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Abstract

It is presented a comparative performance study of a
coarse grained parallel neural network training code, iln-
plemented iD. both OpenMP and MPI, standards for
shared memory and message passing parallel program-
ruing environments, respectively. In addition, these ver-
sions of the parallel training code are compared to an
implementation utilizing SHMEM the native SGI/CRAY
environment for shared memory programming. The mul-
tiprocessor platform used is a SGI/Cray Origin 2000 with
up to 32 processors. It is shown that in this study, the
native CRAY environment outperforms MPI for the en-
tire range of processors used, while OpenMP shows better
performance than the other two environments when us-
ing more than 19 processors. In this study, the efficiency
is always greater than 60% regardless of the parallel pro-
gramming environment used as well as of the number of
processors.

*Work partially supported by CONACYT-3155P and
CRAY-UNAM SC010399 projects. The work by Ulf R. Haueb
utte was performed under the auspices of the U.S. Department
of Energy by the Lawrence Livermore National Laboratory un-
der Contract W-7405-Eng-d8.

1 Introduction

In the last decade there has been a large research ac-
tivity in neurocontrollers for a wide range of nonlin-
ear applications. The ability of Artificial Neural Net-
works (ANN’s) of apt)i’oximating nonlinear Inat)pings,
have given the engineering community the possibility
of designing nonlinear controllers that cannot be syn-
thesized with traditional control techniques [Vemuri
1992]. However, although different convergence ac-
celeration methods as well as several types of ANN’s
can be used, the high computing costs of their train-
ing procedures is still considered a major obstacle.
Parallel computing [Foster 1994] is another alterna-
tive to expedite training of ANN’s that can be used
in addition to those previously mentioned. In this
regard two flmdamental paradigms for parallel.soft-
ware development exist: the message passing and the
shared memory models. However, until recently, a

parallel code (independent of the underlying model)
developed using the native directives of one particular
multiprocessor computer had to be extensively modi-
fied to run on a different machine. To overcome these
obstacles, portable standards for shared memory and
message passing environments are been developed by
consortia comprised of vendors and research institu-

tions: OpenMP and MPI, respectively [OpenMP Fo-
ruin, Dagum et al. 1998, MPI Committe], In particu-
la.r shared memory parallel programming models are
now emerging as a. serious competitive environment



to message passing, due to the appearance of scalable
shared ulelnory multiprocessors pla.tfornm with em-
bedded hardware support for cache coherence [Culler
et a,1. 1999].

In this work we present a comparative performance
study, utilizing a neural network training code, which
has been implemented in both OpenMP and MPI.
In addition, the OpenMP and MPI versions of the
parallel training code are fl~rther compared to an im-
plementation utilizing the native SGI/CRAY envi-
ronment for shared memory programming, SHMEM
[Feind 1995]. In what follows we briefly describe the
main chm’acteristics of these enviro,unents.

¯ OpenMP is a standard developed for shared
memory multiprocessor computers. In these
platforms every processor has direct access to
the memory of every other processor which al-
lows them to directly load or store any shared
address. It is, in essence, a set of compiler di-
rectives to express shared-memory parallelism;
it allows incremental parallelization of exist-
ing sequential codes and can be used tbr loop-
level and for coarse grained parallelism. It, al-
lows the programmer the possibility of declar-
ing any pieces of men~ory as private to each
processor which greatly simplifies the develop-
ment of parallel programs. Further, it may be
used by application progranmmrs who want a
quick but not very effective parallelization. It is
the general consensus among researchers in this
field that OpenMP environment is more relevant
when used in: codes with large shared &~tabases,
which needed to be stored only once per node in
OpenMP rather than once per processor in MPI;
codes with tasks that actually can benefit from
loop-level parallelism in addition to domain-level
parallelism; and in MPI-limited facilities.

¯ MPI (Message Passing Interface), also an in-
dustria.1 standard, is a message passing environ-
ment which assumes a processor cluster with
distributed memory able to work cooperatively.
This set of processors runs concurrently copies
of a single progrmn and use MPI library calls for
sending and receiving messages between proces-
sors a.s well as for tasks synchronization. How-
ever, MPI which is intended mainly for coarse
grained parallelism, has the disadvantage that
the program must be entirely decomposed for
parallel execution, and there exist no incremen-
tal way to parallelize an application. Neverthe-
less, in additi(m to be an industrial standard,
another inajor advantage consist in the fact that

it can be used efficiently in a multiprocessor
computer or in a cluster of workstations , and
furthermore, it can coexists with OpenMP and
SHMEM. Hence, it allows the possibility of de-
veloping efficient parallel programs able to run in
chlsters of shared melnory multiprocessors com-
puters (i.e. SMP’s), using OpenMP within each
individual system and MPI whenever inter-SMP
communication is required.

