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Delta Coherence Protocols:
The Home Update Protocdl

C. Williams and P.F. Reynolds, Jr.
University of Virginia, Computer Science Department

B. R. de Supinski
Lawrence Livermore National Laboratory

Abstract

We describe a new class of directory coherence protocols dgliedcoherence protocothat use net-
work guarantees to support a new and highly concurrent approach to maintain a consistent shared memory.
Delta coherence protocols are more concurrent than other coherence protocols in that they allow processes
to pipeline memory accesses without violating sequential consistency; support multiple concurrent readers
and writers to the same cache block; and allow processes to access multiple shared variables atomically
without invalidating the copies held by other processes or otherwise obtainingiexeccess to the refer-
enced variables. Delta protocols include both update and invalidate protocols. In this paper we describe the
simplest, most basic delta protocol, an update protocol calldtthe update protocol

Delta protocols are based motachnetwork guarantees. An isotach network maintains a logical time
system that allows each process to predict and control the logical time at which its messages are received.
Processes use isotach guarantees to control the logical time at which their requests on shared memory
appear to be executed. We prove the home update protocalastassingogical time to reason about the
order in which requests are executed.

*This work was supported by NSF grant CCR-9503143, with additional funding provided under DARPA grant
DABT63-95-C-0081. Portions of the work were performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48; UCRL-ID-
139737.






1. Introduction

Caching data can reduce access latency and improve data availability, but in the case of writeable data,
caching raises the problem of how to maintain consistency among copies. The problem appears in different
guises in several differenbotexts: as the cache coherence problem in multiprocessors; as the problem of
maintaining a distributed shared memory (DSM) in distributed computations; and as the replica control
problem in distributed databases. This paper describémthe update protocod member of the class of
coherence protocols callelta coherence protocothat usessotach messagerdering guaantee$ to
solve the coherence problem in a new and highly concurrent way. Our goal is to show how isotach guaran-
tees are useful in solving the coherence problem and in reasoning about coherence protocols.

Solving the coherence problem is hard because it requires coordinating the execution order of accesses
at different nodes. The traditional approach to the problem is to reduce the coordination required by limit-
ing concurrency or weakening the correctness criteria. Existing protocols that enforce sequential consis-
tency (SC) require that nodes execute requests eadhaie and invalidate or lock copies while executing
write requests. Delta protocols use isotach guarantees to coordinate accesses, an approach that allows delta
protocols to enforce SC without limiting concurrency. Whether delta coherence protocols outperform
existing colerence protoals depends on the cost of implementing isotach guarantees and on the extent to
which applications can take advantage of the high level of concurrency offered by delta protocols.

2. Isotach systems

An isotach Greek iso = same; tach = speed] systamplements a logical time system in which all
messageappearto travel at the same speed — one unit of logical distance per unit of logical time. Given
this property, called thisotach invarianta processor can control the logical time at which each of its mes-
sages is received by controlling its logical send time.

Isotach systems use the exchange of signals dalkedisbetween neighboring nodes (switches and
processors) to implement a distributed logical clock. iilseat a processor is the number of token waves
the processor has received. An isotach system assigns a logical time to each event of sending or receiving a
message. An isotach logical time is a lexicographicallem@d 3-tuple inwhich the first and most signifi-
cant component is theulseat the processor at which the send or receive event occurs. The remaining two
components, thpld andrank, are tie-breakers used to order events that occur in the same pulse. Events
with the same pulse component are ordered by the pld of the sender. Events with the same pulse and pld
components are ordered by the rank, i.e., issue order, of the message.

