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Modeling KDP bulk damage curves for prediction of large-area damage
performance

Mike Runkel and Richard Sharp III
L-250, Lawrence Livermore National Laboratory
7000 East Avenue, Livermore CA, 94550

ABSTRACT

Over the past two years extensive experimentation has been carried out to determine the nature of bulk damage in KDP.
Automated damage testing with small beams has made it possible to rapidly investigate damage statistics and its connection
to growth parameter variation. Over this time we have built up an encyclopedia of many damage curves but only relatively
few samples have been tested with large beams. The scarcity of data makes it difficult to estimate how future crystals will
perform on the NIF, and the campaign nature of large beam testing is not suitable for efficient testing of many samples with
-rapid turn-around. It is therefore desirable to have analytical tools in place that could make reliable predictions of large-beam
performance based on small-beam damage probability measurements.

To that end, we discuss the application of exponential and power law damage evolution within the framework of Poisson
statistics in this memo. We describe the results of fitting these models to various damage probability curves on KDP
including the heavily investigated KDP214 samples.

We find that both models are capable of fitting the damage probability S-curves quite well but there are multiple parameter
sets for each model that produce comparable % values. In addition, the fit parameters from the exponential model do not
agree well with the measured evolution from large-beam OSL experiments where pinpoint density was shown to evolve
according to n(F)=ngexp(bF). The largest discrepancy is in determination of the b values. For the O’Connell formalism of
the power law case developed here, we find that the best-fit powers have approximately the same magnitude as the Weibull
exponent of Feit’s formalism, but it is difficult to extract information about the defect concentration using the O’Connell
approach. In addition, we found that the power law case provides slightly better %* values in roughly half of the cases.

We discuss these results in terms of fluence measurement precision and the observed fluctuation of damage density observed
on OSL testing. We conclude that these two formalisms are not yet well-enough developed to provide reliable parameters for
predicting large-scale damage performance of KDP. In outlining possible steps for refining the models, we also call for any
future small-spot damage model to include the effects of laser condition_ing.

Keywords: KDP, bulk damage, damage statistics, exponential evolution, curve fitting

1. INTRODUCTION

_ The statistical nature of laser damage plays a fundamental role in determining the survivability of large optics on the National
Ignition Facility (NIF) laser. A firm understanding of the “extreme statistics” of laser damage is required to predict the
amount and severity of damage expected on each type of optic in the laser. This has bearing not only on the single-shot
performance of the laser, but also on the operational lifetime of the system optics. The damage groups are currently involved
in an intensive effort to understand the statistical nature of laser damage and apply it to large optics in order to predict laser
performance and optics lifetime on the NIF. The optics primarily under consideration are KD*P triplers and fused silica
lenses. Isolated point-like absorbers appear to be the dominant source of damage in both cases although KD*P exhibits
primarily a bulk damage problem while fused silica damages mainly on the surfaces. To investigate the statistical nature of
laser damage, the damage groups have constructed several automated damage test systems. These table-top, small beam
systems (~1 mm, FW @1/¢?) are capable of testing hundreds of sites to failure on each sample. This allows a more
statistically valid picture of the damage performance to emerge than previously possible. As a result, the concept of “damage
threshold” has given way to the concept of damage distributions. The current “standard” method of gauging performance is
the cumulative failure probability curve' or S-curve, which is a plot of failure probability versus fluence for a given beam
size. This curve allows the large scale/area performance of an optic to be predicted using either reliability analysis methods®



or Weibull/Poisson (WP) statistics. Because the reliability analysis method has already been developed for KDP, we
concentrate on the Weibull/Poisson statistical model in this memo. In what follows, we shall develop the basic Poisson
statistical model, modify the model for damage evolution of KDP and long focus gaussian beam geometry, and describe the
computer models used to fit theory to data. The results of data fitting will be discussed to determine the overall utility of the
model in connecting small and large area test result and for predicting large area behavior from a sample’s S-curve.

1.1 Poisson statistical model and the Weibull (powér law) formulation

In a recent report’, Feit described the basic formalism of Poisson statistics applied to defect-driven damage. He then proceeded
to develop it along the lines of the Weibull formalism®. The Poisson statistical approach is well established in the literature
and variations of this approach has been developed previously*'®>. However, in order to conceptualize what follows and
establish notation, we repeat the basic derivation here.