SHMEM, on the other hand, is a SGI/CRAY
native set of routines that take advantage of
the logically shared memory in systems such as
the Origin2000 and the CRAY TaD. A logically
shared memory is one which allows any proces-
sor unit in a multiproeessor platform to access
the memory of any tile other processor without
tile direct involvement of this later unit. It con-
sists of data passing library routines, similar to
those used in message passing, designed to maxi-
mize bandwidth and minimize data latency, thus
minimizing the overall colnputation overhead of
data transfer requests. It is intended exclusively
for coarse grained parallelism and although, in
contrast with MPI, it contains only a. limited
number of routines, these are enough for a la.rge
mm~ber of different applications.

In order to compare these three environments, we
limit our study to coarse-grained parallelism which is
based on tile domain decoinposition approach. In this
technique, tile parallel (:ode goes through essentially
the same steps as tile sequential (:ode and use a set of
parallel directives to perform data transfers and syn-
chronization between processors. The study exploits
a neural network training code developed for the coil-
trol of dynamical systems which uses Radial Basis
Neural Networks (RBNN’s) are an alternative type
of ANN possessing the best representation property
[Pogio et al. 1990], have higher convergence speeds
than the conventional feedforward multilwer neural
networks, and under some conditions in the train-
lug set they are also free of local minima. This code
makes use of RBNN’s composed of Gaussian nodes in
tile hidden layer and sigmoidal units in tile outtmt.

The physical system under consideration is a zero
dimensional tokamak fusion reactor model with the
design parameters of the ITER-EDA group. It is de-
sired to stabilize this system at subignited nominal
operation conditions for a wide range of energy con-
finement times. The plasma is composed by 50:50
DT, helium ions, a small fl’action of high-Z impuri-
ties and electrons, and it is assumed that all particles
share the same temperature at all times. Heating
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Figure 1: Radial basis neural network-dynamical sys-
tem configuration.

takes place by tile thermalization of tile all)ha parti-
cles produced by fllsion; losses are taken into account
by bremsstrahlung radiation and by transport mech-
anisms through the energy confinement time. The
stabilization is performed with a feedback control law
using a RBNN, in which the input is constituted not
only by the current values of the state variables trot
also by tile energy confinement time, as shown in Fig
1. The output of the network, i.e. tile control actions
include the modulation of the DT refueling rate, the
injection of a neutral He-4 beam and an auxiliary
heating power constrained to take vahles between a
minimum and a maxinmm levels. [Vitela et al. 1998,
Vitela et al. 1999a,].

The study was performed on the SGI/CRAY Ori-
gin 2000 multiprocessor platform located at, UNAM
during dedicated user operation, where access to the
entire system by other users was disabled; This sys-
tem is configured as two independent modules, one
with 8 and tile other with 32 processors for a total of
40 processors. All processors in the system are 195
MHz MIPS R10000 processors, each of which has a 4
MB secondary cache and 512 MB of memory [UNAM
www document].

2 Parallel Neural Network Al-
gorithm

In previous works tile authors discussed in detail the
development of a parallel neural network training
code for control of dynamical systems developed with
the MPI message t)assing environment [Hanebutte et
al. 1998, Vitela et al. 1999b]. A performance analysis
compared three different load distribution schemes:
the block, the cyclic, and a predictive bin-packing
load assigmnent. It was concluded that the predic-
tive bin-packing algorithln utilizing an estimate of the

work load based ou a sliding average over the last
five training iterations yields higher speedups and ell
ficieneies than the other two schemes. This is due
to the fact that not only the total work load can not
be uniformly distributed among the processors 1)ut in
addition it can not be known a priori. Hence in tile
present study we shall use only the predictive bin-
packing scheme which distribute quasi-optimally the
work load estimated using the actual load generated
over tile last five training iterations.