The isotach logical time system extends Lamport’s logical time sysigmguaranteeing that send and
receive times are consistent with the isotach invariant: each message travels one unit of logical distance per
pulse of logical time. Isotach systems can implement a variety of distance Pnéteos, dist(p,p’), the
logical distance from nodeto nodep', is the routing distance fromto p', i.e., the number of switches tra-
versed by a message senidip p'. For any messaga sent byp to p', d(m), the logical distance message
m travels, is dist(p,p’). For simplicity, we assume distances are static. Distances may be asymmetric, i.e.
dist(p,p') does not necessarily equal dist(p',p). By the isotach invariant, for any massegogical
receive time is exactly d(m) pulses afit@s logical send time, i.e.,(tn) = t(m) + d(m). (The scalar quan-
tity d(m) is added to the tuplgm) by adding d(m) to the pulse component of the tuple.) Assuming each
processor executes messages in receive order, a message’s logical receive time can be used as its logical
execution time. Thus, for any messagd,(m), the logical execution time af, equals {m). This assump-
tion is for simplicity and is stronger than necessary. Execution times can be shifted in relation to receive
times in any way that preserves receive order. Furthermore, in an execution in which messages are opera-
tions on shared variables, operations can be executed in any order that preserves the receive order among
conflicting operations. Two operations conflict if they access the same variable and are not both reads.



Most delta protocols require an isotach system that suppedsctable response# predictable
response is a messageésent in response to another messageich that the send time wf can be pre-
dicted from the receive time ai, i.e., {(m") = t(m) +c. For simplicity, we assumeis 0. (In any practical
systemg is a small tunable system constant, greater than zero.) Given the isotach invariant and knowledge
of the logical distances involved, the receive timeiofan be predicted from the send timerot,(m’) =
t{(m) + d(m) + d(m"). A predictable response inherits the pld and rank components of the original message.

Each processor has a switch interface unit (SIU) that tracks logical time and acts asfeneeint
between applications and the isotach system. An application can simply assume that its messages will
appear to be executed in the order issued. Given the isotach invariant and the assumption that messages are
executed in receive order, an SIU can control thdivelarder inwhich locally issued messages appear to
be executed. In particular, an SIU can ensure that a batch of messages appear to be executed at the same
time by sending the messages so that #reyreceived in the samagical pulse and can ensure that mes-
sages issued in a sequence appear to be executed in sequence by sending the messages so that they are
received in non-decreasing pulses.

Isotach systems can be implemented usingsibrgetalgorithn, in which network switches route mes-
sages in logical time ordeklternatively, the work of ordering messages caslioéed to the SlUs to per-
mit the use of commodity switches. A prototype system based on this approach has been implemented on a
cluster of commodity PCs connected with Myrth&oth algorithms are scalable, requiring the exchange
of tokens only among nearest neighbors. In the prototype, which implements isotach functionality in soft-
ware, the round-trip user-to-user level latency of isotach messages is on the order of 50 usec, about twice
that of non-isotach messages on the same harélilaréurther reduce the cost of maintaining isotach
guarantees, we are re-ggsng the messaging layer software and building a second generation prototype
with custom SIUs.

3. Model

The coherence problem occurs in several contexts, each with its own terminology. The terms used here
are from the literature on the cache coherence problem in multiprocessors. We relseand¢hnnterested
in DSM or replica control to make the appropriate translations.

We consider a system consisting of multiple processors connected to a memory system. Processors
issue read and writequestdo the memory system. A write request (WRITE) on variabiestructs the
memory system to assign a specified value toread request (READ) oarninstructs the memory system
to return the value of. A variable issharedif more than one processor can issue requests on it. We con-
sider only shared variables.

The memory system encapsulates the representation of (shared) memory and the procedures for access-
ing it. The processor/memory systemeifiace is asdilows:

* processors issue READs and WRITEs to the memory system. (To enable the processors to specify the
variable to be accessed, the processors and maystgm share a naming scheme for variables.)

* the memory system returns a value in response to each READ.

The internal details of the memory system are not visible to the processors.

A memory system consists of interconnected memories and controllers programmed to execute the sys-
tem’s coherence protocol. The memory space is jpaditl across the memory modules (MM). Each pro-
cessor has a cache memory and cache/coherence controller (CC), which handles locally issued memory
requests and manages the cache. In a delta protocol, the CC also performs the functions of the SIU, i.e., it
tracks logical time and controls the logical time at which local operasi@nsent.

