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Abstract

Fragmentation of exploding cylinders and penetration mechanics of surrounding vessel
walls were examined and a qualitative understanding was achieved. This understanding
provided a basis for making simplifying approximations and assumptions that aided in
creating a shrapnel penetration model. Several mathematical models were discussed, and
results from 6 cylinder tests were analyzed in order to select a model that best represented
the data. It was determined that the overall best mathematical model to predict shrapnel
penetration uses the modified Gurney equation to calculate fragment velocity, the Mott
equation to calculate largest fragment weight, and the Christman/Gehring equation to
calculate penetration depth.

i1




Analysis of Fragmentation and Resuiting Shrapnel Penetration of Naturally Fragmenting
Cylindrical Bombs

equipment from damage and the
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a method for accurately predicting the penetration depth of shrapnel from ¢
explosive experiments (pipe bombs).

The aforementioned contained firing vessel is to be designed for the experimentation of cylindrically
encased high explosives (see figure 1). Typical casing materials are steel or copper. To generate
worst-case shrapnel, the cylinders are to be detonated from both ends such that the detonation waves
meet at the cylinder’s middle. The tests will be conducted inside a spherically shaped aluminum
containment vessel approximately 2 meters in diameter (see figure 2), which will be over-wrapped
with Kevlar fiber for strength against blast pressures. Various explosives will be tested in varying
amounts. The casings will also be of varying size, thickness, and material type. Fragmentation and
penetration models need to be able handle these different conditions. Only effects due to shrapnel
penetration will be considered here.

igure 2. Aluminum liner of protot

composite firing vessel.



It is by no means a small challenge to find a method of analysis for exploding cylinders. As
previously stated, there is a large volume of reference material relative to the subject. A significant
obstacle is that nearly every study done has been very specific. Consequently, the mathematical
models that are derived are anything but comprehensive or omni-applicable. Most are only accurate
for the specific conditions of a particular experiment. In order to develop a method of analysis
applicable to a diverse range of exploding cylinder tests, parts from many separate studies and
reports are necessarily pulled together. As a result, regimes of validity and compatibility become
important issues. In addition, the exploding and fragmenting of a bomb is a very complicated
phenomenon and any resulting model will be significantly idealized and simplified from reality.

Fragmentation of HE Cylinders

As previously stated, high performance firing vessels could be designed for the detonation of

cylindrically encased high explosives. For this study, one primary concern is to determine what are
the most damaging fragments that are produced by a typical cylinder test. Factors to consider are the
mass, velocity, shape and orientation of the fragments as they strike their target. Since the test
cylinders are detonated at both ends, it is assumed that the worst-case fragments will result from the
central region where the detonation waves meet. In an artillery shell test conducted for LLNL [2], it
was recorded that shrapnel from the midsection of the shell casing detonated at one end had the
greatest acceleration and velocity, supporting to a certain extent the assumption that the worst-case
fragments originate from this portion of an exploding cylinder. Conversely, many references state
that fragment number decreases {or fragment size increases) as strain rate and detonation pressure
decrease. Since the superposition of two detonation waves would increase the local strain rate and
detonation pressure, fragment size would be expected to decrease. The high strain rate is analogous
of a brittle fracture, resulting in many smaller fragments. The presence of worst-case fragments
originating from the center portion, whether due to size or velocity or both, is yet to be determined.

An appropriate fragmentation model consists of many elements. In general, the fragmentation
process can be broken down into four steps and shown in figure 3 below [3]. First, the case expands
due to very high internal pressure that accelerates the case wall outward, Then after a very short
time, on the order of about 10-50 s, cracks begin to propagate through the case wall. Third, gas
products begin to vent as cracks propagate completely through the cylinder wall. At this point, the
cylinder wall has attained maximum velocity, since the expanding gases no longer accelerate it.
Finally, fragments appear and the detonation cloud begins to decay. Each of these steps will be
considered. Little attention will be given directly to the venting and decaying of the explosive gases
other than in relation to fragment velocity.
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Figure 3. Fragmentation process [3 p. 21].

Case expansion prior to fracture is important for several reasons. First, The amount of energy
actually transferred from the expanding gases to the cylinder largely depends on how long the case
holds together before fragmenting. As the casing begins to fragment, the explosive gases are allowed
to escape the containment of the cylinder without further transferring energy to the resulting
fragments. For example, in a study done by G. L. Taylor in 1944, long cylindrical bombs were
detonated from a single end [4]. It was determined that in order to transfer 50% of the explosive
energy into the cylinder, it was necessary for the casing to hold together until its radius has increased
by 90%. Energy transfer is important because it determines the velocity of fragments. The
exploding gases accelerate the cylinder wall as the case expands. At the point of fragmentation, this
acceleration ceases because the gases are allowed to vent through the cracks without transferring any

more of their energy. As a result, the maximum fragment velocity greatly depends on how far the
case expands.
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thickness, softening, yield stress, strain rate, and the thermal properties of the material [5]. Shells
made of materials such as copper that are more ductile often expand to about 2-2.4 times their

original size before fragmenting, depending on the initial case thickness. Steel shells often expand to
1.2-1.5 times their nr1g|nsﬂ diameter, ngmn rlpnpndmg on the initial case thickness. The gxpa_nsign
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diameter is important to hypothesizing fragment size and thickness. Figure 4 shows typical
expanding cylinders made of copper and stecl. Mathematical treatment of both fragment velocity
and size will be given later.




Figure 4. a) Expanding thin copper cylinder. b) Expanding steel cylinder.
Times are in microseconds. [11 p.75] [3 p.44]

After expanding, an exploding cylinder will break apart. It is important to understand the nature of
this break up so that fragment sizes, shapes, and trajectories may be determined. Intuition and
fracture mechanics lean toward to the idea that fragmentation of metallic cylinders is a two-
dimensional phenomenon [6,9]. That is, the cylinder case does not fracture within its thickness and
fragment thickness is equal to the final, expanded case thickness. During WW 11, Mott and Linfoot
analyzed fragment mass distributions for warheads and bombs. Their results suggested that the
larger fragments were characteristic of a two-dimensional fracture while the smaller fragments were
more characteristic of a three-dimensional fracture [7]. Since the fragments of primary concern here
are the larger ones, a two-dimensional fracture model is appropriate, and it can be assumed for large
fragments that the front and back fragment surfaces correspond to the inner and outer casing
surfaces. However, as previously stated, typical casings can expand to more than twice their original

trom cylinder tests commonly experience a 40-60% reduction in thickness from that of the original
casing [8,9].