As discussed in previous works the ANN’s train-
ing is based in the minimization of an error g, which
is produced by independent contril)utors, i.e. g 

M
~,,, l g’,~, generated by the individual trial trajecto-
ries generated by the the algorithm, using the ANN-
dynamical system configuration shown in Fig. 1. It
is important to point out that in the present work
besides using a RBNN instead of a standard feedfor-
ward ANN, we also generate tile dynmnical system
trajectories using a 4-th order Adams Bashforth in-
tegration scheme instead of the simple Euler method
used previously. TILe parallelization strategy Is based
on the fact that the gradient of the total error Vcc,

which is needed in the numerical search for the min-
imum, is the sum of the gradients of the individual
errors of each of the//4 independent trajectories,

M

vE = }2 vE,, 
77Z~ [

Thus, assuming that we have a set of P processors,
labeled p = 0, 1,... P - 1, which are available to con-
tribute to the calculation of V~’, given a load balance
scheme, the tbllowing parallel algorithm is devised,

-I In OpenMP only one process exist during Steps
1 - 3 below

¯ Step 1: Task assigned to processors p = 0 ( also
called root): Randomly select the initial values
of the set of weights that specify- the NN, and use
MPI (SHMEM) libra.ry calls to broadcast these
values to all the other P - 1 processors.

¯ Step-2: Task assigned to processor p = 0: Di-
vide an admissible region of the phase-space in
a number M of (:ells.

¯ Step 3: Task assigned to processor p = 0: Select
M initial states by random sampling each one
of the cells in phase space. Use MPI(SHMEM)
library calls to broadcast these states to all the
other P - 1 processors.

OpenMP creates a parallel region with P proces-
sors to perform tasks in Steps 4 - 6.



¯ Step 4: According t,o a given load distribution
scheme each of tile processors is assigned a subset
of the M initia.1 states. For each initial state
the corresponding trajectories are generated. A
record of the maximum number of t, iu:e steps it:
each trajectory is made and will be used by tile
load balance scheme at tile beginning of this Step
it: fllture iterations, as will be discussed flu’ther
below.

¯ Step 5: Using dynamic baekpropagation [Pieh~
1994] each of the P processors calculates and
stores, the gradient of the individual error gm
associated with the subset of the M trajecto-
ries that were assigned to the processor by the
load distribution scheme. Each process deter-
nfines the number of trajectories which satis(y
the convergence criterion,

¯ Step 6: A test for convergence in each of their
corresponding subsets is performed by each pro-
cessor and the results are added up and sent, us-
ing MPI (SHMEM) reduction calls, to processor
p = 0, which determines whether or not global
convergence has been achieved. If the global con-
vergenee criteria is satisfied one should stop; oth-
erwise proceed to the next step. In OpenMP this
procedure is automatically done because the cor-
responding variable is declared a reduction vari-
able and thus at the end of the parallel region
the partial values are added up.

In OpenMP Step 7 below is not necessary since
the corresponding variable was defined as shared.

¯ Step 7: Using the MPI (SHMEM) global sum
operation, the partial gradient of the errors VEto,
associated to each individual cell, are share by all
P processors.

OpenMP (:loses the parallel region and the mas-
ter process proceeds with Steps 8-9.

¯ Step 8: Each processor proceeds to determine,
by adding these components in the same or-
dered se(luenee, the gradient of the total error

MVg = Y~,,,-I Vg,,~ avoiding thus the differences
due to roundoff errors, occurring when no care is
taken in the order in which the individual terms
are added. This ensures us that the results will
be independent of the number P of processors
involved it: the computation since the sum of
floating point mnnbers is not an associative op-
eration.

¯ Step 9: All processors individually use Vg to

determine the new conjugate gradients direction,
and

OpenMP opens once more a parallel region with
P processors to perform together Step 10 below.

¯ Step 10: The processors use the conjugate di-
rection and search for the minimmn along this
direction, in a cooperative fashion.

OpenMP closes the new parallel region and the
master process continues with the rest of the
steps.

¯ Step 9: Updating of the weights is done in each
processor.

¯ Step 10: Repeat steps 3-9 until the training of
the NN is successfully completed, i.e. when the
entire set of M trajectories, each of which starts
fl’om a. different cell, reaches the target zt within
the error range e.

