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Abstract

This paper presents calculations of the se-
lection intensity of common selection and
replacement methods used in genetic algo-
rithms (GAs) with generation gaps. The se-
lection intensity measures the increase of the
average fitness of the population after selec-
tion, and it can be used to predict the average
fitness of the population at each iteration as
well as the number of steps until the pop-
ulation converges to a unique solution. In
addition, the theory explains the fast con-
vergence of some algorithms with small gen-
eration gaps. The accuracy of the calcula-
tions was verified experimentally with a sim-
ple test function. The results of this study
facilitate comparisons between different al-
gorithms, and provide a tool to adjust the
selection pressure, which is indispensable to
obtain robust algorithms.

1 INTRODUCTION

To maintain a constant number of individuals in their
populations, genetic algorithms have a mechanism
that deletes unwanted individuals to make room for
the newly-created ones. Most frequently, the entire
population is replaced every generation. In this case,
the algorithm is called a “generational GA”, and it
represents an extreme case of replacement methods.
In the other extreme, there are “steady-state” GAs
that replace a single individual in every iteration. The
fraction of the population that is replaced is controlled
by a parameter called generation gap (denoted by
G € [L,1], where n is the size of the population).

Although there are numerous observations that the
generation gap affects the selection pressure, this ef-

fect has not been quantified accurately. The purpose
of this paper is to present calculations of the selection
intensity in GAs with arbitrary generation gaps. The
selection intensity is the normalized increase of the av-
erage fitness of the population after selection. It can
be used to predict the average fitness of the population
at each iteration as well as the number of steps until
the population converges to a unique solution. The
calculations consider the selection algorithm used to
choose the parents and the mechanism used to replace
existing members of the population with the offspring.

The paper is organized as follows. The next section
contains a brief review of previous work on analysis
of overlapping populations. Section 3 defines the se-
lection intensity and reviews previous work on char-
acterizing it in serial and parallel generational GAs.
Section 4 has the calculations for the selection inten-
sity of GAs with generation gaps. Experiments that
verify the accuracy of the calculations are presented in
section 5. Finally, section 6 presents a summary and
the conclusions of this study.

2 GENERATION GAPS

De Jong (1975) was the first to evaluate empirically
the performance of GAs with overlapping populations.
He introduced the generation gap G as a parameter to
the GA, and found that at low values of G the algo-
rithm had a severe loss of alleles, which resulted in
poor search performance. In De Jong’s algorithm, the
newly created individuals replaced random members
of the population. He hypothesized that the poor per-
formance was caused by the high variance in the indi-
viduals’ lifetime and the nuraber of offspring produced.
Later, De Jong and Sarma (1993) presented additional
empirical evidence, and suggested alternative deletion
methods to reduce the variance.

Whitley (1989) introduced GENITOR, a “steady



state” GA in which the worst individual was determin-
istically replaced every iteration. Goldberg and Deb
(1991) analyzed GENITOR, and they observed that
it has a high selective pressure even when the parents
were selected randomly. This suggests that the dele-
tion of worst individuals was the major factor in the
selection intensity.

The following deletion methods are common:

o Insert offspring at random (uniformly).
» Replace the worst individuals.

e Choose using any selection algorithm nor-
mally used to select the parents (e.g., fitness-
proportfional, exponential or linear ranking, tour-
naments, etc.).

e Delete the oldest (FIFO).

e Combinations or elitist variants of the above.

There has been considerable research on the effect of
these deletion methods on the convergence of GAs.
For example, Syswerda (1991) compared generational
and steady state GAs with fitness-proportional selec-
tion of parents and several replacement methods. As-
suming an infinite population (so that effects due to
small populations do not appear) and using random
deletion of individuals, Syswerda showed that the gen-
eration gap bhad no effect on the allocation of copies
to strings. However, changing the deletion strategy to
least-fit, exponential ranking, or fitness-proportionate
deletion caused the steady state algorithm to converge
much fagter than the generational GA. Calculations
presented later in this paper will confirm and quantify
these observations.

Chakraborty, Deb, and Chakraborty (1996) used
Markov chains to obtain the probability that a specific
class of individuals takes over the population at each
iteration. They only considered random, worst-fit, and
exponential ranking deletion, but their framework can
be extended to other replacement strategies. Smith
and Vavak (1999) did just that, and observed that re-
placing the oldest member or replacing randomly may
result in loss of the optimal value. De Jong and Sarma
(1993) observed similar losses of the optimal value even
when the initial population had 10% of the optimal in-
dividuals. Smith and Vavak noted that the loss can be
corrected simply by using an elitist replacement strat-
egy that ensures that the best individual in the current
generation survives to the next. The simple correction
suggests that variability in the number of offspring or
the individuals’ lifetime is not the cause of failure.