According to Taylor and others, an explosively expanding cylinder experiences a combination of two
modes of failure [3,4,9,10]. An exploding cylinder is initially in complete compression. As the
casing expands, the cylinder wall is subjected to outer tensile and inner compressive hoop stresses.
These stresses meet at a boundary within the thickness of the cylinder wall. The outside surface (in
tension) develops radial cracks that propagate a short distance inward to the tensile/compressive
stress boundary. As the radial cracks (due to tension) propagate inward, the stress boundary also



moves inward through the cylinder wall (see figure 5). Thermal softening of the cylinder material
outweighs work-hardening effects as the cylinder expands and causes the cracks to propagate along
lines of maximum shear [9]. Consequently, the exploding cylinder fails due to a combination of
tension and shearing {6,8,9]. This model explains the common appearance of both radial and shear
fracture characteristics on recovered fragmenits.

COMPRESSIVE
CIRCUMFERENTIAL STRESS

ZERO CIRCUMFERENTIAL STHRESS
A TENSILE CIRCUMFERENTIAL STRESS

Figure 5. Fracture mechanisms during an explosively expanding cylinder. [9 p.1861]

Another model proposed by Martineau gives a slightly different explanation of wall failure [11]. His
studies showed that multiple plastic instabilities develop on the inner and outer surfaces of a cylinder
as it expands. His model suggests that the instabilities are caused by perturbations that initiate from
within the cylinder wall. These perturbations are thought to be caused by the nucleation of micro
voids along grain boundaries within the cylinder material. As the cylinder expands, the perturbations
work their way to the inner and outer shell surfaces, giving rise to plastic instabilities. As mentioned
previously, an explosively expanding cylinder is initially in complete compression, and as it expands,
it becomes subjected to tensile stresses throughout its thickness. In contrast to the failure model
described above, Martineau explained that once the shell reaches a condition of complete tension, the
surface instabilities cause localized thinning of the shell wall, somewhat like necking (see figure 6).
Then regions of intense shear connect the inner and outer surface instabilities, resulting in fracture
(see figure 7). Observations from careful experimentation were in good agreement with this model.
It was also noted that the instabilities propagate longitudinaiiy along the axis of the cylinder,
suggesting that typical cylinder fragments are elongated strips.




/ 7 ™
R - AN
T 27N P Ay N\
17' W YNNG .- Y Duasi-Pertodic
. : ‘ . “\\& ”““\*; 31':.%!;}?uléﬁ¢'.~s ‘
7

it i ’ et

ocalized ‘ \ . g )
Longs OF 7 i . =N s
Wt H ;?i

SHCAr L\'

Inside Dhanne

Figure 7. Photormcrogranh of shear band between zones of localized thinnin
cylinder wall. [11 p.97]

The apparent contrast in the two models described above may be resolved by recalling that
Martineau’s model and experiments dealt with strain rates on the order of 10° s”'. Reference [3 p.45]
describes a fracture model that is similar to that of Martineau as being charactenstlc of these higher
strain rates. Consequently, both fracture models may be accurate, depending on the strain rate that is
considered. Furthermore, reference [3] states that case thickness and ductility (which are also key
factors in determining expansion diameter) affect whether shear or radial fracture is predominant. In
any case, either model results in good predictions of fragment size.

Having discussed modes of failure, fragment size and shape will now be treated. Several models that
predict fragment size and distribution will be briefly considered later. For the time being, a more
qualitative discussion will be given. All of the models reviewed in this study share a common
feature in their derivation. During expansion, there is a finite probability that fracture of the cylinder
wall will occur as the stress level approaches a critical value. As soon as fracture occurs at one point,

————

stress is relieved in the adjoining regions on either side of the fracture (see figure 8 below). These



regions of unloading spread at a calculable velocity away from the crack and additional cracks cannot
form within these unstressed areas. Consequently, there is a relationship between the rate at which
cracks are nucleated and the unloading of the cylinder wall. This relationship determines average
fragment width, which is a basis for predicting average fragment mass. Particulars of the different
fragment size models are explained below.

S

Figurlrl':(“eus. Unloading of stressed regions after fracture. [12]

Grady and Hightower have derived equations based on fragmentation energy to predict average
circumferential fragment width for explosively expanding steel cylinders {6]. Their model will be
discussed in more detail later. For now, it is interesting to note some of their results. Figure 9 gives
the fragment size distribution for the experiment. Note the comparison of the average fragment
width and the original case thickness. A large number of fragments were recovered from the
experiment, and it was observed that fracture occurred predominantly along elongated strips with the
lines fracture running parallel to the axis of the cylinder. Several of the fragments collected were 4 to
5 times longer than the width, suggesting the possibility of the formation long-rod penetrators.
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Figure 9. Predicted values from two different models are compared with experimental data [6].
One model was based on a tensile fracture failure mode and the other on shear fracture.

In general, the larger fragments from exploding cylinders are in the form of elongated strips {3,9,12].
As explained earlier, naturally fragmenting cylinders usually produce fragments that have come from
longitudinal strips parallel to the axis of the cylinder. They will therefore be generally long and
slender. Figure 10 below gives examples of typical cylinder fragments.




Fractured Cylinder
From Test

i N.V?-: el s

DL
0. Typical elongated fragments from exploded cylinders [3,9].

The Army has conducted several tests in which they have detonated and collected the fragments from
warhead and bomb casings, which approximate exploding cylinders. Figure 11 comes form one such
test and shows the sizes and shapes of typical fragments. ' .