For each variablg, the primary copy, called tHeome copyis located in an MM. The MM containing



v's home copy i&’'s home.Secondary copies, calledche copiesmay be stored in the cache memories.
The number of cache copiesw€an vary dynamically frorzero to the number of processors in slgs-
tem. A request fov is ahit if a copy ofvis in the issuing processor’s cache; otherwise itness

The memory system translates requestsoperations executes the operations, and returns a value for
each READ. An operation reads, writesgates, or destroys a copy of a variable. For each losaligd
WRITE, the CC generates one or more write operations (writes) and for each locally issued READ, the CC
generates a single read operation (read). The phrase “the execution of Reguesipyc’ means the exe-
cution of the operation resulting froRithat is executed on comy

In a delta protocol, each operation is sent as an isotach message. The logical distance, send, receive, and
execution times of an operation are the logical distance, send, receive, and execution times of the message
carrying the operation. An operation on the local cache copy is sent as a self-message. A self-message is an
isotach message sent by a processor to itself. Since self-messages do not enter the network, for any self-
messagen,d(m) = 0 and,{m) = t(m). Fig. 1 summarizes terms relevant to operations in a delta protocol.

for copyc
3(c) The delta of. In home update protocol, dist(home,c)
for operation op executed on copy
t(op) send time of op related by isotach invariant:
t.(op) receive time of op t (op)):/ts(op) +d(op)
d(op) logical distance traveled by "
t.(op) execution time of op L(op)=t(op), by assumption
to (OP) effective execution time of op t.m(OP)=t(0p)-0(C)
xdist(op) execution distance of op xdist(op)=t« (op)-t(op)=d(op)&(c)

Fig. 1. Delta coherence protocol terms and notation.

Each copy in a delta protocol is assignetela In the home update protocol, the delta of copy
denoted(c), is dist(home,c). (Thus, the delta of a home copy is zero.) A copy’s delta represents the num-
ber of logical time pulses by which the copy lags behind the home copy. For any opspatiocopy c,
the effectiveexecution time obp, denoted 4, (op), is §(op) -8(c). Informally, t«.(op) is the logical time at
which op appearsto execute, i.egp’s logical execution time adjusted to compensatefdelta. For any
operationop, xdist(op) theexecution distancef opis defined as.k,(op) - t(op). Thus, xdist(op) = d(op) -

o(c), wherec is the copy on whicbpis executed.

4. Correctness criteria

The most basic task of a coherence protocol is to make replication transparent to the processors. The
result of any execution should be as if the requests of the processors were executed on a single-copy mem-
ory, i.e., a memory containing a single copy of each variable. Coherence protocols may enforce the follow-
ing ordering properties:

* SC. A memory system enforces SC if “[t]he resuly, ..

of any execution is as if the [requests] of all the W'RlTE(V)l; Initially v=w=0
processors were executed in some sequential OrderITE(w)1 ~ P1: 1 3 P2
and the [requests] of each individual processor p2:: WRITE(v) READ(W)
appear in this sequence in the order specified by READw)1; ~ WRITEW) READ(V)

the program®. The execution shown in Fig. 2 vio- READ(v) 0
lates SC since no sequential ordering of the Fig. 2. Violating SC.
requests can produce the results shown.

* Atomicity. The memory system should execute requests issued as part of the same transaction or atomic



action atomically, i.e., so that the requestsesppo be executed as an indibie unit. Thus, the result

of any execution should be as if the requests of all the processors were executed in some sequential
order and the requests in each transaction appear in this sequence as a contiguous subsequence, not
interleaved with requests from other transactions.

Here, we use the teratomicityto mean consistency atomicity, not failure atomicity, i.e. the guarantee
is about the relative order in which requests appear to be executed, not about the results of a failure. Coher-
ence protocols may also be required to enféaere atomicity. the operations resulting from each request
(and the operations resulting from all requests in the same transaction) should be executed on an all-or-
nothing basis. Failure atomicity is an important concern in distributed databases, but a fault-free system is
normally assumed in a the context of multiprocessor cache coherence and is often left to separate mecha-
nisms in the DSM context. The isotach prototype uses a sender-based protocol and a reliable network
(Myrinet) to achieve reliable communication. An unreliable network would require use of a commit proto-
col.