Consider a surface area, S, which contains distribution of defects which may damage in [F,F+dF]i.e. n(F)dF, irradiated by
fixed (top-hat) fluence, F. Let P(S,F) be the probability to damage at F. The complementary probability to survive exposure
to F is U(S,F)=1-P(S,F). The differential failure probability, dP, in the interval [F, F+dF] is given by -dU=n(F)SU(S,F)dF.
Integration of this equation yields the damage probability as a function of fluence: ’

F
P(S,F)=1-exp[-S[n(F )dF]=1-¢*" =1-¢™" (1)
. 0

: F
Note that the product of the area and defect concentration, Sc(F) = SJ. n(F )dF is the total number of defects, N, which
0

damage up to F. The form of P(S,F) depends explicitly on the functional form chosen or determined for n(F) and whether S
depends on the fluence, as in the case of a gaussian beam. This is the basic functional form that describes defect driven
damage. It can be put into Weibull form* by choosing a power law dependence for c(F), i.e. c(F)=CF™ where m is known as
the Weibull exponent. Thus (1) becomes

P=1-exp(-SCF") ©)
where C is a constant. This expression can be manipulated to yield a linear form by applying laws of logarithms:
1 1
Inf — ln(
S \1-

Here, m is the slope of a straight line.

Pﬂ =min(F)+InC . 3

Interpretation of the data from a Weibull plot is not straightforward for small beam, gaussian laser systems. This is because
the area above damage threshold depends on the peak intensity of the gaussian beam irradiating the surface. In the Weibull
formalism this can be accounted for by evaluating N(area):

oo r2 2

N =[c(F)dA=CF," 2fde [re " dr=CF," no
A 0 0

@

This defines the effective area of the gaussian beam as A =nc%/m for the gaussian beam F(r)=Fexp(-r*/c”) applied to a
particular optic. This relation makes it clear that for high m optics (such as fused silica) large areas must be tested to reveal
the true low fluence character of the failure curve.

This formalism is currently being used by Feit, Rubenchik and others to analyze the results of raster scanning fused silica at
low fluences, where only a few damage events occur for many thousands of test sites’. For that problem, the Weibull
formalism seems to be well suited as an analytical tool. The applicability of Weibull statistics to KDP damage was called
into question, however, by the exponential evolution of pinpoint density as shown in Figure 1 below, which is the result of
testing on LLNL's Optical Sciences Laser (OSL)".



As we show below, the damage behavior of KDP and DKDP can be described by exponential pinpoint generation as a
function of fluence i.e. n(F)=ngexp(bF). To our knowledge, this represents the first time a non-power law function, determined
from actual measurements, has been used in this method. We would also like to point out that this behavior has been
predicted by Duxbury et al.'” Previous efforts have postulated damage evolution according to a power law but do not dwell on
its physical significance. In developing damage models for bulk damage in KDP, we shall apply the O’Connell formalism".

2. POISSON MODEL APPLIED TO KDP DAMAGE

2.1 Determination of damage evolution and n(F) for KDP

Recently, large beam damage experiments were performed on KDP using the Optical Sciences Laser (OSL) * ', The tests
were designed to examine the feasibility of on-line laser-conditioning and damage evolution of NIF THG crystals. Samples
were exposed to a 7 mm diameter, 351 nm, 3 ns, near top-hat beam to better match the statistics of the NIF beam compared
to small-beam automated tests. The degree of conditioning was measured by exposing separate sites to increasing average
fluence in 1/1, 4/1, 8/1 and 12/1sequences to the same ending average fluence. Here N/1 refers to the number of shots taken
on a given test site to step up to the final average fluence. Bulk scatter mapping revealed that significant conditioning was
attained in 12/1 exposure sequences. It was also discovered that bulk damage evolution could be described by a simple
exponential model relating the pinpoint density to local beam fluence: n(F)=ngexp(bF). Figure 2 shows test data from the
OSL campaign and the corresponding exponential fit for rapid-growth sample KDP214, which is one of the best rapid growth
samples that LLNL has ever produced. Despite the general exponential behavior, the pinpoint density varies by up to two
orders of magnitude for a given fluence. This variation only allows determination of n, and b in an average sense.