These long, finger-like projectiles can be very damaging if oriented normal to a target surface at the
moment-of impact, in which case they are termed long-rod penetrators. However, there is substantial
evidence from observations of target craters that most of the shrapnel fragments produced in cylinder
are more like “chunks” and less like “missiles” either in their dimensions or their net effect. In
ky” fragments tend to form target craters that are roughly twice as wide as they are

intuitive sense, and witness plates from various cylinder tests show that
s e-type fragments would produce a deep
11, it can be seen that the larger

-
I
2]
P
w

4
:
3
:
)
]
]
}
]
b
-
2
i’
1
'

bt
]
-
o
o
[

—t
1]
173
ir
4]
3
.
I
L]
o
oy
-]
D
=
S
g

(=]
o 4

£
T3
¢
£ ; ]
1]
;
3
)
3

=
D '«



S

' L an S ade &v&;ﬂ ; M
ROUP NO 4--2500 GR

bl
i

>
»i
z
o
o

|

§ELRI L@y ISTALE
J

AP g
Nt
@

3

P #3.

o =]

185
{: =
=
" )

=

.
¢ :@wg
52
N
g
SRS
.
Iy
LS
)
)
\%5
D
(i)

et

-

£l

Tl

7
== ]
i~

s

wad

)

S B S, PRI

el
oS
el

<

f ba
’*”"’f’if%

[orec )
<o
a8
+-
2,

. T
223,
S,

y <

e
WG oo
i}
o
w
(]
vl
a0
i
d,?ﬁ
3
A
:,G‘D
S
2
9%
4
=
'
L.

L Rn)
-m_;_\
-~
15
=
<o
‘e 3|
‘GA’%}
o 8.
e
S
v’s'e
&
) ;
X
>y
gw
ot
S
e
s
»
o
o
)
0%
=

MY | =4 .
RN L
R

N, o ¢y
e
#
9
-
o
A=y
{f» o

(%)
ey
FJ

L.

5

-

R i )
‘{a‘f;‘ ™
"’ﬂ“J

\{’
eQ

o,

b
o
?

> b

)
ot
#

\
ot
"
-3
™
L\
L
by
'6-
(4

¥
>
o
oy
R
-
L N
&y
Tred
a ‘Kw
o -
d
>

-
anS -
1|
:us
-

X

s

i

¢

<ty

L

P, o
pu I

o

-

"

L |

i
_ 5%3
55

r

LY
e J
ﬂ-
e
T
w’
-
L
o
S
Fi
F3 )
O
)
&
-,
-

3Ly
fr;:
v

-
“w -
oy BV
75
e

L
'1\
-

~
o

P-D
-y S

>
3
DQ'%-

(3

2
v &

etk tadl i ¥ L - ?ﬂ-‘w ;

- =" r
D’QP"‘Q

-3

P P XY

.2

SHELL, HE,
155-MM,
MI01

o
=
(8
-
-D"
Z
2l
R
f
(]
o
[=
o
~
M i

.
s
e
..
R Y
e
o
£as
Lol

. ) B
[ACEAS M 10
DRI L s,
Ny s‘..ﬁ‘.”“' ‘Qu
g
s .,‘V. (2 ¥ g X
I R
Ber it

e &

AW A
R IO E L
TR R

-

4:;-'\
A
fplidywacy oy
1}

A

Lol e

RIS

Pl irr ALl
L H R T,
¥

GRQUP NC 0—0 TO 75 GRAINS RA PD 167366
Figure 11. Results from Army fragment test [15].

Penetration

Models of penetration and perforation are based on laws of conservation and compatibility. As an
explosion occurs, the chemical energy of the explosive reaction is imparted to the cylinder casing
that encloses the HE. Some of the energy is used to deform and fracture the casing, Other energy is
given off as light and heat. The remainder of the energy is imparted to the fragments as kinetic
energy. Measuring or determining each of these energies is very difficult. For penetration and
perforation analysis, the only important aspect is to predict the kinetic energy (i.e. mass and velocity)
of the fragments. Once this kinetic energy is determined, conservation of mass and energy,
sometimes in terms of momentum, is applied to the projectile/target system. The analysis is still
quite complex because the events that occur at the projectile/ target interface are somewhat unknown.
Although many studies have been performed, only highly controlled velocities, shapes, sizes and




trajectories have been examined. As a result, numerous approximations and assumptions must be
made in order to apply to these analyses to shrapnel fragments.

Impact is a very localized phenomenon. Stress and strain effects are usually limited to within 3-6
projectile diameters of the impacted zone [18]. Impacted target materials may fail by a combination

of several modes including spalling, plugging, petaling, ductile or brittle fracture, and adiabatic
shearing. Figure 12 shows some of these failure modes.

a—

{a) FRACTURE DUE TO INITIAL {b) RADIAL FRACTURE BEHIND
STAESS WAVE INITIAL WAVE IN A BRITTLE
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»ﬁ; »D

ig) FRAGMENTATION {hl DUCTILE HOLE ENLARGEMENY

Figure 12. Common failure modes of impacted targets [33 p. 5].

In this study, only thick targets will be considered. A target is considered thick if the distal boundary
is influential only after substantial travel of the projectile into the target. Thick witness plates of
medium hardness, such as those for which we have data, seem to be characteristic of a combination
of spalling and ductile failure {19]. Spalling is tensile failure of the target material due to the
reflection of the initial compressive waves from the far side of the target [20 p. 523-546]. Failure by
spalling can occur on either the front or back of a target and is characterized by the formation of
petals or ejecta. In ductile failure, the impact impulse overcomes the peripheral dynamic shear
strength of the target material, pushing it outward and toward the impact surface to form a crater that
is much larger than the projectile diameter [21]. At the same time, the projectile pushes into the
target, and there is hydrodynamic erosion and inversion of the penetrator material against the
receding face of the target (see figure 13).