It: Fig.2 we show the flow diagratn of the parallel
code described above. The locations where commu-
nications are required in the message passing envi-
ronments but not ix: the shared memory models are
pointed out.

3 Performance analysis

For the problem we consider here, the phase space
was divided into 108 cells. These cells covet’ with 27
three-dimensional cubes the allowable perturbation
region around the nonfinal operating values of the
electron density, the fl’a.ction of helium ash and the
plasma temperature defining the state of the ther-
monuclear system we are concerned here; in addition
the range of interest of the energy confinement time
was divided in 4 intervals, from where 4 x 27 differ-
ent transient trajectories were generated. Thus the
granularity of the problem is restricted to a maxi-
mum of 108 processors. In this particular problem
the code converges in 151 iterations; however for the
purposes of keeping the computing time in this study
within reasonable values, we restricted the number of
iterations to only 30.

We performed a preliminary theoretical study in
which the load balance associated with each t, rajec-
tory was estimated as proportional to the number of
time steps contained in it. Since this number can only
be known after the trajectory was actually generated,
we used a sliding average bin packing load distribu-
tion scheme using the last five iterations of the algo-
rithm. Thus, the assumed linear relationship between
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Figure 2: Plow diagram of the parallel code showing
locations with special communication requirements;
the * show communications not required in shared
memory.

the work load and the number of time steps in the
trajectories provide us with a reference framework,
although communications and computations require-
ments like the integration scheme used to generate
the trajectories introduce nonlinear effects which im-
pede these theoretical predictions. The complete 151
iterations, required 5876 seconds for the entire run,
and the fl’action of the time spent in the intrinsically
sequential part of the code is approximately 0.2% .
The high percentage of the total time doing paral-
lelizable work show that the parallel code described
in the previous section may significa.ndy reduce the
training time of the R.BNN.

The performance of the code was measured by the

speed-up and the parallel efficiency. The speed-up
is defined as the ratio between the execution time
required by one processor and the time required by p
processors; the parallel efficiency on the other hand
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Figure 3: Speed-up’s obtained with the three par-
allel environments and the estimated prediction as
discussed in the text¯

measure the fl’action of the total execution time of all
i)rocessors which is spent t)erforming computations.

In Figs. 3 a.nd 4 we show the speed-up and the
efficiency of the entire code obtained by timing the
first 30 iterations as flmction of the number of pro-
cessors; the figures include also the theoretical esti-
mation discussed above. It is observed that SHMEM,
a shared memory data passing environment, clearly
outperform MPI in the entire range of processors, flu-
thermore it shows a. similar or a slightly better perfor-
mance than OpenMP when using 18 processors or less
and is outperformed by OpenMP afterwards. MPI on
the otlter hand shows a similar behavior to OpenMP
for small nmnber of processors but it is outperformed
when using more than 14 processors. The three pro-
gramming environments yield efficiencies higher than
60%, for the entire range of processors available.

4 Conclusions

A comparative study of shared memory and mes-

sage passing environments was performed using MPI,
OpenMP and Shmem in a coarse grained parallel
RBNN training code for control of dynamical sys-
tems, for a number of processors ranging between 1
to 30 of a SGI/CRAY Origin 2000 system. Since the
actual work load is not known a priori the code uti-

lize an estimate of the work load that is based on a.
sliding average over the last five training iterations.
An ahnost monotonie increase in the speed-up for

the range between 1 to 30 processors for tile three
programming environments is observed. As expected
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Figure 4: Behavior of the efl:iciencies obtained with
tile three parallel environments used in this study
showing also the estimated prediction.

the native shared memory directives for parallel pro-
gramming of the SGI/CRAY plattbrms outperforms
the industrial standard MPI althou~;h it shows a sim-
ilar l)ehavior when a relative small number of pro-
cessors is used. OpenMP on the other hand outper-
forms MPI clearly when using 16 or more processors,
while demonstrating a comparable performance for
smaller number of processors. SHMEM shows a bet-
ter performance up to the 19 processors case, while
being slightly outperformed afterwards. Finally, it
must be pointed out that in this specific applicatiolt
OpenMP outperforms MPI on the SGI Origin even
so a domain/task based pa.rallelization model is ap-
plied here. A comparison of the presented results
with those of a code version which includes loop-level
pa.rallelism is the subject of forthcolning work.
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