments is not wellformed. 
2. On systems with 32 bit integer/int datatype, the seg- 
ment size multiplied by the number of processes (n) may 
be more than 2 GB, which may cause internal errors inside 
of the MPI library. Without such internal restrictions, the 
maximum segment size would be 16/n GB, based on a 8 
byte element type. If the segment size must be reduced due 
to these restrictions, then the total amount of data written 
by each processes does no longer fit into one segment. 
On large RIPP systems, it may be also necessary to re- 
duce the maximal chunk size (MPART) to 2/nGB or 
16/n GB. This restriction is necessary for the pattern types 
0, 1, 3 and 4. 

Another aspect is the mode used to open the benchmark 
files. Although we want to benchmark unique mode, i.e., 
ensure that a file is not accessed by other applications while 
it is open by the benchmark program, we must not use 
5lPI_MODE-UNIQUE-OPEN because it would allow an 
i\llPI-I/O implementation to delay all MPI-Filesync oper- 
ations until the closing of the file. 

If a system complies with our rule that the total memory 

can be written in 10 minutes for each access pattern’, then 
one third of the total memory is written by this benchmark, 
and in each single pattern with U=l, one l/192 of the 
total memory is written. If all processors are used for this 
benchmark, then the amount written by each node is not 
very much, but a call to MPIFilesync in each pattern 
should guarantee that the data is really written to disk. If 
the benchmark is executed with n of N nodes and N is the 
total number of nodes of the system, then each of these n 
nodes has to write/read 

M - MnodeLbreal!!?- accessed per node - 3CU brule n 1Omin 

with Anode = the memory size of one node, breal = the 
real aggregated bandwidth for that pattern and brule = 
N*Mn,d,/lOmin, the already mentioned I/O rule for HPC 
systems. The last two terms of the equation show that, 
as long as breal is independent of n and T, the memory 
accessed in each process is linear in T/n, i.e., if one uses 
only half of the processors, then one can run the benchmark 
in half of the time, provided that one wants to write the 
same amount of data by each process. Based on these 
observations, a default run of b-effio first measures the 
I/O bandwidth with T = lominutes on the total partition 
of processors on which b-effio was started, and follows with 
T = 5 minutes on half of that partition. 

Finally, with pattern types 3 and 4, it may be that all 
disk allocation is done with the first initial write pattern, 
which is not weighted in the average. This is shown in 
Table I by a zero U value for the patterns 0, 9, 17, 25 and 
34. 

VII. OUTLOOK 

It is planned, to use this benchmark to compare sev- 
eral systems. More investigation is necessary in the prob- 
lems arising from 32 bit integer limits and handling read 
buffers in combination with file sync operations. Although 
[l] stated, that “the majority of the request patterns are 
sequential”, we should examine, whether random access 
patterns can be included into the b-effio benchmark. 
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