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Abstract 
A Mach-Zehnder interferometer was used for analysis of pressure waves generated by 
ultrashort laser pulse ablation of water. It was found that the shock wave generated by 
plasma formation rapidly decays to an acoustic wave. Both experimental and theoretical 
studies demonstrated that the energy transfer to the mechanical shock was less than 1%. 

Results and Discussion 
Fig. 1 shows the schematic of the Mach-Zehnder interferometer. The Nitrogen-pumped 
dye laser was used as a probing light source. The green beam from the dye laser was 
split in a 50:50 beam splitter. One of the beams passes through a water-filled cuvette on 
which the ultrashort laser pulse (USLP) is incident and generates surface ablation. 
Another water cuvette was placed in the other beam path to match the path difference 
between the two beams. The pressure waves generated by the surface ablation caused the 
fringe shift, which can be correlated to the pressure. The fringe shift was recorded on a 
CCD camera with a resolution as high as 1 pm per pixel. 

Fig. 2 shows the typical interferogram with fringe shift due to the spherical wave 
generated from the small surface area. Assuming axial symmetry and triangular pulse 
shape, the peak pressure can be calculated. The maximum fringe shift is 

The peak change of refractive index is calculated using 

n peak = J49gs12R) 

f (a = d2R) = 
a3 = 1.5 (s << R) 

a + (I-a)Zn 



using a triangle-like pulse shape function. The ablation threshold for water ablation is 
shown in Fig. 3. The threshold was defined as beam fluence (J/cm’) that causes 
formation of the spherical waves. As expected the threshold increases with increasing 
pulse width and the slope of the threshold follows typical ablation threshold patterns for 
other dielectric ablation. 

The estimated peak pressure was calculated for various pulse widths and at multiples of 
the threshold intensity; the results are presented in Fig. 4. The pressure is several kbars at 
50 pm for most cases and rapidly decays to 200 - 300 bars after traveling 200 - 300 pm. 
The solid lines are the curve fit to the data. It seems that the peak pressure is inversely 
proportional to the travel distance, which is expected in normal acoustic waves. 

Fig. 5 shows the radius of the spherical waves as a function of time. We used various 
pulse widths and beam intensities. It was found that the speed of the waves is dependent 
on the ratio of the intensity to the threshold but not on the pulse width. The speed of the 
pressure waves was approximately 1.53 km/set for all cases. The typical speed of sound 
in water is 1.48 km/set. It was also found that the waves initiated by more intense pulses 
were more advanced due to the fast initial propagation. 

The total energy in the pressure waves was estimated using the following expression: 

E = jdfzzR’ dt = 2n;;;k2T 
COP0 0 0 

The energy conversion rate for various pulse widths and beam intensities was calculated 
and presented in Fig. 6. An important observation in this study is that the conversion 
efficiency is less than 1% for all cases. This result was confirmed by a theoretical 
calculation. We used the one dimensional hydrodynamics code “HYADES” to calculate 
the conversion efficiency and this result also shows that the efficiency is less than 1% [ 11. 
This result supports the small collateral mechanical damages induced by USLP as 
reported in many other publications [2-31. 
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Fig. 1. Schematic of Mach-Zehnder interferometer 
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Fig. 4. Peak pressures calculated using the fringe shift of interferograms at (a) threshold, 
(b) 2 x threshold, and (c) 3 x threshold. 
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Fig. 5. Propagation of pressure wave front with time. Speed of waves are calculated 
using the curve-fit procedure. 

Fig. 6. Typical wave shape. 