The relative importance of SC and atomicity depends on the context. With a few exceptions, cache
coherence protocols for multiprocessors and DSM protocols focus on SC (or a weaker variant) and leave
the task of enforcing atomicity to separate mechanisms. On the other hand, databases focus on enforcing
atomicity. The high cost of enforcing SC and atomicity has led to gixeeaxplorabn of weaker memory
consistency models. Whether the resulting improvemenrgrfopnancgustifies the more complex mem-
ory interface is amndecided issueDelta protocols enforce atomicity and SC using isotach ordering guar-
antees without the locks and restrictions on pipelining requirednwventional gstems. Thus, delta
protocols represent an alternative to weakening the guarantees offered by the memory system.

5. Home update delta coherence protocol

The home update protocol is the simplest of the delta protocols and serves as the basis for the other
delta protocol$, which include invalidate as well as update protocols. As indicated by the name, the home
update protocol is an update protocol in which the home is responsible for distributing updates.

State Information

The protocol is a directory protocol. The home for each variasieres alirectoryrecording the set of
processors with cache copieswofor simplicity, we assume a bit vector representation for the directory:
bit i in the bit vector fow is setiff processor has a cache copy af(Any of several proposals for improv-
ing the scalability of directories, e.g., the method used in the Alemidéehine, could be used instead.)

Each CC stores a bit with each line in the local cache that indicates whether the line is currently allo-
cated. When a CC schedules a miss requegtibareates a a local copy ey marking a currently unal-
located cache line allocated. The CC destroys a copy by sending a release and marking the cache line
unallocated (see Executing Requests, below). For each allocated cache line, the CC stores the name of the
variable to the which cache line is allocated andwaistanding request couri CC releases a cache copy
of v only if the outstanding request count fas zero. Anoutstandingequests a locally issued request
that has been scheduled but coinpleted A READ hit completes when the read is executed; a READ
miss when the read response is executed; and a WRITE when the own-update is executed (see Executing
Requests, below). The outstanding request count can be represented using two bits per variable if each pro-
cessor is limited to one outstanding read and one outstanding write per VaAdtblmatively, since we
expect a processor to have only a few outstanding requests at any given time, the counts can be maintained
at a high granularity, e.g. on a page basis.

Except for requiring that the CC not destroy any cache copy to which it has outstanding requests, we do
not specify the replacement policy. Specific replacement policies may require additional state information.
The state information required to support a competitive policy, a strategy that destroys copies that are infre-



quently referenced but often updateanay subsume the outstanding request count.

Executing requests

When processquissues a request, its CC translates the request into one or more operationsgi-called
tiating operationsln the home update protocol, each request results in exactly one initiating operation. A
READ or WRITE miss issued Qyresults in the creation of a new cache copy. &hen a CC schedules
a miss, the CCreates a new cache copy by allocating a cache line. (Thdudrigealgorithm ensures that
any subsequergiccess to the cache line can oaonlly after the copy has been initialized.) If all lines are
allocated, the CC first destroys a local cache copy. A CC destroys its cofny sbnding aeleasemes-
sage tos's home. The home executes a release s removingp from v's directory. When the CC sends
the release, it marks the cache line unallocated.

Other actions taken by the memory system in executing a request depend on the request type.

READ miss

The CC generates a read on the accessed vaviallleme copy and schedules the sending of the read
(described below). On receiving the redd,home addg to the directory fow and sends a read

response messagepoThe CC executes a read response by assigning the value returned to the (new)
cache copy of and returning the value

READ hit

The CC generates a read on the cache copyantl schedules the sending of the read. (Recall that an
operation on the local copy is sent as a self-message and has a logical send and receive time even
though it does not enter the network.) At the logical receive time, the CC executes the read on its cache
copy, returning the value @

WRITE (hit or miss)

The CC generates a write @8 home copy and schedules the sending of the write. The write is sent to
v's home even ip has a cache copy afOn receiving the writay/s home assigns the value to the home
copy, add to the directory fox, if p is not already in the directory, and sends a write to every proces-
sor inv's directory (includingp). Writes sent by the home are usually callpdatesAn own-updates

an update received by a CC in response to its own write. A CC executes an updageassigning the
value transmitted by the update to its cache copy léthe CC has no cache copywft discards the
update. This case can occur if the CC recently released

Using isotach guarantees

The home update protocol, as described so far, is similar to other update protocols. The home update
protocol differs fromother update protocols in its use of isotachrgatees:

* The isotach invariant allows the sender of eadtrajon to control its logical receive time.