KDP214 - Pinpoint density vs fluence
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Figure 1. OSL damage evolution data for rapidly grown sample KDP214. The data show a reduction in damage density as well as an
increase in threshold as a result of laser conditioning. The damage density (pinpints/mm’) data were obtained by correlating
measured (via microscope) densities with scatter voltage signal. This data was then correlated to the local beam fluence. Spatial
resolution of beam fluence maps, microscopy and scatter maps were all ~300 pm [14].

To apply the Poisson formalism to small area KDP damage measurements, we follow O’Connell’s notation and write
equation (A9) from Appendix 1 in the form



P=1- exp[— jOF" n (F)V(F )aF ] ©)

Here n’(F) describes the change in damage density as a function of the fluence. V(F) describes the evolution of the volume
element in which damage will occur as beam fluence is increased. The integral is taken from zero up to the peak fluence in
the beam.

To develop an explicit form for KDP, the derivative of the expression for exponential damage evolution is inserted into
equation 5. To complete the model, we must also consider the form of the V(F) term. The Zeus damage tests are performed
under conditions where the focal waist of the beams is much greater than the sample thickness. Therefore, a cylinder of
material is illuminated at each test site. If we introduce a local damage threshold fluence, F,;, which represents the well-
defined, but unknown damaging fluence at the test site, then the radius of the irradiated cylinder where damage may occur (i.e.
where F>F,) will increase with fluence as shown in Figure 2.

Wo
r2(F)=71o? In(Fpi/F)

Figure 2. Geometry for irradiated volume at fluences above the local damage threshold, F,,.

Inverting the functional form of the gaussian spatial profile, F(r)=F ,exp(r’/o,’), (w, denotes the distributions half-width at
1/e, 1 is the sample thickness and F,, is the peak fluence in the beam) allows us to calculate V(F).

5 F,
V(F)=nrwyl-In| — 3 , F>F, (6)

The probability expression becomes

P=1-exp —erol_[ n,b exp[ ]l ( ]dF "I, E2F, @

rh

Note that the introduction of F,, which now represents the lowest failure fluence in the data set, requires modification of the
evolution term. We now have an expression with three fitting parameters, F,, n, and b for evaluation of experimental data.

2.2 Fitting the model to experimental data

We took two approaches in fitting the exponential model to experimental data. The first was to evaluate the probability
expression (7) using straightforward numerical integration on a spreadsheet, which allowed us to rapidly explore the behavior
of the models over a wide parameter range. The second approach we developed consisted of a non-linear least squares fitting
program based on the Levenberg-Marquardt method”.  This method is based on steepest decent calculations and has the
advantage that it can rapidly determine the parameters to minimize x*. We determined that convergence is relatively sensitive
to the input parameters. As a result, we used the spreadsheet program to rapidly investigate the parameter spaces to minimize
x* and the our non-linear least squares program to investigate regions which gave low initial y* values. Consequently, the
reader should bear in mind that the best-fit parameters reported here may not represent the global parameters which minimize
%?. This has some bearing on the interpretation of results and will be discussed in section 3.0.

In addition to the exponential model developed above, we also fit data using the power law formalism of equation 8:
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‘P=1-exp -

Here the fitting parameters are C,, p, and Fy. This expression is due to O’Connell and is a variation of the Weibull
formalism currently being used by Feit et al. It is discussed in detail in Appendix 1.

- 2.3 Results of exponential fitting to KDP214 test data

We applied each of these models to data obtained from KDP214. This is high quality, rapid-growth material which exhibits
performance approaching that of Beamlet-era, conventionally grown KD*P. This crystal has also been extensively
investigated using scattered light imaging, fluorescence imaging and photothermal mapping. In addition, it has been used in
small-beam thermal and laser annealing experiments as well as tested on the Optical Sciences Laser. The 1/1 and 8/1 S-
curves for OSL data were generated by integrating fluence histograms for all pinpoint densities greater than the Zeus detection
threshold of 3 pp/mm®. Figure 3 shows the evolution of the damage probability curve as a function of laser conditioning for
damage at 3@ as well as their associated best -fit curves from the exponential model. As the amount of conditioning
increases, the slope of the curve (in the linear portion) decreases. The relative scarcity of data in the 8/1 case is because the
crystal conditioned enough so that relatively few pinpoints were generated at the fluence level of the last shot in the ramped
sequence.
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Figure 3. Best-fit curves for the exponential damage evolution model applied to KDP214 damage at 3®. The fit parameters for these
curves are given in Table 1.