Interestingly, De Jong and Sarma (1993) end their pa-
per noting that “..the important behavioral changes
[between generational and steady state GAs] are due to
the changes in the exploration/exploitation balance re-
sulting from the different selection and deletion strate-
gies used. This is where we should continue our anal-
ysis efforts.” That is precisely the purpose of this pa-
per: to quantify accurately the selection intensity (the
exploitation part). De Jong and Sarma also question
whether an algorithm that selects a block of the best
individuals and replaces a block of the worst would re-
duce the variance without changing the selection pres-
sure. Section 4 shows that the answer is negative, and
that indeed the selection pressure changes significantly
as a function of G (the size of the blocks).

3 SELECTION INTENSITY

This section briefly reviews previous work on quanti-
fying the intensity of selection methods. In addition,
this section reviews recent work that characterizes the
selection intensity caused by migration of individuals
between populations in parallel GAs. The next section
builds on the models presented here.

3.1 SELECTION METHODS

Some common selection methods are proportion-
ate selection (Holland, 1975), linear ranking (Baker,
1985), tournament selection (Brindle, 1981), (utA)
selection (Schwefel, 1981), and truncation selec-
tion (Miihlenbein & Schlierkamp-Voosen, 1993). In
linear ranking selection, individuals are selected with
a probability that is linearly proportional to the rank
of the individuals in the population. The desired ex-
pected number of copies of the best (n') and worst
(n~ = 2 — n*) individuals are supplied as parameters
to the algorithm. In tournament selection, s individ-
uals are randomly sampled from the population (with
or without replacement), and the best individual in
the sample is selected. The process is repeated un-
til the mating pool is filled. In (u + A) selection, A
offspring are created from p parents, and the p best
individuals out of the union of parents and offspring
are selected. In (p,A) selection (A > p) the p best
offspring are selected to survive. Truncation selection
selects the top 1/7 of the population and creates =
copies of each individual. It is equivalent to (g, A) se-
lection with g = A/7.

Miihlenbein and Schlierkamp-Voosen (1993) intro-
duced the use of the selection intensity to study the
convergence of selection schemes. The selection inten-
sity is defined as
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where f? is the mean fitness of the selected individuals,
and f* = 13" | F! is the mean fitness of the popu-
lation, ot is the standard deviation of the population,
and the superscript ¢ denotes the generation number.
The numerator is called the selection differential, and
is usually denoted as s’.

The challenge to calculate the intensity of a selection
method is to compute the mean fitness of the selected
individuals, ff. This has been accomplished analyt-
ically for some common selection schemes of gener-
ational GAs. In particular, Bick (1995) and Miller
and Goldberg (1995) independently derived the se-
lection intensity for tournament selection, and Back
(1995) also derived I for (p, A) selection. Blickle and
Thiele (1996) calculated the intensity of linear ranking,
and Miihlenbein and Schlierkamp-Voosen (1993) cal-
culated I for proportional selection. Table 1 contains
the known selection intensities (adapted from (Miller
& Goldberg, 1996)). Note that I is independent of
the distribution of the current population, except for
proportional selection.

3.2 MULTI-POPULATION GAs

Regardless of their implementation on uni- or multi-
processor computers, GAs with multiple populations
exhibit a different behavior than GAs with a sin-
gle population. Much has been written about this,
but one of the main causes of the disparity seems to
be the additional selection intensity caused by choos-
ing migrants and replacements according to their fit-
ness (Canti-Paz, ress).

The selection intensity caused by migration is

Imig :Ie +Ir) (2)

where [, is the selection intensity caused by selecting
the emigrants, and I, is the intensity caused by select-

ing replacements in the receiving deme. Using § to de-
note the number of neighbors of a deme (the degree of
the connectivity graph) and p to denote the migration
rate (i.e., the fraction of the population that migrates
every generation), I, & 6¢(®~1(1 — p)) if the best in-
dividuals are selected to migrate, and I, = 0 if the mi-
grants are chosen randomly. ¢(2) = exp(—22/2)/V2r
and ®(2) = [ ¢(z)dz are the PDF and CDF respec-
tively of a standard Gaussian distribution with mean
0 and standard deviation of 1.

Similarly, I, ~ ¢(®7 (1 — dp)) if the worst individuals
in the receiving deme are replaced by the migrants, and
I. = 0 if replacements are chosen randomly. The total
selection intensity is the sum of the intensity of the
method used to select parents (see table 1) and Ip;,.
We shall see in the next section that the equations for
the selection intensity in GAs with overlapping popu-
lations are very similar to those above.