* Sending updates and read responses as predictable responses allows the definition of copy deltas, estab-
lishing the relationship between the cache and home copies of each variable.

Given the ability to control logical receive times and to relate cache copies to home copies, CCs can con-
trol the effective exadion time of requests by controlling the send times of the initiatiegabdijons.

To enforce sequential consistency, each CC applies the following rule in scheduling eachsendest:
the initiating operation so that its effective execution pulse is no less than that of the previous Téguest
effective execution pulse the pulse component of the efige exeaition time. A request with the same
effective execution pulse as the previous request will have a later effective exéowidoe to its rank
component.



lastR = 0 As shown in Fig. 3, the CC remembé&astR,the effec-
for each request R issued by p tive execution pulse of the last request it scheduled, and
if R is a READ hit sends the initiating operation for each new request so
xdist = dist(home,p) that its effective execution time is no less thasiR.If
else the current logical timenEw) plus the execution dis-
xdist = dist(p,home) tance of the initiating operation is less thastR the
sendp = max(lastR-xdist,now) CC sends the operation at the earliest time at which it
lastR = sendp; can be sent and have an effective execution pulse no less
Fig. 3. Scheduling algorithm. thanlastR Otherwise, the CC sends the operation
immediately.

Whenv's home executes a write @nit sends updates to the processonssmirectory as predictable
responses to the write. Sending updates as predicatable responses allows the assignment of deltas to cache
copies. Each cache copys updated exactl®(c) after the home copy. As will be shown below, sending
updates as predictable responses also ensures that all writes (the initiating write and any updates) resulting
from the same WRITE have the same effective execution time, with the result that each WRITE appears to
execute atomically. Although tlexecutiortimes of the operations may differ, thkectiveexecutiortimes
are the same because the delta of each copy exactly compensates for the time required to propagate the
value from the home.

Similarly, whenv's home executes a read frgmit sends theead rsponse t@ as a predictable
response. Sending thhead reponse as a predictable response means that the new copy createit kz
initialized with a “timely” value, i.e., the value of the home c@fy) pulses before. We will show that
sending the read response as a predictable response also means that the intialization of the new local copy
has the same effective exgion time as the initiating operation resulting from the READ miss. Since any
subsequent access to the local copy will have a later effectivetexetime, the new copy will not be
accessed until after it is initialized.

Timing Diagram
Fig. 4 shows the relationship between the logical send, receive, and effective execution times for each
operation generated by a READ hit, a READ miss, and a WRITE issued at prqrelsereffective exe-

cution time for each operation shown is the same, tifrReocessorp' andp” represent other processors in
the directory fow.

Iog{,ical d(o.h ) t+d(home,p") wrdh
- + ”

. read
READ hit | @ self-message @ send

event of
o » operation
READ miss  1n [ > receive/
execute
response > event of

operation

D

own-u

u| effective
exection

, time

update to p > of request

WRITE

Fig. 4. Timing diagram for operations



As shown in the figure, to achieve an effective execution timetloé read operation resulting from a
READ hit at processqy should be executed at tirhedist(home,p). Since thread resuing from a READ
hit is sent as a self-message, the read is sent and received at this sameiBifgome,p). The initiating
operation resulting from a READ miss or a WRITE should be serdiat(p,home) to achieve an effective
execution time of. Since an initiating operation resulting from a READ miss or a WRITE is executed on
the home copy, its execution time and effective execution times are the same. Any update or read response
sent by the home will have the same effective execution time as the initiating operation since the delta of
the copy on which the update is executed compensates for the propagation delay.

Under the home update protocol, a node can execute any number of requests concurrently, i.e., if the
processop submitsr requests, the local CC can schedule e#iquests so that they have the same effective
execution pulse and complete within d(p,home) + d(home,p) logical pulses. By contrast, under a typical
directory protocdl, ther requests must be handled serially, i.e., requestnot be sent until after request
i-1 completes.