We start our discussion of the fit results by presenting the best fit parameters for each data curve in Table 1 as well as a plot
of the data fits in Figure 3.



Table 1. Best fit parameters for KDP214 data and exponential model fits.

Test no(pp/cmST b(cm‘/T) F,(J/cm?) OSL parameters
_ ' v " n_ (pp/cm’) b(cm?/J)
1/1 OSL 5x107 . 0.822 0.01 | 7.5x10 . 1.5
8/1 OSL 5x10* 0.896 0.01 10° 2.5
R/1 Zeus 0.5 0.323 0.01 | . :
1w R/1 Zeus 1.0 0.098 0.01. | - _

We chose to set the threshold fiuence to 0.01 J/cm2 thereby eliminating one fit parameter. This was done for both practical
and philosophical reasons that will be discussed below. The parameters presented here were obtained by holding the value of
n, constant and varying b until x*> was minimized. Inspection shows that the n, values for the model probability curves have
the same order of magnitude as the measured OSL parameters. The b values, however, differ significantly. We shall explore
the evolution of the fit curve with parameter variation and whether the results are physically meaningful in-the following
paragraphs and sections. '

2.4 Evolution of the exponential model with pai'ameter variation

In this section, we explore how the model probability curve varies with parameter variation. Figure 4 shows the damage
probability curve for KDP214 at 1o along with three model curves representing the evolution of the fit as parameters are -
varied.
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Figure 4. Damage probability data for KDP214 at 1o and model fits representing the evolution of the curve as the parameters n, and b
are varied. F,, is held constant at 0.01 J/cm® for these curves. '
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Generally speaking, the lower n is, the greater the value of b must be in order to bring the fit close to the experimental data.
However, these combinations also give the curve a more step-function like appearance. On the other hand, higher values of
n, require lower values of b to fit the data and lead to curves with lower slope. The effect of increasing the threshold fluence,
F,, is to lower the individual damage probabilities for each fluence. Clearly, the maximum allowable threshold fluence is the
lowest value in the data set and increasing F,, beyond this minimum fluence would be unphysical.

The concept of an absolute damage threshold fluence becomes somewhat nebulous in the model. While it is true that each
individual test site has a well-defined damage onset, indications are that the minimum overall threshold will continue to drop



as more sites are exposed. For example, we observed this effect for another rapid growth sample KDP347, where the 100
site, R/1, minimum damaging fluence was ~18 J/cm2. Ramping an additional 875 sites to fluences up to ~18 J/cm? reduced
the minimum damaging fluence to 5 J/cm®. We expect that further exposures would eventually drive the minimum damaging
fluence even lower. On the other hand, there must be a lower limit on the damaging fluence based on the damage mechanism
and mechanical properties of the crystal. It appears that this threshold is low enough, particularly at 3w, so that the damage
models will not be drastically affected by setting it (essentially) to zero. This does not mean, however, that the curves
obtained with F;=0.01 J/cm? are always better than those obtained for nonzero values of F,.

Also, there are numerous points in the parameter space which will give very good fits to the data, despite large differences in
the parameters themselves. As an example, data for the 3w, 1/1 OSL damage curve is given in Table 2. This table gives the
fit parameters and associated ¥’ values. The last three entries in the table are virtually indistinguishable from each other when
the data are shown on a graph. Despite the fact that very good fits to the small spot data are possible, this effect makes it
very difficult to use the exponential model for predicting large-scale damage behavior. We discuss this in more detail i in
section 3,

Table 2. Fit parameters for KDP214, 3w, 1/1 OSL data

0, (pp/cm) | bcm7)) | F, Q/cm’) " Comments
10”7 2.0 0.01 1.524 Best fit with b from OSL data
10”7 1.86 0.01 0.476 Best fit using n,=10"'
10° 1.69 0.01 .388
10° 1.51 0.01 .303
10* 1.325 0.01 216
10° 1.141 0.01 1362
10 .954 0.01 .0813
5x10” .822 0.01 .0800 Best fit using n, from OSL data
10 765 0.01 0972

2.4 Results of power law fitting to KDP214 test data

In this section, we repeat the analysis given above for the power law formalism given in equation (8). As mentioned above,
this particular formalism is due to O’Connell”’. We give equation 8 again:

n0,C, [ (F-F)”

