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Wavelets on Planar Tessellations

Martin Bertrom1,2 Mark A. Duchaineaul Bemd Hamann2 Kenneth 1. Joya

Abstrsct

We present a new technique for progressive approximation and
compression of polygonal objects in images. Our technique uses lo-
cal parameterizations defined by meshes of convex polygons in the
plane. We generalize a tensor product wavelet transform to pOlyg-
onal domains to perform mukiresolution analysis and compression
of image regions. The advantage of our technique over conventional
wavelet methods is that the domain is an arbitrary tessellation rather
than, for example, a uniform rectilinear grid. We expect that this
technique has many applications image compression, progressive
transmission, radiosity, virtual reality, and image morphing.

Keywords: CompressionAlgorithms, Image Processing, Mul-
tiresolutionMethod, Tessellation, Wavelet

1 Introduction

Wavelet techniques [5, 19] are used for compression of images,
progressive transmission, morphing, and solving complex math-
ematical problems like the integration of a radiosity kernel [91.
The advantage of the discrete wavelet transform over many other
techniques is linear computation time and sparse representation of
highly detailed functions on rectilinear domains. In this paper we
define wavelets on planar tesselaticms to allow for more flexible do-
mains that can be de fot’med for morphing images or video compres-
sion.

Wavelets defined on arbi~ topology (two-manifolds with arbi-
trary genus) have been introduced by Lounsbery [11, 12], md fur.
ther constructions were provided in [1, 2, 15, 16]. These constmc-
tions are defined on subdivision surface schemes [4,7, 13] fhat re-
fine an arbitrary polygonal or triangulw mesh in a regular way and
thus converge rapidly to a limit sutface, Signal processing algo-
rithms for completely irregular meshes were presented in [6, 10].

It has been shown by Stare that subdivision surfaces offen can
be evaluated analytically at arbitrary pa’ameter values [18]. Thus,
they are an ideal tool for constructing continuous basis timctions on
irregular domains like tessellations. Most subdivision schemes that
offer tangent plane continuity, however, assume that the parametric
domain is deformed by the same subdivision rides. For evaluation
of tbe corresponding basis functions at global parameter values, this
deformation needs to be inve~d, which cannot be done in a dosed
form in general. For simpler subdivision schemes that generate C“ -
continuous surfaces like linear or bilinear splines, it is stmigbt for-
ward to construct global closed-form pammeterizations.

We use the generalized bilinear B-spline wavelets constructed in
[1] as basis functions on tessellations. We present a complete signal
processing algorithm based on this wavelet transform and outline
some applications.
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Figure 1: Subdivision process.

2 Psrsmeterizstion

Before we describe our wavelet transform, we need to define a pa-
rametrization for bilinear subdivision genemlized to tessellations
composed of convex polygonal regions. Such a tessellation is de-
fined by sets of vertices V, edges E, and convex polygons (faces)
F that completely cover an image domain I, e.g., the unit square
I = [0,1] x [0, 1], without overlapping each other. It is assumed
that the valence, i.e., the number of incident edges, of every vertex
is at least three, except for boundmy vertices. The edges are line
segments between two vertices fhat encompass all convex combi-
nations of these, except for tie vertices themselves. The faces are
the remaining open regions enclosed by vertices and edges. It is as-
sumed that every angle between two incident edges enclosing a face
is strictfy less than 180 degrees.

Consider an initiat tessellation

T“ = {VO,EO,FO]. (2.1)

We now define recursive refinement rules for a sequence of tessell-
ations T,, T,, . . . The set W+, is composed of V,, the midpoints of
all edges in Ei, and the centmids of all faces in F;. The set E;+, is
composed of four edges incident to every midpoint of an edge in E;
connecting this midpoint to the two adjacent verfices in Vi and the
centroids of the two adjacent Faces in F,. The midpints of botmd-
ary edges have only three incident edges, since they have only one
adjacent face in F,. The set F,+, containstie remainingopensur-
face regions in the image plane. We note that all polygons in F;+ I
are convex quadrilaterals, provided that SWpolygons in F, are con-
vex, see Figure 1.

We define a local mrameterization for the auadrilatemfs in F,.
This parameterizatio; can be used for all subs~quent levels of sub-
division, since the quadrilaterals are uniformly subdivided. For each
face fk c F~, defined by points pk,,., Pk,Io, pk.,], Pk,o, E v, in
counterclockwise order, we define local coordinates u,. E [0, 1] so
that every point pin the closure of fkhas the representation

p = (1 – U)(l – .)pk,oo + U(I – v)pk,m

+ (1 – u)vpk>m + SUpk>,,.
(2,2)

It is more difficult to compute tie local coordinates u and v for a
point p = (z, y) in the global image domain I. We compute these
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Figure 2 Computing local parameters u and v for point p.

local crmrdinates in this way; first, the face index k needs to be de-
termined (k is not uniquely defined if p lies on an edge or verlexh
second, we compute u fmm the z-component of

(P-Po) x (PI - PO) = O, where

P. = (1 – u) Pk,oo + upk,m, and (2.3)

P] = (1 – *) Pk,O1 + uPk,ll.

