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Wavelets on Planar Tesselations

Martin Bertram!-?

Abstract

Wa smracant n naw tascrhninna fnar 1 oy i 3
We present a new technique for progressive approximation and

compression of polygonal objects in images. Our technique uses lo-
cal parameterizations defined by meshes of convex polygons in the
plane. We generalize a tensor product wavelet transform to polyg-
onal domains to perform multiresolution anatysis and compression
of image regions. The advantage of our technique over conventional
wavelet methods is that the domain is an arbitrary tesselation rather
than, for example, a uniform rectilinear grid. We expect that this
technique has many applications image compression, progressive
transmission, radiosity, virtual reality, and image morphing.

Keywords: Compression Algorithms, Image Processing, Mul-
tiresolution Method, Tesselation, Wavelet

1 Introduction

Wavelet technigues [5, 19) are used for compression of images,
progressive transmission, morphing, and solving complex math-
ematical problems like the integration of a radiosity kemnel [9].
The advantage of the discrete wavelet transform over many other
techniques is linear computation time and sparse representation of
highly detailed functions on rectilinear domains. In this paper we
define waveieis on pianar icsseiations to aiiow for more fiexibie do-
mains that can be deformed for morphing images or video compres-
sion.

Wavelets defined on arbitrary topology (two-manifolds with arbi-
trary genus) have been introduced by Lounsbery [11, 12], and fur-
ther constructions were provided in [1, 2, 15, 16]. These construc-
tions are defined on subdivision surface schemes [4, 7, 13] that re-
fine an arbitrary polygonal or triangular mesh in a regular way and
thus converge rapidly to a limit surface. Signal processing algo-
rithms for completely irregular meshes were presented in [6, 10].

It has been shown by Stam that subdivision surfaces often can
be evaluaied analyiically at arbitrary parameter values [18). Thus,
they are an ideal tool for constructing continuous basis functions on
irregular domains like tesselations. Most subdivision schemes that
offer tangent plane continuity, however, assume that the parametric
domain is deformed by the same subdivision rules. For evaluation
of the corresponding basis functions at global parameter values, this
deformaticn needs to be inverted, which cannot be dene in a closed
form in general. For simpler subdivision schemes that generate ct.
continuous surfaces like linear or bilinear splines, it is straightfor-
ward to construct global closed-form parameterizations.

We use the generalized bilinear B-spline wavelets constructed in

MY oo lannia frrenn
[1] as basis functions on tesselations. We present a complete signal

progcessing algorithm based on this wavelet transform and outline
some applications.
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2 Parameterization

Before we describe our wavelet transform, we need to define a pa-
rameterization for bilinear subdivision generalized to tesselations
composed of convex polygonal regions. Such a tesselation is de-
fined by sets of vertices V', edges F, and convex polygons (faces)
F that completely cover an image domain I, e.g., the unit square
I = [0,1] x [0, 1], without overlapping each other. It is assumed
that the valence, i.e., the number of incident edges, of every vertex
is at least three, except for boundary vertices. The edges are line
segments between two vertices that encompass all convex combi-
nations of these, except for the vertices themselves, The faces are
the remaining open regions enclosed by vertices and edges. It is as-

sumed that every angle between two incident edges enclosing a face
is stricily less than 180 degrees.

Consider an initial tesselation

= {Vo, Eo, Fo}. @.n

We now define recursive refinement rules for a sequence of tessela-
tions T1,T%, ... The set Vi1 is composed of V;, the midpoints of
all edgesin E;, and the centroids of all faces in F;. The set E 4, is
composed of four edges incident to every midpoint of an edge in E
connecting this midpoint to the two adjacent vertices in V; and the
centroids of the two adjacent Faces in F;. The midpoints of bound-
ary edges have only three incident edges, since they have only one
adjacent face in F;. The set Fi;1 contains the remaining open sur-
face regions in the image plane. We note that all polygons in Fiyy
are convex quadrilaterals, provided that all polygons in F; are con-
vex, see Figure 1.

We define a local parameterization for the quadrilaterals in Fj.
This parameterization can be used for ail subsequent levels of sub-
division, since the quadrilaterals are uniformly subdivided. Foreach
face fx € F1, defined by points Py, g, P#,10, P&,11, Pi,o1 € Vi in
counterclockwise order, we define local coordinates u, v € [0,1] so
that every peint p in the closure of fx has the representation

P =(1-u){1—v)Proo + u(l~2)Pk,0

2.2
+ (1 — u)vpior + w¥Pxa1- 22

It is more difficult to compute the local coordinates « and » fora
point p = (z, y) in the global image domain I. We compute these
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Figure 2: Computing local parameters « and v for point p.

local coordinates in this way: first, the face index k needs to be de-

termined (k is not umquely defined if p lies on an edge or vertex);
second, we compute % from the z-component of

(p—po) x(p1— po) = 0, where
Po = (1 — #)Dkoo + #Pka0, and 23
p1 = (1 —2)pror + uPk1-

Equation (2.3) is a quadratic equation that has a unique solution
u € [0, 1], provided that the quadrilateral fi is convex. Once u
is determined, v can be computed from

= (1 —v)pa + vp1. 2.4

This process is illustrated in Figure 2. We note that computing the
local parameters u and v from the global ones is expensive, due to
the evaluation of a square root for solving the quadranc equanon
We therefore avoid using global parameters in our signal processing
algorithm. For resampling of an image represented by a fine tesse-
lation T, we suggest to use graphics hardware to render the quadri-

laterals of 73, with texture representing all finer subdivision levels.