1-p F

(10

P=1-exp| -

N

The fit parameters in this model are C,, p and F,,. The units on C, are variable and depend on the value of p, but overall C,
is related to the defect concentration. Inspection shows that the exponent diverges only for p=1, otherwise all values of p are
allowed. Setting F=0 also leads to a divergence and therefore precludes setting F;=0. Table 3 shows the best-fit parameters
for KDP214 test data in analogy to the exponential case (Table 1). We only show data for the cases where F,;=0.01, however,
similar arguments regarding the role of F, in this model apply. In addition, we show the Weibull exponent that was derived
from linear least-squares fitting of the damage curve in the form of equation (3). In general, the data was obtained by holding
p constant and adjusting C, until x* was minimized.

Table 3. Best fit parameters for KDP214 data and power law model fits.
Test C | E F, (J/cm || Weibull exponent (m)
— 1I/1OSL 51x10 [ 95 0.01 ][_ 10.60
8/1 OSL 3.9x10-° -14.4 0.01 14.90
R/1 Zeus -1.98x10™ -6.0 0.01 6.26-
1w R/ Zeus | 5.25x10° -5.0 0.01 || .78




Inspection of the data shows that p values have a very wide range and the data for the 8/1 case is somewhat anomalous, as was
the case in the exponential model. Despite this, we see that the magnitude of p is approximately equal to the Weibull
exponent (i.e. -p~m).

2.5 Evolution of the power law model with parameter variation

As can be seen in Table 3, the magnitude of C, closely follows the value of p. Setting C,~10° proved to be an adequate
starting point for fitting the data. Generally speaking, increasing the value of C, while holding the other parameters fixed
increased the calculated failure probability. Decreasing p also increased the calculated failure probabilities and gave the curve a
more step-function like appearance. In contrast, increasing the damage threshold, F,,, decreases the failure probability.

Unlike the exponential model, this model does not allow values of F;>F,,, or a divergence will result. Figure 5 shows the
evolution of the damage curve with parameter variation for the 1 damage curve of sample KDP214.
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Figure 5. Power law fits to KDP214 1 damage data showing the evolution of curves with parameter variation.

In analogy to the exponential model, we also found that there are multiple parameter sets that give very good fits to the
experimental data. We therefore encounter the same difficulty in applying these data fits to large area damage prediction.

Table 4. Power la_».v fit parameters for KDP214, 3w, 1/1 OSL data.

C, P F, (J/cm?) x?
5.1x10° 9.5 ~ 0.01 — 0.0504 |
1.23x107 9.5 1.0 0.0565
5.0x10° 8.5 0.01 0.0583
6.25x10° 75 01 0.0908

2.6 Comparison of exponential and power law models

Comparison of the fit data for the exponential and power law models for a number of damage curves shows that in
approximately half of the cases, the power law model gives lower %’ values than the exponential model. This is despite the
known exponential evolution of damage in KDP from the OSL experiments. Tablée 5 shows the best fit % value for each
model for tests discussed in this memo.

Table 5. Comparison of exponential and power law goodness-of-fit parameter (2. For these data there were no restrictions
placed on any parameter, except that O<F,;,<F,. Consequently, some %’ values may be different from those appearing in
other tables.



Test x* — exponential x* — power law
“KDP214-3w, 1/1 OSL 0.0800 0.0504
KDP214-3w, 8/1 OSL 0.0136 0.0169
KDP214-3w, R/1 Zeus 0.1133 0.0594
KDP214-1w, R/1 Zeus 0.1103 0.0794
DKDP586-3w, R/1 Zeus 0.0454 0.0297
KDP347-3w, R/1 Zeus 0.0844 0.1335

As an example illustrating the differences between the two models, we plot the experimental data for samples KDP347 and
DKDP3586 (not previously discussed) along with best-fit curves for each model in Figure 6. For KDP347 both models
underestimate the measured failure probability in the lower portion of the curve, with the power law being slightly worse than
the exponential model. For DKDP586, which represents typical damage performance for rapid-growth DKDP, both models
overestimate the failure probability in the lower portion of the curve. Here, the exponential model again fits slightly better.
It is possible to attain a better fit to the lower part of the curves in both data sets, but this comes at the expense of the overall
fit, with deviations now occurring in the upper portion of the curve.