Equation (2.3) is a quadratic equation that has a unique solution
u c [O, 1], provided that the quadrilateral f~is convex. Once u
is determined, u can be computed from

p = (1–?J)PO+.P,. (2.4)

This process is illustrated in Figure 2. We note that computing the
local parameters u and. fmm the global ones is expensive, due to
the evaluation of a square mot for solving the quadratic equation.
We therefore avoid using global parameters in our signal processing
algorithm. For resampling of an image represented by a fine tesse-
Iation T,, we suggest to use graphics hardware to render the quadri-
Iatemts of T,, with texture representing all finer subdivision levels.

3 Generalized Bilinear Wavelets

In the previous section, we have defined a pammeterization of the
image plane based on recursive subdivision of a tessellation into
quadrilaterals. The quadrilateral regions resulting from the first sub-
division are refined by recursively cutting the parameter intervals
for %and v into halfs. In the following, we construct a lifted bilinear
wavelet transformbased on this parametrization. A more detailed
description of the bilinear wavelet construction, and also of bicubic
and biquintic equivalents, can be found in [I].

The images that we intend to represent in a wavelet basis can be
conside~d as continuous, bilinearly blended functions f(I),map-
ping the image domain into a vector (color) space. The dimension
of this vector space depends on the application and the color model
used, e.g., one dimension for grey-scale images, three for RGB im-
ages. when using the wavelet transform in rendering applications,
additional cmrdinates for opacity and z-buffering can be added. In
radiosity applications, the domain I representsall surface cc,mpo-
nents in a scene and f describes the local radiance emanating from
tiem. Since our wavelet transform is applied independently yet in
the same way to all coordinates, the number of dimensions does not
have an impact.

3.1 Ona-dimensional Wavelets

Given a piecewise linear function defined by a list of control points,
the one-dimensional wavelet transform eliminates every second
point and thus provides a coarser representation of this function.

v“

●

-
veve

Figure 3: Lifting scheme for cmedimensional decomposition,

-& A
Figure 4 Wavelet and B-spline scaling function

The eliminated points are replaced by accumulated differences from
which the function at its original resolution can be reconstntcted
without loss. The coarsening can be interpreted as low-pass filtering
and computing the accumulated differences is equivalent to band-
pass filtering, since details of a certain frequency band are separated.
The entire process is called decomposition and is recursively applied
to the coarsest approximation of the function until abase resolution
is reached. Assuming that the computation time for every decompo-
sition step is linear in the number of transformed control points, the
computation time of the entire tnmsfonn is O(n+ in+ ~n+. . . ) =
o(n).

Our linear wavelet decomposition is computed by two lifiing op-
erations [20]. These are implemented as follows: we label every
second control point with e and the remaining ones with v. The
v points correspond to vertices in the next coarser level, and the e
points, located on edges, are replaced by accumulated differences.
The computation of the new vatues is defined by the two lifting op-
erations

e’=e —Ve and
(3.1)

“’ = “ + ;7”,

where the operator TV returns, for every point of type y, the arith-
metic average of all adjacent points of ty~ z. The decomposition is
thus implemented by subtracting from every e point the average of
its two v neighbors and then adding to every v point one half of the
average of its (modified) e’ neighLmm. This decomposition step is
illustrated in Figure 3. Decomposition is recursively applied using
the v’ points from the previous step as input.

The inverse of a decomposition step is called reconstruction, and
is defined by the lifting opmttions

v = V’ — ;~w, and
(3.2)

e = e’ + v.,.

Reconstmction is recursively applied starting with the coarsest rep-
resentation (base level) and recursively reproducing the finer ap-
proximation levels. Assuming zero e’ points on each level, the re-
construction fomuda becomes a subdivision scheme that converges
m a continuous curve when applied ad infinitum. For our constmc-
tion, tbe subdivision rules reproduce linear B-splines [8]. The ba-
sis functions of the wavelet transform can be visualized by pulling
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Figure 5: LiRing operations for twodimensional decomposition.

a controlpoint andby ~cursively applyingthe reconstmctionfor-
mula.The e’ pointscorrespond to wavelets and v’ points to scaling
.fiznctions (linear B-splines for our constmction), see Figure 4. The
wavelet has two vanishing momems, since it has zero direct current
and is symmetric [1].

3.2 Wevelets on Teseelstions

Given a hierarchy of tessellations, as defined in Section 1, a wavelet
transform can be defined based on the mesh hierarchy. Initially, a
function is represented by a ftnetesselation T, and by a sample of the
image f(l) at every vertex in V,. These samplesare Iabelled as v,
e, and f points, depending m the types of their associated vertices in
V, that correspond to vertices, edges and faces, respectively, in the
next coarser tessellation T,-,, A decomposition step transforms v
points into ccmtml pints v’ on the next coarser level, j – 1, and the
v and e points become wavelet .meficients representing the miss-
ing detail. Using only the v’ pointsas samplesassociatedwith the
veflices in V,-,, decomposition is recursively applied to all levels
until base level j = O is reached.