10




igure 13. Du

The penetration process due to high-velocity impact can be represented by four phases: transient,

primary penetration, secondary penetration, and recovery [321 The first, or tr_amlent phase is
characterized by a very short pressure spike and occurs when the pro;ectﬁc first contacts the target
surface. The primary penetration phase is described as the period during which the projectile acts as
a contributing force, imparting its kinetic energy to the target in a hydrodynamic manner. The
secondary phase (more than one phase may occur simultaneously), sometimes referred to as
cavitation, begins after the projectile is completely deformed and effectively removed from the
system as a source of energy. It is marked by target deformation not caused directly by the KE of the
projectile material. Instead, the energy density behind the expanding shock wave continues to
deform the target material. The fourth, or recovery, phase refers to the period during which the crater

recovers or contracts slightly. Material just below the target surface anneals and recrystallizes,

With low-aspect ratio projectiles (chunky fragments), the primary phase is short and much less
significant than the secondary phase. With high-aspect ratio projectiles, like long rods, the reverse is
true because the majority of target deformation will come from the KE of the projectile. It will retain
a penetrating surface for a longer time because there is more material to erode away as it penetrates
into the target.

Projectile failure occurs simul “aneousiy with target failure. Thus, penetration models involve both
things. The projectiles deform and flatten/spread out as they strike the target, generating high

11



resisting contact forces. As can be seen in figure 13 above, the projectile and target tend to form
mating surfaces, which mushroom and erode the projectile as it moves through the target material

[19, 22]. Further support for this model is given in [23], in which it was studied whether a purely
mushrooming or an eroding model more accurately described a projectile as it penetrated a target. It -
was determined that, at high velocities and high length-diameter (/D) ratios, penetrator behavior
predictions were bounded by the two models, suggesting that a combination of both phenomena
actually takes place. For low L/D ratios, either model gave reasonable predictions. Expectedly, this
also suggests that a combination of both phenomena actually takes place.

Another penetration model is similar to the erosion model, but of a more hydrodynamic nature. The
particuiar treatment here is taken from [24]. In this model, the front end of the projectile and the
impacted surface are modeled as flowing liquids. The regions directly behind these surfaces are then
modeled as rigid bodies. The projectile is consumed from the impact end as it penetrates the target
material and is transformed into a lining for the crater that it makes. This model requires a minimum
velocity that is easily achievable in HE tests and predicts a crater diameter significantly larger than
that of the fragment. Furthermore, it predicts that most of the impacted target material is displaced
forward and outward by the projectile during penetration and that a small amount is ejected
backwards.

.

An attempt will not be made at this point to determine which of the two models described above, if
. A
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The ballistic limit is a common way to quantify projectile/target interactions. Itis the minimum
velocity required by a projectile in order to perforate a target. Several factors affecting ballistic limit
[19], and in turn penetrability, include: target and projectile hardness, density and yield strength;
projectile geometry, target thickness, striking yaw and obliquity. While all these factors are
important, only the last two cannot be controlled. It is likely that shrapnel fragments will strike their
targets at yawed or oblique angles. It is important to consider this, especially if long-rod penetrators
exist among the shrapnel. In one set of experiments it was found that a yaw angle of approximately
10-15° dramatically decreased the penetration depth of L/D = 11.7 long-rod projectiles [25]. It
appears that that angle may decrease slightly as the L/D ratio of the penetrator decreases. Other
sources have used 3-4° as a critical yaw angle for increasing the required ballistic limit velocity {26].
This tends to support the hypothesis given earlier that if long-rod penetrators are produced from
exploding cylinders, they may behave like “chunky” fragments.

Mathematical Models

Now that fragmentation and penetration mechanics have been examined at a first-principles level, it
is appropriate to look at mathematical models that predict fragment size and velocity. A generally
accepted equation for calculating average initial fragment velocity is the Gurney formula [11,20 p.
234-242,27-31,34]. This simple formula, equation 1, is based on the assumption that the contribution
to the total kinetic energy made by the detonation of a unit mass of explosive is independent of the
size of the explosive casing. It also assumes that a certain portion of the chemical energy of the
explosive is converted into fragment kinetic energy [30].

(1)

where
V, is the initial velocity of the case fragment (ft/s)

+/2E is the Gurney energy constant; depends on the HE type (ft/s)
W is the weight of explosive (1bs)
W. is the case weight (1bs)

Recall that the amount of energy transferred to the cylinder wall is proporttonal to the ultimate strain
of the shell. Consequently, the longer that a cylinder holds together during expansion, the greater the
velocity of the resulting fragments. For brittle metals, the shell begins to break apart earlier, allowing
the explosive gases to vent through the cracks. Thus, fragment velocity predictions for ductile metals
tend to be more accurate and those for brittle metals tend to be overestimated [29 p.387]. Experiment
has shown the Gurney formula to be fairly accurate over a range of charge-weight ratios, W/W_, from
0.06 to 5.6. However, the theory purposely does not take into account the length of the cylinder, i.e.
end effects and velocity distribution. The ecuation results in a single, average velocity for all
fragments, regardless of location or size. It may be that the sensitivity of fragment velocity to the
factors mentioned above is small and that they are indeed negligible. It is recommended that this
sensitivity be determined.

While other formulas to calculate fragment velocity exist, most are severely more complex and not
markedly more accurate than the Gurney equation [27]. However, Loyd gives a slightly modified
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version, equation 3, of the Gurney formula that does take into account cylinder length [3]. This
modified equation seems to gives slightly better results for the data analyzed in this study.

W
Vo=+2E )
I(H-ZIH W \

where

D, is the explosive diameter (inside case diameter)
L is the case length

As the fragments travel through their surroundings, hydrodynamic forces act on them to slow them
down. For projectile ranges of less than 20 feet (as is the case in this study) these forces are
negligible, and the initial fragment velocity can be treated as equal to the striking velocity [8].

Along with velocity, it is necessary to predict fragment size. If a particular fragment geometry can
be assumed, i.¢. t x t x t, then calculating fragment size becomes very simple. However, it is difficult

to make good assumptions about fragment dimensions. Hence, there are several models that treat
fraoment size

41RpEs AL SR

As mentioned earlier, Grady and Hightower derived equations to predict average fragment width.
Their model uses either tensile or shear fracture energy, depending on which mode of failure is
assumed. In their experiment, both failure modes produced nearly equal predictions, which were
very close to the measured results (see figure 9). Their equations are not very applicable to this study
because they only predict average fragment widths and total number of fragments, and they require
experimental parameters that are difficult to obtain. In an earlier work by Kipp and Grady, a model
of fragmentation was presented in an attempt to relate strain rate to fragment size [20 p. 546-566]. A
major shortcoming of this second model is that it also requires the independent experimental
determination of several parameters.