6. Proof of Correctness

We prove the correctness of the protocol. We show that memory sybkterorrect by showing that
the result of any execution dhis the same as if it were executed on a memory syigteknown to be cor-
rect. Showing that a correct memory system can be substitutbthfithout changing the result of any
execution implies thatl is correct. In particular, we show that for any execuliaf any prograni on a
memory system that uses the home update protocol, there is an equivalent sequential Sefchtton
M', whereSis SC. Memory systeml' executes requests serially in some sequential order on a single-copy
memory, translating each request into a single operation. From the viewpoint of the memory sypgiem, a
gramis a sequence of requests, in the order in which they are submitted, exetdion of a progranP
is the sequence of operations resulting fidm the order in which they are executed. Execut®asdE
of P areequivalentif every READ inSreturns the same value as the corresponding READ in

DeriNiTION. For any reques, theeffective execution time ofiRthe effective execution time of the initia-
ting operation resulting from.

Lemma 1.The effective execution times of requests derived from execution E of program P define a total or-
der over the requests in P.

Proof. Since each logical time is a 3-tuple in which the second and third components serve as tie-breakers,
each initiating operation for a requestrhas a unique efféige exeation time. O

DeriNiTION. For any progran®, LetP' be the permutation & in which the requests i appear in increas-
ing order by their effective execution times.

DeriNniTION. Let Sbe the execution d? in which the requests id are executed on M' in the order in which
the requests appeari

Lemma 2. All operations resulting from the same request have the same effective execution time.

Proor Since a READ hit results in only one operation, the claim is trivially true for READ hits. A READ
miss at processaqrresults in an initiating read operatinexecuted on the home copy and a read re-
sponse&’ sent by the home @ Since the delta of a home copy is g(t) = t(r). Since the home sends
r' as a predictable response (1) = t(r) + dist(home,p) &(c), wherec is the copy created ptas a
result of the miss. Sina¥c) = dist(home,p) k() = t(r) = ().

The WRITE case is similar to the READ miss. A WRITE results in an initiating wraeatipnw exe-

cuted on the home copy and updates sent as predictable responses to each processor with a cache copy.
Since the delta of a home copy is Q,() = t(w). For any update sent by the home to procesgor



with copyc' of v in response tey, since the home sendsas a predictable responsend,(u) = t(w)
+ dist(home,p’) &(c'"). Sinced(c’) = dist(home,p’) ¢k (U) = (W) = g (w). O

DeriniTioN. For any READR on any variable (or for any read operatianresulting fromR), thelogically
preceding WRITHs the WRITE orv with the greatest effective execution time that is less than the ef-
fective exeation time of requedR (or operatiorr).

We assume each variable is written before it is read. Thus every READ has a logaxlying
WRITE. To model programs that read nitinlized variables, a sequence of WRITES, one for each vari-
able, can be prepended to each program, where each WRITE assigns an arbitrary value.

DeriniTioN. Copyc of variablev is valid at logical timet if a readr executed ot att returns the value as-
signed by the logically preceding WRITE fior

Since requests are executed seriall$g in order of their effective exation times, every READ i®
returns the value of the logically preceding WRITE. We show the equivalefcarafS by showing that
every READ inE is executed on a valid copy and therefore evétAB returns the same valueknandS
the value of the logically preceding WRITE.

Lemma 3.Every read to a home copy in E is to a valid copy.

ProoF. Letr be a read executed on home co@yt timet. Since {4 (r) =t, the logically preceding WRITE
forr is the WRITE with the gpatest effective execution time that is less th&mcec is the home copy
of v, all WRITEs onv in P are executed oo Sinced(c) is zero, each WRITE is executed oat its ef-
fective exection time. Thus, the value afatt is the value assigned by the logically preceding wite.

The reader may wish to refer to Fig. 5 while reading Lemma 4. The diagram in part a) shows the first
case discussed in the proof of Lemma 4 and the diagram in part b) shows the second case. In each diagram,
the top line represents events at the home copy of vasanid the bottom line, events at capat proces-
sorp. In each diagram, the thick gray line shows the trassion of the value of the logically preceding
WRITE toc.