3 QGeneralized Bilinear Wavelets

In the previous section, we have defined a parameterization of the
image plane based on recussive subdivision of a tesselation into
quadrilaterals. The quadrilateral regions resulting from the first sub-
division are refined by recursively cutting the parameter intervals
for v and v into halfs. In the following, we constructa lifted bilinear
wavelet transform based on this parameterization. A more detailed
description of the bilinear wavele{ construction, and also of bicubic
and biquintic equivalents, can be found in [1].

The images that we intend to represent in a wavelet basis can be
considered as continuous, bilinearly blended functions (7}, map-
ping the image domain into a vector {color) space. The dimension
of this vector space depends on the application and the color model
used, e.g., one dimension for grey-scale images, three for RGB im-
ages. When using the wavelet transform in rendering applications,
additional coordinates for opacity and z-buffering can be added. In
radiosity applications, the domain [ represents all surface compo-
nents in a scene and f describes the local radiance emanating from
them. Since our wavelet transform is applied independently yet in
the same way to all coordinates, the number of dimensions does not
have an impact.

3.1 One-dimensional Wavelets

Given a piecewise linear function defined by a list of control points,
the one-dimensional wavelet transform eliminates every second
point and thus provides a coarser representation of this function.

Figure 3: Lifting scheme for one-dimensional decomposition.

Figure 4: Wavelet and B-spline scaling function.

The eliminated points are replaced by accumulated differences from
which the function at its original resolution can be reconstructed
without loss. The coarsening can be interpreted as low-pass filtering
and computing the accumulated differences is equivalent to band-
pass filtering, since details of a certain frequency band are separated.
The entire process is called decomposition and is recursively applied
to the coarsest approximation of the function until a base resolution
is reached. Assuming that the computation time for every decompo-
sition step is linear in the number of transformed control points, the

Armntatinn tima nf tha antira trancfnrm i e L Lo 1 4oy =
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O(n).

Our linear wavelet decomposition is computed by two lifting op-
erations [20]. These are implemented as follows: we label every
second control point with e and the remaining ones with v. The
v points correspond to vertices in the next coarser level, and the e
points, located on edges, are replaced by accumulated differences.
The computation of the new values is defined by the two lifting op-
erations

-

L

e = e — Ve and

<|

(KR)]

L

v = v + ey,

B

where the operator T, retumns, for every point of type y, the arith-
metic average of all adjacent points of type z. The decomposition is
thus implemented by subtracting from every e point the average of
its two v neighbors and then adding to every v point one half of the
average of its (modified} e’ neighbors. This decomposition step is
illustrated in Figure 3. Decomposition is recursively applied using
the v’ points from the previous step as input.

The inverse of a decomposition step is called reconstruction, and
is defined by the lifting operations

v = V' — l?‘,l and

2 3.2)

! —
e =€ + Ve

Reconstruction is recursively applied starting with the coarsest rep-
racantatinn (haee lavel) and recursivelv rpnrnrlnrmg the finer ap-
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proximation levels. Assuming zero e’ points on each level, the re-
construction formula becomes a subdivision scheme that converges
to a continuous curve when applied ad infinitum. For our construc-
tion, the subdivision rules reproduce linear B-splines [8]. The ba-
sis functions of the wavelet transform can be visualized by pulling
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Figure 5: Lifting operations for two-dimensional decomposition.

a control Domt and by recursively applving the rcconstructmn for-
mula, The e’ points com:spond to wavelets and v’ points to scaling
Junctions (linear B-splines for our construction), see Figure 4. The
wavelet has two vanishing moments, since it has zero direct current

and is symmetric [1].

Given a hierarchy of tesselations, as defined in Section 1, a wavelet
transform can be defined based on the mesh !-llorarr-h\r Irnhn"\r a

LI

function is represented by a fine tesselation 7; and by a sample of the
image f{I} at every vertex in V;. These samples are labelled as v,
e, and f points, depending on the types of their associated vertices in
V; that correspond to vertices, edges and faces, respectively, in the
next coarser tesselation T;-;. A decomposition step transforms v
points into control points v’ on the next coarser level, j —1,and the

1 ot~
vande yvuua become wav&& coefficients xcl.ru:acuuus the miss-

ing detail. Using only the v’ points as samples associated with the
vertices in V.1 . decomposition is recursively applied to all levels
until base level § = 0 is reached.