Grady/Hightower
1
(2 I ’
4
S= E
\PE )
(3)
Kipp/Grady
6 M
=__g_am+3 €
M m+2
(4)
where

S = average fragment width
I' = fragmentation energy
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£ = tensile strain rate

p = fragment density

L,, = average fragment size
m,Cg,a = experimental parameters

Another method that is commonly used by the US military for estimating fragment size and
distribution employs the Mott formula [8,12, 20 p. 547-549,28,31]. During WW 1II, Mott developed
equations for predicting the number of fragments that are larger that a prescribed mass 9 (see
equation 7). These equations can be rearranged in order to calculate average and largest-case
fragments. Experiment has shown that the Mott method of analysis is quite good at predicting
average fragment sizes and distributions but it loses accuracy outside of the central fragment weight
range [13,14,29]. That is, it tends to over-predict the number and size of larger fragments and under-
predict the number and size of smaller fragments. Furthermore, experimental determination of a
scaling constant is required. The constant depends on a specific casing material-explosive
combination. On the other hand, a major advantage of the Mott formula is that it is relatively simple
and it has been widely used. Also, experimental parameters for several explosive-metal
combinations have been determined. A more detailed presentation of the Mott formulae is given
later.

The Navy Ordnance Laboratory attempted to modify the Mott equation and to develop three weight
distribution formulas, one for each of the low, central and high weight ranges [14]. However, these
formulas were derived for a specific steel type, cylinder size, and detonation point. Also,

experimental parameters are given only for 24 different high explosives. Consequently, the NOL

mf‘rhndrﬂno‘v 15 of little benefit here. mehnn 5 below i for use with f[agmep‘ts in the hlg.
range.

&)

where

Nf = number of fragments with weight greater than Wf
Wf = design fragment weight
NijiHyy.q = experimental parameters

In a report prepared in 1981 for the Naval Surface Weapons Center, numerous formulas are given
(including Mott’s) for predicting fragmentation characteristics of exploding bombs [28]. The report
was intended to provide a comprehensive review of technigues to evaluate fragment and debris
hazards. Equations are given to calculate fragment mass, number, weight, velocity, and trajectory,
As is the case with nearly every model, special constants or experimental parameters are often
required. Consequently, due to insufficient experimental data, it is difficult to determine whether
these equations provide better predictions or not.

Sometime after Mott, Held developed a set of formulas to describe the mass distribution of fragments

from HE filled cylinders [29-31]. Like the Mott equations, Held’s formulas are simple and can easily
be arranged to solve for the mass of the theoretical largest fragment. Similar to the models above, a
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significant disadvantage is the need for two experimental parameters that depend on shell type and
geometry and the type and quantity of explosive. It appears that new parameters would need to be
found for each different experiment. Due to project time constraints, the Held method was not
researched completely and should be further investigated. It is given below.

—Bn#
M(n}=M,(1-e ) (6)

M(n) = cumulative fragment mass, beginning with the largest
M, = total mass of all fragments, i.e. mass of cylinder

= ith tha ha +
n = cumulative fragm\,ut llulllb\.rl, bbélllnllls with the heaviest

B,\ = experimental parameters

The Mott formula seems to provide the most viable model for predicting fragment weight. The
following treatment of the Mott methodology was taken directly from reference [32].

The fragmentation pattern and the weight of the largest fragment resulting from the high-
order detonation of an evenly-distributed explosive in a cylindrical metal case of uniform
thickness have been calculated according to relationships developed on the basis of
theoretical considerations and confirmed with a large number of tests. The number of
fragments produced by a cylindrical cased charge weighing more than a given design

fragment is:
w2
=[8ch WM ]mi %
and
Ms =Bt 4 (1 +1./d) (8)
where

Nt = number of fragments with weight greater than Ws
W. = casing weight

Wt = design fragment weight

M, = fragment distribution factor

B = explosive constant

t. = average casing thickness

d; = average inside diameter of casing

The largest fragment produced by an explosion can be found by setting Ny= 1. Thus, the
weight of the largest fragment is given by:

2472
In(8W. / Mp2) (9)

Setting the fragment weight W equal to zero, the following expression for the total number
of fragments is obtained:
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Nr=8W./ M,° (10)

where
Nr = total number of fragments

Hence, the average particle weight can be found:

W= 16W,/ Nt =2M,2 (11)
where

W; = average fragment weight

For design purposes, a confidence level Cp, where (0 < C. < 1), can be defined as the
probability that the weight, Wy, is the largest weight fragment released. The expression for

the design fragment weight corresponding to a prescribed design confidence level (Cy) is
given as:

CL =1- Nf/NT = l—e_[W}ﬂ/MA]

(12)
Or rearranging terms:

Wi=MaIn2 (1 - Cy) (13)
This equation can then be used to calculate the design fragment weight for a prescribed

design confidence level. Note that the above equation uses an infinite distribution to describe
a physical phenomenon which has a finite upper limit. It may be used for C;, < 0.9999. If Cp.

> (.9999, use:
. — AW )12 v
W, =M;'\ln2|:1—CL[1—e [ ¢ A]ﬂ (14)

The number of fragments with weight greater than Wr is:
Ne=Nr(1-Cy) (15)

It should be noted that the above equations are not applicable to casings designed to fragment
in a specific pattern.

It is also necessary to estimate or predict the shape and dimensions of the impacting fragments. As
previously stated, the simplest case is to assume a t x t x t shape. If a two-dimensional breakup is
assumed, then the width of the fragment is merely the case thickness after it expands. This “necked
down” thickness can be easily calculated according to the following:

p; = p2 (assuming incompressible material) (16)
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where
p = material density
Conservation of mass then leads to
A=A, (a7n

where

-t
o~
[
_~
-
G0
g

where

t = expanded case thickness

I, = initial internal case radius

t, = initial case thickness

n = multiplication factor for expansion, i.e. 1.5, 2.0

When designing for damage potential, it is sometimes useful to assume a worst-case shape and
orientation, i.e. long-rod penetrator. Width and depth dimensions might be assumed to be either the
initial or the expanded case thickness. The length can then be determined from the previously
calculated fragment mass or simply from fitting the data. Recall that the likelihood of the largest
fragment also being a long-rod penetrator is very low. A better data fit may result from dividing the
maximum fragment mass prediction by the density and expanded case thickness to obtain a frontal
area for the fragment. In any event, fragment geometry must be assumed or determined.