3. DISCUSSION

The results obtained from fitting the exponential and power law models to KDP damage probability curves offer a number of
paradoxes. We have seen that both models offer very precise representations of the damage curves, however, neither may be
very accurate given the multiplicity of parameter sets that produce low ¥’ values. We also see that the power law model
gives better overall fits in a surprising number of cases. This is despite the fact that damage has been shown to evolve
exponentially with fluence. In addition, the resuits from the exponential model do not agree well with measured damage
evolution parameters for the OSL tests.
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Figure 6. Comparison of exponential and power law models for KDP347 and DKDP586, 30 damage data. Neither model fits the lower
portion of the either data set curve well with optimal overall fit parameters. The x* values for each model are listed in Table 5.

There are a number of possible explanations for these observations and some general comments are in order. First, we should
not hold too strongly to the notion that any of the damage curves shown are reproducible in more than an average sense.



Previous work'® has shown that repeated damage testing of the same sample yields different, but similar curves for each test,
from which a cumulative curve may be constructed. This is to be expected based on limited sampling of the underlying
damage distribution. In addition, there is always a fluence measurement error, which is implicit in every damage curve. For
the Zeus system, the 1o and 30 fluence errors are +5% and +15% respectively. Combining the sampling and fluence
measurement uncertainties gives a typical error in the damage curve of approximately +20% for a 100 site, 3w R/1 damage
test on KDP. We have not explored the effect of these errors on fit parameters in this report.

We also do not take into account fluctuations in the damage density in determining the damage evolution equation. The
pinpoint density can vary by two orders of magnitude for a given fluence in large beam N/1 tests, as was shown in Figure 2.
This behavior is also observed in small beam tests where damage may be characterized by a single, or many pinpoints. It is
therefore only possible to determine the damage evolution equation in an average sense. It should not be entirely surprising
that the exponential parameters measured for OSL test samples are different from those obtained for the exponential model,
given the experimental errors involved. It is encouraging that the n, values can be made to agree reasonably well, but the
large discrepancy in the b values is disturbing (Table 1).

The similarity of fits achievable between the models is to be expected because both the exponential and power law functions
are powerful functions, mathematically speaking. Also, three-parameter equations offer wide latitude in the choice of
parameters to achieve a fit. Even reducing the equations to two fitting parameters by setting F,= 0 doesn’t appear to restrict
the degeneracy of solutions possible. The spreadsheet calculations indicate that the topology of the %*(ng, b, F,) or %2 (C,. ps
Fy,) space is filled with “holes” which are approximately the same depth. But, the spreadsheet approach doesn’t allow

investigation of the parameter spaces with enough resolution to determine whether a global minimum for 2 exists. Indeed,
the Levenberg-Marquardt program mentioned earlier will offer us the ability to map the parameter spaces at much higher
resolution. Once this program s fully implemented, it should be possible to determine whether a smgle, global, best fit
exists.

The work presented above represents an extension of existing theory to bulk damage in KDP. At this stage it is at best
difficult to obtain meaningful results using these models to predict large area damage behavior. The exponential model offers
direct calculation of parameters that have been, or can be measured, however the agreement between fit and measured
parameters is generally not good. On the other hand, the power law model returns values of p which are close to the Weibull
exponent. The disadvantage in this model is extracting the defect concentration from C,,, which has units that depend on p.

Despite the difficulties we discovered in attempting to derive large area damage behavior from small area tests, it is also clear
that a model for laser conditioning of KDP needs to be developed. The slopes of the damage curves are consistently lower for
R/1 tests than for S/1'tests. The R/1 test represents the maximum level of conditioning attainable at each test site while the
N/1 exposures in OSL or Slab Lab test environments would offer less laser conditioning. Even if a better fitting approach is
found, a conditioning model would need to be incorporated in it to prevent underestimating damage when fitting R/1 data to
predict damage in large area N/1 beam environments. In order to develop a conditioning model, we need to go beyond the
current phenomological observations and make some assumptions about the nature of the damage mechanism and the
conditioning process. Work on understanding the damage mechanism is well underway and indicates that nanometer scale
absorbers are the likely source, however nothing currently exists regarding a laser conditioning model which correlates well
with this hypothesis. -
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