6(ci
a) tassign<: teffx(s) 5((:1 b) teffx(s) < tassign P 5(Cl
0), A0),
home > home ok
copy 4 1ESPONSE 10 S copy _response to s
S S //update
cache \4 cache &
copy copy —>
at P cis teffl(s) at p ci teffx(tSJ _
assign
allocated tassign  temdr) t=t,(r) allocated terdr)  T=1,(N)

Fig. 5. Validity of cache copy c attime t.

LemmA 4. Every read to a cache copy in E is to a valid copy

ProOOF Letr be a read executed on cache copy processop at timet. The logically preceding WRITE
for r is the WRITE with the greatest effective execution time that is lesg thah =t - &(c). LetW be

the logically preceding WRITE far V be the value written by, andt,.,,be the time/ is assigned to

the home copy of. Since the effective execution time and execution time are the same for an operation
executed on a home cofpy,;,,is also the effective execution time\Wf and is, thus, less thagX(r).

We show thaV is the value ot at timet by showing thap receives/ beforet and does not discard or
overwrite the value before

Sincer is executed on cache copyc was already allocated whemas scheduled. Latbe the initia-



ting operation for the READ or WRITE that causds be allocated. The home foexecutes att,(s)
=t.4(S). Since the request that resultsis issued before the request that results loy the scheduling
algorithm (Fig. 3)I.u{S) < tesr,{I). There are two cases to consider:

1) If toesign<= terrdS), thenW is the last WRITE executed on the home copy thirought.(s). By def-
inition of W, there is no WRITE with an effective exgion time in the interval fror,ggg,to tep(r).
Since Ly (S) < (1), there is no WRITE with an effective execution time in the subintéjyal to
teir(S). Thusc =V att 4 [(S) andp receives/ as a response att.q[s) + 8(c). Sincetx(r) =t - 8(c),
toii(S) +0(c) <t. Thus,p receivesV beforet.

2) If tegpdS) < tassign the home fow sends/ top as an update operation at titgg,,, The home addsto

the directory fow att.«[s). Sincec is allocated whenis scheduledp does not send a release between
t(s) and the time it schedulesAfter p schedules, p cannot send a release wuantil afterr completes

at timet. Thus,p remains in the directory through tirhe dist(p,home)Sincet sy, <t, p is in the
directory forv att,.q,, Thus,p receives/ as an update operationtat;;,+ 8(C). Sincet,ggjqn< tepl) =
t-96(c),t +&(c) <t. Thus,p receivesV beforet.

Sincec is allocated at time(s), beforep receivesv, and is not destroyed until aftecompletes at time

t, p assigns/ to c and does not destraybefore time.

We show by contradiction th&¥ is the last WRITE executed arthrought. LetW be a WRITE execu-
ted onc afterW and no later thath BothW andW have an effective execution timé) pulses before
they are executed an Thus the effetive exeaition time ofW intervenes between the effective execu-
tion times ofW andr, contradicting the assumption thétis the logically preceding WRITE for O

assign

Lemma 5.Every READ in P returns the same value in S and E.

Proor Consider read resulting from READR, wherer is executed on copyin E. Since every copy is ei-
ther a home copy or a cache copy, by Lemmas 3 angs4alid wherr is executed. By Lemma 2and
R have the same effective ex¢ion time and the same logically preceding WRITE. TRusturns the
value of the its logically preceding WRITE ki Since requests are execute®iserially, on a single-
copy memory, in order by their effective ewéion times inE, R returns the same value$andE. O

LEmmMA 6. EXxecution S is SC

Proor Consider any two requed®andR issued by the same procesppwhereR is issued beforR®'. Let
op be the initiating operation fd® andop' be the initiating operation fd®'. By the scheduling algo-
rithm (Fig 3), the CC choosegdp') such thatt(op’) > t4(0op). ThusR' appears afteR in P' and is

executed afteRin S O
THEOREM. The protocol is correct

Proor By Lemma 5E andSare equivalent. By Lemma 6,s SC. Thus, the result of any execution on a
memory system using the home update protocol is the same as if it were executed on a single-copy
memory in some sequential order consistent with the program dider.