Thin srmwrd nbnem a0 4 arnlAatslosa
e HNTAL DICP Id W Ldlvulalc

nea Fragrmant valan:
LCC 11agINCn veiocl

ty, size, and geometry have
penetration depth. There are many to choose from, each with limits of validity. Several formulas are
presented in the literature [32,35-38]. Most of these equations are not pertinent to the conditions of

this study. Examples include formulas by Petry, de Marre, Helié and others.

-4 T -2

Petry: P=D_|1+e [/D‘” le (19)
A1 Vo

de Marre: P=0.112m;” — Z0

1000
Helié: P=4'—602§I£f~logm(l+a2vf) (21)
a,d"np,
where
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P = penetration depth

D.. = penctration depth into a hypothetical infinitely thick shield
T = target thickness

m;= fragment mass

ve = fragment velocity

d = fragment diameter

pe = target density

a;,a; = experimental parameters

The Petry equation was originally developed for steel fragments impacting concrete or soil targets. It
is restricted to very large fragments (200-2000 1bs) and relatively low velocities (~1000 ft/s). The de
Marre equation is for small steel fragments between 1/8 and 1 oz impacting steel targets at velocities
between 2000 ft/s and 7000 ft/s. The Helie formula was developed in the mid 1800s for steel
fragments and requires two experimental parameters.

Tuarn nthar farmmiilac hey Thar and Chrictmanifiaheinog ara maes annlicohla amd ara atuom 0 Aarns]
L ¥YYU ULLIV] LVLILIULAD Uy A 11V Al ACHIADULLIIAL G ] llls aLsy BLIvi ayyupaunc alivl ale 51 Y11 111 s Lall
below
Thor: V, =V, — 10(hA)Y(7000W P! Ty M

or: P = Vo— (hAYX(7 0" (sec®) 'V, (22)
where

V, = residual velocity after perforation (ft/s)

V, = initial/striking fragment velocity (ft/s)

h = target thickness (in)

A = fragment cross-sectional area (in%)

W; = fragment weight (Ib)

0 = angle between fragment trajectory and target normal (deg.)
cl,a,p1,y1,A1 = experimental parameters [35]

The Thor equation was developed for steel fragments impacting and perforating metal and plastic
targets. The regimes of validity depend on the target material. For homogeneous steel targets, the
Thor equation has limits of 600-12000 ft/s for fragment velocity and up to 1.9 oz for fragment
weight. By setting the residual velocity equal to zero and rearranging the terms, an equation for
minimum target thickness (hmin) to prevent perforation can be achieved. This can then be used to
predict penetration depth. Reference [1] suggested a modification to allow for fragments other than

steel,
1
[ -| al
1 AY

P:K[ — } (23)
cl p ¥l
10 (’J’OOOWf /p,) (seco)

where

pe/p, = ratio of fragment density to target density

19



Two other sources give the Christman/Gehring equation for projectiles [37,38]. It is applicable to
velocities between 1000 and 22,000 ft/s and is adaptable for long rods or for compact fragments of

various materials.
~ 172 13 KE 113
o3 2o | [ 22 (24)
‘ P ) \ P

L = fragment length (in)

D = fragment diameter (in)

p#/pe = ration of fragment density to target density

KE = fragment kinetic energy (J)

Brmax = maximum Brinell hardness after impact (kg/mmz)

Christman/Gehring; P=(L- D)(—p—f
P,

where

The first term in this equation is for the period of primary penetration, which is more important for
long-rod penetrators. A similar expression appears elsewhere [24,25]. The second term is for
secondary penetration, which is more important for fragments with smaller L/D ratios, i.e. compact
fragments. Thus, the first term can be neglected if no long-rod penetrator is assumed.

Data Analysis

The data for this study was taken from six cylinder tests (see appendix 1). Figure 15 shows a typical
experimental setup. Shrapnel was intercepted by witness plates, which were later measured for
penetration depth. In several of the tests, multiple witness plates were layered together. Some
fragments passed completely through one or more plates before coming to rest. Consequently, some
penetration depth measurements were made by adding together the thickness of any perforated
plate(s) and penetration depth in the last plate. For convenience, five of the tests are labeled with an
arbitrary sample number. The sixth test is distinguishable because its was the only witness plate that
was actually examined first-hand by the author. Test six is labeled LANL h-2223. An attempt was
made to find the mathematical model that best represented the data. Although the amount of
available information from the tests was limited, different combinations of the above mathematical
models were used until the best fit was achieved.
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Figure 15. Experimental setup for tests 1-4 [1]. Detonation was from one end. Tests 5 and 6
were detonated a both ends of the cylinder.

It was readily determined that the modified Gurney formula (equation 2) provided the best method
for calculating fragment velocity. The determination of fragment size and geometry was more
difficult. Three approaches were taken. In every approach the fragment thickness was taken as the
expanded case thickness and calculated according to equation 18. The Mott formula (equation 9)
was used first to calculate the theoretical largest fragment weight. The frontal area of the fragment
was found by dividing the weight by the fragment density and expanded case thickness. It was
assumed that the fragment impacted the target with this area. A second approach for determining
fragment geometry and weight was to assume a fragment size of t x t x t, where t was the expanded
case thickness. Frontal area and fragment weight were trivial matters. Finally, a long-rod penetrator
was assumed as a third means of calculating fragment size. The height and width of the rod were
taken as the expanded case thickness. The length was then back-solved from the data using
equations 23 and 24 and a least-squares technique. The Mott method gave the best results.
ormuias appeared to be the most applicable penetration equations

ata in an effort to determine which model gave a better fit. It
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completely ruled out. Figures 16 and 17 below show the data fit. For convenience, a sample set of

calculations is given in appendix 3 that follows the methodology above.