The decomposition formula is defined by the three lifting steps
' —_— —
f =17+ v — 2,
, _ —
= e — V. + %f’e, and 3.3)
. — —
v v - i, 4+ &,

These operations are illustrated in Figure 5. It can be shown that
this decomposition formula is identical to a tensor-product constiuc-
tion of equation (3.1) on a uniform rectilinear grid [1]. The scaling
functions for this transform are thus bilinear B-splines in the regular
regions of the tesselation, Some basis functions obtained from this
transform are visualized in Figure 6.

The reconstruction formula is the inverse of each lifting opera-
tion, applied in reverse order. It is defined by

=
T !

o~
o
.
-

e =¢e 4 Vo — ;ter, and

= — Vp + 28p.

=hy

To enhance boundary treatment for the wavelet transform, all ver-
tices on image boundaries are transformed by the one-dimensional
decomposition and reconstruction rules. The four comer vertices of
the image are not modified by any rule.

The computation time for one decomposition step is linear in the
number of transformed vertices. Since only one quarter of these
vertices is transformed again on the next coarser level, the compu-
l.dl.l.Ull u:uc lUl lllC WdVC]Cl udllblull!l, stant llllg wuu n bdlllplﬂb ]b
O(n + in+ tn +..-) = O(n). Applications for our wavelet
transform are outlined in the next section.

Figure 6: Basis functions near an extraordinary vertex of valence
three. Scaling function (top right), e wavelet (bottom left), and £
wavelet (bottom usuu Dark regiﬁﬁs carrespﬁnd to iie‘g-at‘i'v‘e and
bright regions to positive function values.

To demonstrate that our wavelet transform works correctly, we
transformed the Cygnus Loop hubble image, courtesy of NASA

Ames Research Center. The image was resampled using a tessela-

tion Ty composed of 20 vertices and 14 faces. The finest tesselation
T: has 217,921 vertices, which is about 3.5 times the number of pix-
els of the original image (249 x 251), Figure 7 shows the resampled
image, the tesselation, our wavelet transform and reconstructions
using 10, 1, and 0.1 percent of the wavelet coefficients. Since the
coefficients are vector-valued (RGB values), we use the Euclidean
lcugul for ucauunums For pi‘GgI‘ESSI'v'E transmiission the coefficients
can be sorted by decreasing absolute values in expected linear time
by using a hash table. For lossless compression, our wavelet trans-
form can be implemented in integer arithmetic [3]. The integer-

valued coefficients have low expected modulus and can be com-

pressed by arithmetic coding [14].
Some of the most important applications of our wavelet trans-
form are:

¢ Video compression. Video data can be compressed in a
straightforward way by applying a trivariate tensor product
wavelet transform, Correlation in time however canham

e, , can be much

better exploited when applying a wavelet transform defined on

a grid that is deformed or moves with the objects. Our wavelet

iransform has ihereiore a greai potential to improve compres-
sion rates fOl' movmg 1maggs

¢ Image Morphing. Morphing aigorithms typicaliy deform ob-

mctn and compute the intermediate i image rf-g-lnnc hv hlandine
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two images. Thls blending operation can be improved by per-
forming it in the range of the wavelet transform. This treat-
ment would blend the individual frequency bands rather than
pixel values resulting in a much more realistic image., Our
wavelet transform can be applied to polygonal regions that are
deformed simultanoulsy with the blending process.

¢ Radiosity. Occlusion of objects causes radiance functions to
be discontinuous on smooth surfaces. These discontinuities
ucnnc lﬂbbclduul‘ls on lﬂC sunacc rcglons tha[ provwe a natural
parameterization for the radiance function. Since our wavelets

have two vanishing moments (in the one-dimensional case),



they form an ideal basis for efficient and stable integration of
radiosity kemels.

o Scattered Data Approximation. Hierarchical Yoronoi dia-
grams for approximation of scattered data are described in
171, Starting with a coarse Voronoi-based approximation, our
more efficient wavelet transform can be used for further mul-
tiresolution analysis. The underlying subdivision scheme can
also be used to define basis functions on Voronoi tesselations.,

[ = o
ot s

We have presented a technique for multiresolution analysis of func-
tions defined on planar tesselations. Our wavelet transform has a
wide range of applications that still need to be explored. Future
work will be directed at constructing wavelets and subdivision sur-
faces of higher degree of continuity, e.g., tangent-plane continuous
representations, with local parameterizations that can be evaluated
in a closed form.
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Figure 7: Cygnus Loop hubble image, courtesy of NASA Ames Research Center. Top left: original, resampled image (217,921 samples);
top right: tesselation Tg and three levels of subdivision; middie left: our wavelet transform based on tesselation T (the coefficients are scated
by 10 and a grey level is added); middle right: reconstruction from 10 percent of coefficients; bottom left: reconstruction from 1 percent of
coefficients; bottom right: reconstruction from 0.1 percent of coefficients.