7. Atomicity

An isochronis a group of requests issued as a batch and executed atomically. The home update protocol
can be adapted to execute isochrons atomically by substituting the scheduling algorithm in Fig. 6 for the
algorithm in Fig. 3. In the revised algorithm, the CC schedules requests at the isochron granularity, i.e., it
schedules requests so that all requests in the same isochron have the same effective execution pulse. The
CC continues to enforce SC by scheduling each isochron so that it has aveedfemtition pulse no less



than the previously scheduled isochron.

We show that the requests in each isochron are executed atomically by showing that the requests occur
in the equivalent serial executi®as a contiguous subsequence. Since all requests in the same isochron
have the same effective execution pulse and are issued by the same processor as a batch, no other request
can have an intervening effective execution time. Thus all requests in the same isochron are ex@cuted in
atomically. Sincée andSare equivalent, isochrons are also executed atomically in

Since the requests in an isochron must be issued as a batch, isochrons cannot contain internal data
dependences. However, atomic actions with internal data dependences can be implemented using isochrons
together with a class of operations calgdit operation8.

lastiso = 0 lastiso tracks the effective execution pulse of the last isochron
for each isochron issued by the processor p
isodist = 0; at end of next loop, isodist = max xdist over all requests in isochron
for each request R in current isochron
if R is a READ hit compute xdist for initiating op
xdist = dist(home,p)
else

xdist = dist(p,home);
remember the xdist computed for each request in the isochron; the value is used below to determine send time

isodist = max(isodist,xdist); isodist is max execution distance over requests in isochron
lastiso = max(now + isodist, lastiso); choose effective execution time for isochron >= lastiso
for each request R in isochron schedule the initiating op for each request in the current
sendpulse = lastiso - xdist of R; isochron so thatg, (op) = isoeffx

Fig. 6. Scheduling algorithm extended to enforce atomicity.

8. Conclusions

In delta protocols, each copyhas adelta, d(c), equal to the number of logical pulses by which the copy
lags behind the home copy. The deltas allow nodes to control the order in which requests appear to execute
and facilitate proving delta protocols correct.

Delta coherence protocols use isotachrgatees to enforce SC with fewer restrictions on concurrency
than existing protocols:

* Requests can be pipelined. Existing protocols that enforce SC require that the execution of a request not
start until the execution of the previous request issued by the same processor cén@diesand
Hill have proposed an SC protocol that allows nodes to overlap the execution of a WRITE with another
request, with a restriction that the effect of the second request cannot be visible to any node until after
the WRITE is globally performéd) Delta protocols can overlap the execution of requests, requiring
only that a request not appear to complete before the previous request completes, i.e., that its effective
execution time not precede that of the previous request.

* No acknowledgements are required. Existing protocols use acknowledgements to inform a node when
its WRITE completes. Reliance on acknowledgements adds message traffic and, more importantly,
increases latency — a node delays executing a request not just until the completion of the previous
request, but until it receives acknowledgement of the completion. In delta protocols, a node determines
from local information the completion time of each request before it sends the initiating operation.

* Multiple processors can write the same variable concurrently. Invalidate protocols do not permit con-
current writes, though traditional update protocols do, subject to the restriction that writes are not
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immediately readable.

* Writes are immediately readable. In the absence of strong message ordering guarantees, existing proto-
cols that ensure SC cannot return the value of a read to a cache copy until the WRITE that supplied that
value is globally performed (i.e., until all cache copies are updated or invali#aliéd$ requirement is
easy to satisfy in invalidation protocols, but hard in update protocols.

* Processors can execute multiple requests atomically without locks. Most existing protocols that enforce
atomicity use two phase locking. Altetinly, transadbns can be timestamped and restarted if they
cannot be executed in timestamp order. Delta protocols allow a processor to access multiple variables
atomically without locks or restarts. Processors can execute isochrons without synchronizing or obtain-
ing exclusive access to the variablesessed.

Delta protocols offer a significantly higher level of concurrency than existing coherence protocols, while a
prototype isotach network implementation demonstrates that the cost of providing this additional concur-
rency is low.
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