Modified Gurney Velocity / Worst Case Mott Fragment

1.6

14 s 1 re® 5 A S
- 12 _KNL_:;;LL
£ B
£ ne223
a ] ___——l. 5
a I o
c 038 !
& wmmsn@run Thor-GUIMIEY
E 0.6
b4 0.4 mem@== G chring/Christman-Gumaey

0.0 — -k — Thor-Modified Gumey

0 — - — Christman/Gehring-Modified
0.0 5.0 10.0 15.0 Gurney
Kinetic Energy (x10*4 J)

Figure 16. The Gurney, modified Gurney, and Mott formulas (equations 1, 2 and 9, respectively)
were used with the experimental data. Note that the modified Gurney formula gives
smoother curves. The Thor and Christman/Gehring predictions for penetration depth
(equations 23 and 24, respectively) are both shown for comparison.

Largest Fragment Data Fit
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Figure 17. The measured penetration depths are compared with the predicted values.
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Recall that one of the assumptions for each of the cylinder tests was that the worst fragments would
originate from the middle of the cylinders length. The witness plates were arranged in such a way to
catch some of those fragments and it was assumed that the worst-case fragments were indeed
sampled. One way to verify this assumption would be to collect and compare all of the fragments.
Another way would be to predict and compare some of the average fragment sizes and resulting
penetration depths. This was done using equations 2 and 11. From the results given in figure 18, itis
clear that the largest case fragments were very likely sampled.

Average Mott Fragment Data Fit
2.5 1
4 Measured
- 2 M Thor
=
: A Christman/Gehring
215 L 4
=
=)
g - * o
% » " ® LANL-h2223
. 05 i \ *
0 i ! . ‘
0 1 2 3 4 5 6 7
Test

Figure 18. The test data is compared with penetration predictions based on average fragment
size calculations.

The penetration depth measurements for each experiment were taken from the deepest crater in their
respective witness plates. As mentioned earlier, the witness plate from the LANL test was a special
case because it was examined first-hand. Consequently, it was possible to obtain penetration data
from every crater, not just the deepest (see appendix 2). Data from several craters was plotted to
show the crater distribution within that witness plate (see figure19).
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Average Fragment Penetration Depth Comparison
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Figure 19. The crater depth distribution for the LANL h-2223 witness plate. Depth predictions
are also shown for comparison. Maximum and average fragment sizes were
calculated according to the Mott formulas.

There are possible sources of error in the above analysis. First, the method of measuring the
penetration depths and the accuracy of those measurements was unknown for tests 1-5. Also, it was
unknown whether fragments remained embedded in the target craters when the measurements were
taken. Both of these unknowns may significantly affect the data fit and resulting conclusions.
Furthermore, due to insufficient information. the same Mott scaling constant was used for each
fragment weight calculation regardless of explosive or shell type.

Conclusions and Recommendations

Fragmentation of exploding cylinders and penetration mechanics of surrounding vessel walls were
examined and a qualitative understanding was achieved. This understanding provided a basis for
making simplifying approximations and assumptions that aided in creating a shrapnel penetration
model. Several mathematical models were discussed, and results from 6 cylinder tests were analyzed
in order to select a model that best represented the data. It was determined that the overall best

=TIy t1mm Lol at
mathematical model to predict shrapnel penetration uses the modified Gurney equation to calculate

fragment velocity, the Mott equation to calculate largest fragment weight, and the
Christman/Gehring equation to calculate penetration depth. It must be noted that these conclusions
are based on the data and information available to the author at the time of the publication of this
report. New data or information may partly or entirely change them.

Research for this study should not be considered complete. Due to time constraints and limited test

data, there are still many questions that need to be answered. Recommendations for continued

research include:

1. The Gurney formula for calculating fragment velocity gives one average velocity for all
fragments. The velocity distribution of the fragments needs to be determined in order to verify
the validity of this statement.

24



It was assumed that the worst-case fragments come from the midsection of the cylinder.
Although the test data suggests this is the case, this assumption should to be verified. In
predicting penetration, fragment velocity is more influential than weight, and resolving the
velocity distribution dilemma may solve this problem as well. It should be determined if the
largest fragments also have the greatest velocity and from where they originate, which may
require an actual test inside the containment vessel.

Fragments may have become embedded in the targets during impact. This would have resulted in
incorrect penetration depth measurements, and may possibly change the best-fit model. The
LANL h-2223 witness plate could be sectioned and/or tested for embedded fragments.

It was assumed that although elongated fragments were formed from exploding cylinders, they
were oriented parallel to the target surface upon impact, i.e. no long-rod penetrators were
generated. The orientation of elongated fragments upon impact should be further investigated.
The fragmentation models found in the literature were based on cylinders detonated at one end or
at one point. It is believed that worst-case fragments come from cylinders that are detonated at
both ends. Since, experiments 1-4 were detonated at one end and experiments 5 and 6 were

1 A £ tql A
detonated at both ends, the effect of detonating a cylinder at both ends on fragment size and

velocity should be established.

It should be ascertained whether penetration is a kinetic energy or momentum effect. As can be
seen from figure 15, kinetic energy was used as the independent variable in this study.

The value of the Mott scaling constant found in equation 8 should be verified for each explosive.
Since the general range of values is small, the same constant was used for each test exploswe.
Simple experiments may be required if the information found in literature is insufficient.

Due to insufficient time, it was not possible to fully research the Held formula (equation 6) for

determining fragment mass. This equation may be promising and should be further investigated.
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Appendix |

Test Data for 6 Cylinder Tests

Fragment
Case
Weight Density |Initial Case Expansion |Expanded case |length |Case ID
Experiment* |Material (Ibs/in*3) Thickness (in) [(%) thickness (in}**  |{in) {in)
1|Steet 0.283 0.5 140 0.3624 17 8.0
2|Copper 0.323 0.2 200 0.1009 12 2.0
3|Copper 0.323 0.4 210 0.1941 40 4.0
4/Copper 0.323 0.4 210 0.1941 48 4.0f
5/5teel 0.283 0.375 130 0.2911] 13.25 10.04
LANL h-2223 |Steel 0.283 0.5 140 0.3624 6 8

*Information for experiments 1-5 was obtained from reference [1] and correspond to test no.’s
2,3, 4,7, and 9, respectively, as labeled therein. The sixth experiment was conducted at Los
Alamos National Laboratory and is dencted by its shot number. Note that tests 1-4 were detanated
at one end of the cylinder and tests 5 and 6 were detonated at both ends.