4 GENERATION GAPS AND
SELECTION INTENSITY

To calculate the average fitness of the population in
the next iteration, we take the weighted average of the
individuals selected to reproduce and the individuals
that were not replaced (which we call survivors):

]Ft_H = Gf: + (1 - G) _:urm (3)

where ft is the expected fitness of the selected indi-
viduals, f%,., is the expected fitness of the survivors,
and t is the iteration number. To simplify things, we
may also write the average fitness of the population as
a weighted sum:

FF=Gaft+1-a)1" 4

Collecting similar terms, we can write the selection
differential as:

ot = i _
:G(f:'ft)'*'(l—G)(f:urv_ft) (5)

— ot t
= 8 + Ssurv-

This equation clearly shows that the selection pres-
sure has two independent causes, namely the selection
of the parents and the selection of replacements (or
survivors). First, we consider the selection of parents
because it is usually done with the same methods of



generational GAs (i.e., proportional selection, linear
ranking, tournaments, etc.). Thus, we can calculate
ft as otl, + ft, where I, is the intensity of the se-
lection method (see table 1). Now we can rewrite the
first term of the equation above as

G(f. = ) =G L), (8)
and using the definition of selection intensity I, = ;—1
we obtain:

I, =GlI,. (7)

Essentially, this means that selection algorithms re-
tain their pressure, but the overall intensity is lower
because fewer individuals are generated in each itera-
tion.

The remainder of this section examines the intensity
caused by the selection of replacements (or the sur-
vivors). First, note that when the survivors are chosen
randomly, their expected fitness is equal to the aver-
age of the population before selection, and therefore

8t = 0, and there is no selection intensity.

The interesting case is when the replacements are se-
lected according to their fitness. We examine in de-
tail the bounding case where the worst individuals in
the population are replaced. Other replacement meth-
ods induce a lower pressure than deleting the least fit.
Actually, if the selection intensity of the replacement
method is known, it can be shown that the intensity
is GI.

The major assumption that we make is that the fit-
ness values f7,% € [1,n] can be interpreted as samples
of random variables F} with a common distribution
N(ft, o). We may arrange the variables in increasing
order as

These are the order statistics of the F} variables, and
we can use them to calculate the average fitness of
the survivors. Without loss of generality, we assume
a maximization problem. The mean fitness of the
surv = (1 — G)n best individuals that survive (i.e.,
are not replaced) is

B

surv

i=n—surv--1

The random variables can be normalized as

Ft —ft

Zim = ~ N(Oa 1),

ot

and the average fitness of the survivors may be rewrit-
ten in terms of the normalized variables

n

_ 1 _,
gur'u = surv | Z (E(Zi:n)at + ft)
i=n—surv+l1 (9)

1 n
= o't .
survy Z

t=n—surv+1

E(Zim) -+ ft.

Now, we can calculate the selection differential caused
by deleting the worst individuals as

sfmrv = (1 - G)( —:urv - ft)
Lo Y Bz O

n
i=n—surv+l

Since the selection differential is also s* = I - %, the
selection intensity in this case is

n

Toury = % ' Z

i=n—surv+l

E(Z;). (11)

The expected value of the i-th order statistic of a sam-
ple of size n is defined as

pin = E(Z; n)
B n(?:;) /_oo 2¢(2)8 1 (2)[1 — ®(2)]"dz,

(12)

where ¢(z) and ®(z) are the PDF and CDF respec-
tively of the fitness distribution (in our case a stan-
dard Gaussian distribution with mean 0 and stan-
dard deviation of 1). The values of p;, are com-
putationally expensive to calculate, but for a Gaus-
sian distribution they are tabulated for n < 400 (Har-
ter, 1970). Nevertheless, computing the sum in equa-
tion 11 can be cumbersome, but the following approx-
imation exists' (Burrows, 1972; Béck, 1995):

n

Z Hin A n¢(<I)_1 (1 - G))v (13)

i=n—surv+l

!B4ck shows that for n > 50 the approximation is in-
distinguishable from the real values.
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Figure 1: Selection intensity of different selection and replacement strategies varying the generation gap.

and therefore equation 11 can be approximated as

Lyuro = $(271(Q)), (14)
and the total intensity is simply
I =1+ Ly (15)

It is important to realize that the selection intensity
is an adimensional quantity that does not depend on
the fitness function or on the generation ¢. The only
assumption made to calculate the intensity is that the
fitness values have a normal distribution, but any other
distribution may be used as long as E(F;.,) may be
computed (by substituting the appropriate PDF and
CDF in equation 12).

The maximum of equation 14 occurs at G = 0.5 and is
#(0) = 1/v27 = 0.3989. However, if we convert I, to
its equivalent “generational” intensity® I, = I,y /G,

*We may think of this as the normalized increase of

the mean fitness of the population after n individuals have
been selected.

the highest value of I, is at G = 1/n, and it can be
of considerable magnitude. For example, for n = 256,
I, = 2.96, and for n = 1000, I, = 3.36. So, even if the
parents are selected randomly, replacing the worst in-
dividuals may cause a considerable selection pressure.
This is consistent (at least qualitatively) with Gold-
berg and Deb’s (1991) observations of GENITOR.