The decompmition formula is defined by the three lifting steps

f’=f+vf– 2&,

e’ = e — V. + ~~e, and (3.3)

V’=V—:F. +7V.

These opa’ationsarc illustratedin Figure 5. It can be shown that
this decomposition fonmda is identical to a tensor-product consttuc.
tion of equation (3.1) on a uniform rectilinear gdd [1]. The scaling
functions for this transform me thus bilinew B-splines in the regular
regions of the tessellation. Some basis functions obtained from this
transform are visualized in Figure 6.

The reconshuction fommla is the inverse of each IiRing opera-
tion, applied in reverse order. It is defined by

v = v’ + y“, —a“, ,

e = d + V=, _ +F=, , a“d (3.4)

f = F – iif, + 2zr!.

Toenhance boundary treatment fortbe wavelet transform, all ver-
tices on image boundaries are transformed by the onedimensional
decomposition and reconstruction rules. The four comer vertices of
the image are not modified by any role.

The computation time for one decomposition step is linear in the
number of transformed vertices, Since only one quarter of these
vertices is transformed again on the next coarser level, the compu.
tation time for the wavelet transform, starting with n samples, is
O(rt + #a + An + . ..) = O(n). Applications for our wavelet
transform are outlined in the next section.

Figure 6 Basis functions near an extraordinary vertex of valence
three. Scaling function (top right), e wavetet (bottom left), and f
wavelet (bottom right). Dark regions correspond to negative and
bright regions to positive function values..

4 Applications

To demonstrate that our wavelet tnnsfonn works correctly, we
transformed tbe Cygnus Loop bubble image, coufiesy of NASA
Ames Research Center. The image was resampled using a tessell-
ationT. composed of 20 vertices and 14 faces. The finest tesselaticm
T? has 217,921 venices, which is about 3.5 times the number of pix-
els of the original image (249 x 251). Figure 7 shows the resampled
image, the tessellation, our wavelet transform and reconstructions
using 10, 1, and 0.1 percent of the wavelet coefficients. Since the
coefficients are vector-valued (RGB values), we use the Euclidean
length for tresholding. For progressive transmission the cm fficients
can be sotted by decreasing absolute values in expected linear time
by using a hash table. For Iossless compression, our wavelet tmns-
fonn can be implemented in integer arithmetic [3]. The integer-
vahted coefficients have low expected modulus and can b-s com-
pressed by arithmetic cwling [14].

Some of the most important applications of our wavelet trms-
fonn are

● Video compression. Video data can be compressed in a
stmightfomwwct way by applying a trivariate tensor product
wavelet mansform, Correlation in time, however, can be much
better exploited when applying a wavelet transform defined on
a grid that is deformed or moves with the objects. Our wavelet
transform has therefore a great potential to improve compres-
sion rates for moving images,

● Image Mmphing. Morphing algorithms typically deform ob-
jects and compute the intermediate image regions by blending
two images. This blending operation can be impmved by per.
forming it in the range of the wavelet transform This treat-
ment would blend the individual frequency bands rather than
pixel values resulting in a much more realistic image. Our
wavelet transform can be applied to polygonal regions that are
deformed simukanoulsy with the blending process.

● Radiosity. Occlusion of objects causes radiance functions to
be discontinuous on smooth surfaces. These discontinuities
define tessellations on the surface regions that provide a natural
parametrization for the radiance function. Since our wavelets
have two vanishing moments (in the onedimensional case),
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they form an ideat basis for efficient and stable integration of
radiosity kernels.

. Scattered Data Approximation, Hierarchical Voronoi dia-
grams for approximationof scattereddata are described in
[17]. Starting with a coarse Vomnoi-based approximation, our
more efficient wavelet transform can be used for further mul-
tiresolution analysis. The underlying subdivision scheme can
also be used to define basis functions on Vorcmoi tessellations.

5 Conclusions

We have presented a technique for multiresolution analysis of func-
tions defined on planar tessellations. Our wavelet transform has a
wide range of applications that still need to be explored. Future
work will be directed at constmcting wavelets and subdivision sur-
faces of higher degree of continuity, e.g., tangent-plane continuous
representations, with local pammeterizations that can be evaluated
in a closed form.
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Figure 7 Cygnus LOOPbubble image, courtesy of NASA Ames Research Center. Top Iefk original, resampled image (217,921 samplesh
top right tessellation T. and three levels of subdivision middle letl our wavelet transform based on tesseladon T? (the coefficients are scaled
by 10 awl a grey level is addedh middle right reconstruction from 10 Wment of coeflicienw bottom left reconstruction from 1 petcent of
coefficient bottom right reconstmction from 0,1 percent of coefficients.