**The thinning of the initial case thickness, due to cylinder expansion, is taken into account.

It was assumed that steel cylinders expand 120-150% and copper cylinders expand 200-220%,
depending on initial case thickness. Varying the expansion percentage by 20 only changed the
Thor predictions by about 0.1 in. Adjusting the expanded case thickness only affects the worst-case
Thar and long rod-penetrator predictions.

HE
Gurney Mott Explosive
Experiment  [Material  |Amount (Ibs) Constant {f/s} [Constant
1| RX-35-BT| 41 8068 0.22
2| RX-35-BT 2.5 8068 0.22
3| BX-35-BT 40 8068 0.22
4 Lovex 30 8068 0.22
5 C4 60 8800 0.22
LANL h-2223 | PBX-9501 13.73 9514 0.22)
Target
Weight Density |Max. HB Penetration «+ Measured
Experiment  |Material (Ibs/in®3) {(kg/mm~2} Perforation (in) Depth {in)
1 A36 0.283 165 05+1.5 2.00
2 A36 0.283 185 0.5+0.125 0.63
3 A36 0.283 165 0.5 + 0.5 + 0.1875 1.19
4 A36 0.283 165 1+0.125 1.13
5 1008 0.283 165 1.5 1.50
LANL h-2223 | HSLA 100 0.283 220 0.803 0.803

LANL h-2223 experiment provided the most reliable prediction and results comparison.
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LA PCTIURA L
Test Data for Witness Piate form LANL h-2223 Test
Experiment Shrapnel 2" x 12" x 12" HSLA 100
LOCATION +/-
- A DEPTH VOLUME oo
HIT#! SIZE {x.,y) mm 2mm (x,y) mm| DEF mm | VOLUME cc
42, 47 51,76 203 84
2 61,45 76, 81 18.2 8.9
3 38,28 132, 66 7.2 i.5
4 32,42 160, 79 18.7 6.2
5 26, 45 191, 66 12.1 10.2
6 48, 54 248, 76 17.2 12
7 30, 22 15, 175 204 4.1
8 74,67 69, 173 15 145
9 53, 51 178,173 17.6 132
iC 54,60 264,170 i5 i0.5
i1 23,27 130, 272 7.9 1.8
i2 26,34 193, 287 4.6 1.3
13 32,24 244, 287 9.7 3
Notes
1. Upper left comer of 305mm x 305mm x 51mm" HSLA 100 plate is 0,0 origin.
2. Front face of 2" plate is depth and volume origin.
3. Size dimensions are the max. in both x and y.
4. Location dimensions are estimated center of shrapnel hits in both x and y.
5. Depth is the deepest shrapnet hit measured,
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Appendix 3
Sample set of Calculations

These calculations follow the methodology described in data analysis section. The data used is from the
LANL h-2223 experiment.

1. Calculate the case weight according to
Wc = Yf J.ZE:[(}:I:)-i-ztc))z _IDzlL

where ¥t = case weight density
ID = initial inside diameter
t, = initial case thickness
L = case length

W, = (0.283_113 %](s.om +2(0.5in))? - (8.0in)? [6.0in) = 22.67Ibs
mn

2. Calculate the fragment velocity using equation 2.

w
Vo=+2E | —— e ____
L w
I+ 1+
2L 2Wo
where Vo = initial velocity of the case fragment (f/s)
(2E)'”? = Gurney energy constant; depends on the HE type (f/s)
W = weight of explosive (Ibs)
W, = case weight (Ibs)
D, = explosive diameter (inside case diameter)
13.731bs
Vo= (95 14t 22.671bs - 5024.6%
$

) 8.0in 13.731bs
1+ — [ 1+ -
2*6.0in 2%22.671bs
3. Calculate the largest fragment weight using equations 7 and 8.

Ma=Bt."® d'® (1 +t./d)
Wi = [Mj In(8W. / Mu9J?

where W, = casing weight (1bs)
W = design fragment weight (0z)
M, = fragment distribution factor
B = explosive constant
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t. = casing thickness
d; = inside diameter of casing

M, = (0.22)(0.5 in)%(8.0 in)*(1 + 0.5 in/ 8.0 in) = 0.26238
We=[(0.26238) In(8*22.67 Ibs / (0.26238)%)]? = 4.27 oz

4. Calculate penetration depth (Thor) using equation 23.

P= -ilz V° 5
10°‘(7000Wf P% ) (seco)”

t

where V. = initial/striking fragment velocity (ft/s)
P = penetration depth (in)
A = fragment cross-sectional area (in%)
W; = fragment weight (1b)
6 = angle between fragment trajectory and target normal (deg.)
cl,a,B1,y1,Al = experimental parameters [32]
pe'py = ratio of fragment density to target density

and

A =Wi/(pg)

where t = expanded case thickness found according to equation 18 using an

expansion factor of 1.4.

A=(4.270z)(11b/ 16 0z) / [(0.283 Ibfin*}((.3624 in) = 2.602 in>

f 0.906
: 5024.6
- 2.602in? \ : 0963 =0.723in
. mn 11b .96
6.601 0.283 1.286
10 (7000(4'72°Z)[160z /K 0283)] (seco)

5. Calculate penetration depth (Christman/Gehring) using equation 24. Remember that since the fragment
is not a long-rod penetrator, the first term can be neglected.

113 KE 153
P=0.13 P
P, B e

where L = fragment length (in)
D = fragment diameter (in)
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pi/py = ration of fragment density to target density
KE = fragment kinetic energy (J)
Brax = maximum Brinell hardness after impact (kg/mm?)

2
KE =2, V2 = 1 (4.2707) 20 1 0359ke 1 spng 6T [ 1MV _1420x100)
2 2 3284t

160z 11b s

173

=1.12in

Peol 3[0.283 J’” 14.22x10%]

0.283 20 kg

mm?
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