Figure 1 has plots of the (generational) selection inten-
sity of algorithms with different methods to select the
parents and the replacements. To make the graphs,
®~1(z) was calculated numerically using Mathemat-
ica 3.0 as V2 InverseErf[0,2x-1].

The plots show that the combination of selecting the
best individuals as parents and deleting the worst in-
dividuals has the higher selection intensity. Note that
when the best individuals are selected, at G = 1 there
is no selection pressure, because the algorithm simply
copies the entire population. In addition, the selection
intensity when the best are selected and replacement is
random is identical to (u, A) selection with G = p/A.
In the case of tournaments and linear ranking with
random deletion, the graphs would be horizontal lines
at 0.5642 and 0.2820, respectively. This is consistent



with Syswerda’s (1991) observations on random dele-
tion, although he was considering proportional selec-
tion.

We must be cautious when comparing algorithms with
the same selection intensity, because they are not
equivalent algorithms. The selection intensity only
considers the change of the population’s mean fit-
ness over time, and ignores the higher moments of
the distribution. Blickle and Thiele (1996) made an
analysis of the variance of several (generational) selec-
tion methods, and Rogers and Priigel-Bennett (1999)
have a detailed analysis of the first four moments of a
roulette-wheel algorithm that uses Boltzmann weights.
Different selection algorithms impact the higher mo-
ments in different ways and may affect the quality
of the solutions found. A reasonable heuristic is that
given a choice between algorithms with the same selec-
tion intensity, we should prefer the one that produces
the highest variance of fitness (Béck, 1995).

Another aspect that we must take into consideration
when designing GAs is that the convergence time of a
GA is inversely proportional to the selection intensity.
Rogers and Priigel-Bennett (1999) observed that they
could replicate the dynamics of a generational GA with
a steady state GA using half the function evaluations.
However, they were using selection to choose both the
parents and the replacements, effectively doubling the
selection intensity. Although it may be tempting to
use higher selection intensities, this may cause the al-
gorithm to converge too fast (this is sometimes called
premature convergence). Perhaps this contributed to
the poor performance of the GAs in De Jong’s empir-
ical studies with small generation gaps.

5 EXPERIMENTS

This section presents experimental evidence that ver-
ifies the accuracy of the calculations of the previous
section. The experiments use a [ = 500 bit One-
Max function, F = Eézl z;, where z; € {0,1} are
the individual bits in the chromosome. Miihlenbein
and Schlierkamp-Voosen (1993) showed that with an
initial random population, the number of generations
until convergence is given by G = %%i . We use this
result to test the accuracy of equation 15. Again, we
consider that a generation is when n individuals have
been processed, so we convert the number of iterations
until convergence to generations by multiplying by G.

The population size is n = 500 individuals, which is
sufficient to ensure convergence to the optimum in all
cases. The GA uses uniform crossover with probability
1.0, and no mutation. The results shown are the aver-

age of 20 independent runs for each parameter setting.

Figure 2 compares the theoretical predictions with
experimental results. The graphs show the number
of generations until convergence using best-fit selec-
tion, pairwise tournaments, and linear ranking with
nt = 1.5. Both random and worst-fit deletion were
used. Additional experiments with n™ = 2 yielded the
same results as pairwise tournaments, as was expected
because the two algorithms have the same selection in-
tensity.

6 CONCLUSIONS

This paper presented calculations of the selection in-
tensity of genetic algorithms with arbitrary generation
gaps. The accuracy of the theory was verified experi-
mentally, and it was used as a possible explanation for
previous observations reported by others. The result-
ing equations are similar to those that model the se-
lection intensity of migration in multi-population GAs.
This suggests the possibility of exchanging ideas and
analysis techniques to further advance our understand-
ing of the two types of algorithms.

Future work should consider the effect of selection on
the higher moments of the distribution of fitness. This
is important because algorithms with the same selec-
tion intensity may reduce the variance (diversity) of
the population in different ways and may also change
the shape of the distribution. Studying these effects
may help to design recombination or mutation opera-
tors that balance the effects of selection.

It is well known that algorithms with higher se-
lection pressure need larger populations to suc-
ceed (Miihlenbein & Schlierkamp-Voosen, 1993; Harik,
Canti-Paz, Goldberg, & Miller, 1997). This intro-
duces a tradeoff because higher selection pressures re-
sult in faster convergence, but larger populations re-
quire more computations. The tradeoff suggests that
there is an optimal population size and selection pres-
sure that minimize the total computational work. Fu-
ture work along these lines may produce a framework
that relates selection intensity, population size, and
solution quality.

Such a framework would be very useful in the design
of faster and more reliable evolutionary algorithms.
Besides facilitating comparisons between different al-
gorithms, and providing a convenient tool to adjust
the selection pressure, the results of this paper would
be a critical component of the framework.
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